1
|
He Z, Fang Y, Zhang F, Liu Y, Cheng X, Wang J, Li D, Chen D, Wu F. Adenine nucleotide translocase 2 (Ant2) is required for individualization of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2024; 31:1055-1072. [PMID: 38112480 DOI: 10.1111/1744-7917.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Successful completion of spermatogenesis is crucial for the perpetuation of the species. In Drosophila, spermatid individualization, a process involving changes in mitochondrial structure and function is critical to produce functional mature sperm. Ant2, encoding a mitochondrial adenine nucleotide translocase, is highly expressed in male testes and plays a role in energy metabolism in the mitochondria. However, its molecular function remains unclear. Here, we identified an important role of Ant2 in spermatid individualization. In Ant2 knockdown testes, spermatid individualization complexes composed of F-actin cones exhibited a diffuse distribution, and mature sperms were absent in the seminal vesicle, thus leading to male sterility. The most striking effects in Ant2-knockdown spermatids were decrease in tubulin polyglycylation and disruption of proper mitochondria derivatives function. Excessive apoptotic cells were also observed in Ant2-knockdown testes. To further investigate the phenotype of Ant2 knockdown in testes at the molecular level, complementary transcriptome and proteome analyses were performed. At the mRNA level, 868 differentially expressed genes were identified, of which 229 genes were upregulated and 639 were downregulated induced via Ant2 knockdown. iTRAQ-labeling proteome analysis revealed 350 differentially expressed proteins, of which 117 proteins were upregulated and 233 were downregulated. The expression of glutathione transferase (GstD5, GstE5, GstE8, and GstD3), proteins involved in reproduction were significantly regulated at both the mRNA and protein levels. These results indicate that Ant2 is crucial for spermatid maturation by affecting mitochondrial morphogenesis.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Fengchao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xinkai Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiajia Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Dechen Li
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Dengsong Chen
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
2
|
Li C, Ren Y, Chen MY, Wang Q, He Z, Wang YF. CG9920 is necessary for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. Dev Biol 2024; 512:13-25. [PMID: 38703942 DOI: 10.1016/j.ydbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yue Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
3
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Liu XP, Liu CY, Feng YJ, Guo XK, Zhang LS, Wang MQ, Li YY, Zeng FR, Nolan T, Mao JJ. Male vitellogenin regulates gametogenesis through a testis-enriched big protein in Chrysopa pallens. INSECT MOLECULAR BIOLOGY 2024; 33:17-28. [PMID: 37707297 DOI: 10.1111/imb.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chang-Yan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, People's Republic of China
| | - Yan-Jiao Feng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xing-Kai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fan-Rong Zeng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jian-Jun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Chen MY, Duan X, Wang Q, Ran MJ, Ai H, Zheng Y, Wang YF. Cytochrome c1-like is required for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. J Exp Biol 2023; 226:286665. [PMID: 36645102 DOI: 10.1242/jeb.245277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The Drosophila testis is an excellent system for studying the process from germ stem cells to motile sperm, including the proliferation of male germ cells, meiosis of primary spermatocytes, mitochondrial morphogenesis, and spermatid individualization. We previously demonstrated that ocnus (ocn) plays an essential role in male germ cell development. Among those genes and proteins whose expression levels were changed as a result of ocn knockdown, cytochrome c1-like (cyt-c1L) was downregulated significantly. Here, we show that cyt-c1L is highly expressed in the testis of D. melanogaster. Knockdown or mutation of cyt-c1L in early germ cells of flies resulted in male sterility. Immunofluorescence staining showed that cyt-c1L knockdown testes had no defects in early spermatogenesis; however, in late stages, in contrast to many individualization complexes (ICs) composed of F-actin cones that appeared at different positions in control testes, no actin cones or ICs were observed in cyt-c1L knockdown testes. Furthermore, no mature sperm were found in the seminal vesicle of cyt-c1L knockdown testes whereas the control seminal vesicle was full of mature sperm with needle-like nuclei. cyt-c1L knockdown also caused abnormal mitochondrial morphogenesis during spermatid elongation. Excessive apoptotic signals accumulated in the base of cyt-c1L knockdown fly testes. These results suggest that cyt-c1L may play an important role in spermatogenesis by affecting the mitochondrial morphogenesis and individualization of sperm in D. melanogaster.
Collapse
Affiliation(s)
- Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
7
|
Liang J, Lv C, Xiang D, Zhang Y, Zhang B, Raza SHA, Wu G, Quan G. The establishment of goat semen protein profile using a tandem mass tag-based proteomics approach. Res Vet Sci 2022; 150:22-32. [DOI: 10.1016/j.rvsc.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
8
|
Zhao T, Xiao Y, Huang B, Ran MJ, Duan X, Wang YF, Lu Y, Yu XQ. A dual role of lola in Drosophila ovary development: regulating stem cell niche establishment and repressing apoptosis. Cell Death Dis 2022; 13:756. [PMID: 36056003 PMCID: PMC9440207 DOI: 10.1038/s41419-022-05195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
In Drosophila ovary, niche is composed of somatic cells, including terminal filament cells (TFCs), cap cells (CCs) and escort cells (ECs), which provide extrinsic signals to maintain stem cell renewal or initiate cell differentiation. Niche establishment begins in larval stages when terminal filaments (TFs) are formed, but the underlying mechanism for the development of TFs remains largely unknown. Here we report that transcription factor longitudinals lacking (Lola) is essential for ovary morphogenesis. We showed that Lola protein was expressed abundantly in TFCs and CCs, although also in other cells, and lola was required for the establishment of niche during larval stage. Importantly, we found that knockdown expression of lola induced apoptosis in adult ovary, and that lola affected adult ovary morphogenesis by suppressing expression of Regulator of cullins 1b (Roc1b), an apoptosis-related gene that regulates caspase activation during spermatogenesis. These findings significantly expand our understanding of the mechanisms controlling niche establishment and adult oogenesis in Drosophila.
Collapse
Affiliation(s)
- Ting Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yanhong Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China
| | - Bo Huang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
9
|
Rowe L, Rockwell AL. Ubiquitous Knockdown of Mettl3 using TRiP.GL01126 Results in Spermatid Mislocalization During Drosophila Spermatogenesis. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000511. [PMID: 35071998 PMCID: PMC8767421 DOI: 10.17912/micropub.biology.000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
METTL3, the enzyme that catalyzes the m6A RNA modification in Drosophila is highly conserved and essential in various eukaryotic organisms. Mettl3 and its homologs have been linked to biological processes such as gametogenesis. We focused on characterizing the role of METTL3 in Drosophila spermatogenesis. We used the Gal4-UAS system to ubiquitously knockdown Mettl3 in both somatic cyst cells and germline cells. Using immunostaining and confocal microscopy, we found spermatid bundles mislocalize in testes that contain the morphologically abnormal swollen apical tip. Our result suggests Mettl3 knockdown using TRiP.GL01126 results in spermatogenesis aberrations.
Collapse
|
10
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
12
|
Zhang Y, Yang L, Huang L, Liu G, Nie X, Zhang X, Xing X. SUN5 Interacting With Nesprin3 Plays an Essential Role in Sperm Head-to-Tail Linkage: Research on Sun5 Gene Knockout Mice. Front Cell Dev Biol 2021; 9:684826. [PMID: 34268309 PMCID: PMC8276135 DOI: 10.3389/fcell.2021.684826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acephalic spermatozoa syndrome is a rare genetic and reproductive disease. Recent studies have shown that approximately 33–47% of patients with acephalic spermatozoa syndrome have SUN5 mutations, but the molecular mechanism underlying this phenomenon has not been elucidated. In this study, we generated Sun5 knockout mice and found that the head-to-tail linkage was broken in Sun5–/– mice, which was similar to human acephalic spermatozoa syndrome. Furthermore, ultrastructural imaging revealed that the head-tail coupling apparatus (HTCA) and the centrosome were distant from the nucleus at steps 9–10 during spermatid elongation. With the manchette disappearing at steps 13–14, the head and the tail segregated. To explore the molecular mechanism underlying this process, bioinformatic analysis was performed and showed that Sun5 may interact with Nesprin3. Further coimmunoprecipitation (Co-IP) and immunofluorescence assays confirmed that Sun5 and Nesprin3 were indeed bona fide interaction partners that formed the linker of the nucleoskeleton and cytoskeleton (LINC) complex participating in the connection of the head and tail of spermatozoa. Nesprin3 was located posterior and anterior to the nucleus during spermiogenesis in wild-type mice, whereas it lost its localization at the implantation fossa of the posterior region in Sun5–/– mice. Without correct localization of Nesprin3 at the nuclear membrane, the centrosome, which is the originator of the flagellum, was distant from the nucleus, which led to the separation of the head and tail. In addition, isobaric tag for relative and absolute quantitation results showed that 47 proteins were upregulated, and 56 proteins were downregulated, in the testis in Sun5–/– mice, and the downregulation of spermatogenesis-related proteins (Odf1 and Odf2) may also contribute to the damage to the spermatozoa head-to-tail linkage. Our findings suggested that Sun5 is essential for the localization of Nesprin3 at the posterior nuclear membrane, which plays an essential role in the sperm head-tail connection.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfei Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Chen MY, Tayyeb A, Wang YF. shrub is required for spermatogenesis of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21779. [PMID: 33660341 DOI: 10.1002/arch.21779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Shrub (CG8055) encodes the vps32/snf7 protein, a filament-forming subunit of the ESCRT (endosomal sorting complexes required for transport)-III complex involved in inward membrane budding. It was reported that shrub was required for abscission in female germline stem cells. In this study, we showed that the expression level of shrub in the testis was significantly higher than that in the ovary of 1-day-old Drosophila melanogaster, suggesting a role in male reproduction. Then we used nosGal4 driver to knockdown shrub specifically in the fly testis and found that this resulted in a significantly lower paternal effect egg hatch rate relative to the control group. Immunofluorescence staining showed that shrub knockdown in fly testes caused an accumulation of early-stage germ cells and lack of spectrin caps. In the late stages (spermiogenesis), the control testis contained multiple compacted spermatid bundles and individualization complexes (ICs) consisting of actin cones, whereas there were scattered spermatid nuclei and only a few ICs with disorganized actin cones in the shrub knockdown testis. Finally, the control seminal vesicle was full of mature sperms with needle-like heads, but in shrub knockdown testis 75% of seminal vesicles had no mature sperms. We also found that knockdown of shrub in fly testes led to upregulated expression of several cytoskeleton-associated genes, and an accumulation of ubiquitylated proteins. These results suggest that knockdown of shrub in fly testes might damage spermatogenesis by affecting transportability.
Collapse
Affiliation(s)
- Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Abdulqadir Tayyeb
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Dahl TM, Reed M, Gerstner CD, Ying G, Baehr W. Effect of conditional deletion of cytoplasmic dynein heavy chain DYNC1H1 on postnatal photoreceptors. PLoS One 2021; 16:e0248354. [PMID: 33705456 PMCID: PMC7951903 DOI: 10.1371/journal.pone.0248354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein (dynein 1), a major retrograde motor of eukaryotic cells, is a 1.4 MDa protein complex consisting of a pair of heavy chains (DYNC1H1) and a set of heterodimeric noncatalytic accessory components termed intermediate, light intermediate and light chains. DYNC1H1 (4644 amino acids) is the dynein backbone encoded by a gene consisting of 77 exons. We generated a floxed Dync1h1 allele that excises exons 24 and 25 and truncates DYNC1H1 during Six3Cre-induced homologous recombination. Truncation results in loss of the motor and microtubule-binding domain. Dync1h1F/F;Six3Cre photoreceptors degenerated rapidly within two postnatal weeks. In the postnatal day 6 (P6) Dync1h1F/F;Six3Cre central retina, outer and inner nuclear layers were severely disorganized and lacked a recognizable outer plexiform layer (OPL). Although the gene was effectively silenced by P6, DYNC1H1 remnants persisted and aggregated together with rhodopsin, PDE6 and centrin-2-positive centrosomes in the outer nuclear layer. As photoreceptor degeneration is delayed in the Dync1h1F/F;Six3Cre retina periphery, retinal lamination and outer segment elongation are in part preserved. DYNC1H1 strongly persisted in the inner plexiform layer (IPL) beyond P16 suggesting lack of clearance of the DYNC1H1 polypeptide. This persistence of DYNC1H1 allows horizontal, rod bipolar, amacrine and ganglion cells to survive past P12. The results show that cytoplasmic dynein is essential for retina lamination, nuclear positioning, vesicular trafficking of photoreceptor membrane proteins and inner/outer segment elaboration.
Collapse
Affiliation(s)
- Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Cecilia D. Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bi J, Wang Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. INSECT SCIENCE 2020; 27:846-858. [PMID: 31631529 PMCID: PMC7496987 DOI: 10.1111/1744-7917.12731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/25/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yu‐Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| |
Collapse
|
16
|
Galletta BJ, Ortega JM, Smith SL, Fagerstrom CJ, Fear JM, Mahadevaraju S, Oliver B, Rusan NM. Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. Dev Cell 2020; 53:86-101.e7. [PMID: 32169161 DOI: 10.1016/j.devcel.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 01/27/2023]
Abstract
The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacob M Ortega
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin M Fear
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharvani Mahadevaraju
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Biwot JC, Zhang HB, Chen MY, Wang YF. A new function of immunity-related gene Zn72D in male fertility of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21612. [PMID: 31482645 DOI: 10.1002/arch.21612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early-stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton-related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton-based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.
Collapse
Affiliation(s)
- John C Biwot
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
18
|
Huang HJ, Cui JR, Chen J, Bing XL, Hong XY. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103211. [PMID: 31425852 DOI: 10.1016/j.ibmb.2019.103211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are intracellular bacteria that manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). However, the underlying mechanisms of Wolbachia-induced CI are not entirely clear. Here, we monitored the Wolbachia distribution in the male gonads of the small brown planthopper (Laodelphax striatellus, SBPH) at different development stages, and investigated the influence of Wolbachia on male gonads by a quantitative proteomic analysis. A total of 276 differentially expressed proteins were identified, with the majority of them participating in metabolism, modification, and reproduction. Knocking down the expression of outer dense fiber protein (ODFP) and venom allergen 5-like (VA5L) showed decreased egg reproduction, and these two genes might be responsible for Wolbachia improved fecundity in infected L. striatellus; whereas knocking down the expression of cytosol amino-peptidase-like (CAL) significantly decreased the egg hatch rate in Wolbachia-uninfected L. striatellus, but not in the Wolbachia-infected one. Considering that the mRNA/protein level of CAL was downregulated by Wolbachia infection and dsCAL treatment closely mimicked Wolbachia-induced CI, we presumed that CAL might be one of the factors determining the CI phenotype.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Drosophila Pif1A is essential for spermatogenesis and is the homolog of human CCDC157, a gene associated with idiopathic NOA. Cell Death Dis 2019; 10:125. [PMID: 30741974 PMCID: PMC6370830 DOI: 10.1038/s41419-019-1398-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
The dynamic process of spermatogenesis shows little variation between invertebrate models such as Drosophila, and vertebrate models such as mice and rats. In each case, germ stem cells undergo mitotic division to proliferate and then continue, via meiosis, through various stages of elongation and individualization from spermatogonia to spermatid to finally to form mature sperm. Mature sperm are then stored in the seminal vesicles for fertilization. Errors in any of these stages can lead to male infertility. Here, we identify that Drosophila Pif1A acts as a key regulator for sperm individualization. Loss of Pif1A leads to male sterility associated with irregular individualization complex and empty seminal vesicles without mature sperm. Pif1A is highly expressed in the testes of mated male adult flies and the Pif1A protein is expressed at a higher level in male than in female flies. Pif1A is homologous to mammalian coiled-coil domain-containing protein 157 (CCDC157), which is also enriched in the testes of humans and mice. Human CCDC157, with unknown function, was identified to be downregulated in men with idiopathic non-obstructive azoospermia (NOA). We map the function of Drosophila Pif1A during spermatogenesis, showing that Pif1A is essential for spermatide individualization and involved in the regulation of the lipid metabolism genes. Our findings might be applicable for studying the function of CCDC157 in spermatogenesis and other aspects of human male fertility.
Collapse
|
20
|
ATP synthase is required for male fertility and germ cell maturation in Drosophila testes. Mol Med Rep 2019; 19:1561-1570. [PMID: 30628672 PMCID: PMC6390039 DOI: 10.3892/mmr.2019.9834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023] Open
Abstract
Germ cell maturation is essential for spermatogenesis and testis homeostasis. ATP synthase serves significant roles in energy storage in germ cell survival and is catalyzed by alterations in the mitochondrial membrane proton concentration. The intrinsic cellular mechanisms governing stem cell maturation remain largely unknown. In the present study, in vivo RNA interference (RNAi) screening of major ATP synthase subunits was performed, and the function of ATP synthase for male fertility and spermatogenesis in Drosophila was explored. A Upstream Activation Sequence/Gal4 transcription factor system was used to knock down gene expression in specific cell types, and immunofluorescence staining was conducted to assess the roles of ATP synthase subunits in Drosophila testes. It was identified that knockdown of ATP synthase resulted in male infertility and abnormal spermatogenesis in Drosophila testes. In addition, knockdown of the ATP synthase β subunit in germ cells resulted in defects in male infertility and germ cell maturation, while the hub and cyst cell populations were maintained. Other major ATP synthase subunits were also examined and similar phenotypes in Drosophila testes were identified. Taken together, the data from the present study revealed that ATP synthase serves important roles for male fertility during spermatogenesis by regulating germ cell maturation in Drosophila testes.
Collapse
|
21
|
Zheng Y, Bi J, Hou MY, Shen W, Zhang W, Ai H, Yu XQ, Wang YF. Ocnus is essential for male germ cell development in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2018; 27:545-555. [PMID: 29732657 DOI: 10.1111/imb.12393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ocnus (ocn) gene encodes a protein abundant in the testes, implying its role in testis development. When Drosophila melanogaster is infected with the endosymbiont wMel Wolbachia, which affects the spermatogenesis of its hosts, ocn is downregulated in the third-instar larval testes, suggesting a role of ocn in spermatogenesis. In this study, we knocked down ocn in the testes and found that the hatch rates of embryos derived from ocn-knockdown males were significantly decreased, and 84.38% of the testes were much smaller in comparison to controls. Analysis of the smaller testes showed no germ cells but they had an extended hub. Using RNA-sequencing (RNA-Seq), we identified 69 genes with at least a twofold change (q-value < 5%) in their expression after ocn knockdown; of these, eight testes-specific and three reproduction-related genes were verified to be significantly downregulated using quantitative reverse transcription-PCR. Three genes (orientation disruptor, p24-2 and CG13541) were also significantly downregulated in the presence of Wolbachia. Furthermore, 98 genes were not expressed when ocn was knocked down in testes. These results suggest that ocn plays a crucial role in male germ cell development in Drosophila, possibly by regulating the expression of multiple spermatogenesis-related genes. Our data provide important information to help understand the molecular regulatory mechanisms underlying spermatogenesis.
Collapse
Affiliation(s)
- Y Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - J Bi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - M-Y Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - W Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - W Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - H Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - X-Q Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Y-F Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|