1
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. We observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that by E11.5, mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
2
|
Liu Z, Lu C, Ma L, Li C, Luo H, Liu Y, Liu X, Li H, Cui Y, Zeng J, Bottasso‐Arias N, Sinner D, Li L, Wang J, Stainier DYR, Yin W. The T-Type Calcium Channel CACNA1H is Required for Smooth Muscle Cytoskeletal Organization During Tracheal Tubulogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308622. [PMID: 39360593 PMCID: PMC11600216 DOI: 10.1002/advs.202308622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.
Collapse
Affiliation(s)
- Ziying Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
| | - Chunyan Lu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Li Ma
- Heart center & Department of Pediatric SurgeryGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623P. R. China
| | - Changjiang Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiyun Luo
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yiqi Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiqing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yachao Cui
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Jiahang Zeng
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Natalia Bottasso‐Arias
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Debora Sinner
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Le Li
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Jian Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Didier Y. R. Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL)61231Bad NauheimGermany
| | - Wenguang Yin
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education Institutesthe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510005P. R. China
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
3
|
Adasooriya D, Jeong JK, Kyeong M, Kan S, Kim J, Cho ES, Cho SW. Notum regulates the cusp and root patterns in mouse molar. Sci Rep 2024; 14:13633. [PMID: 38871845 PMCID: PMC11176191 DOI: 10.1038/s41598-024-64340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Notum is a direct target of Wnt/β-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.
Collapse
Affiliation(s)
- Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shiqi Kan
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jiwoo Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
4
|
Russell NX, Burra K, Shah RM, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. Am J Physiol Lung Cell Mol Physiol 2023; 325:L788-L802. [PMID: 37873566 PMCID: PMC11068408 DOI: 10.1152/ajplung.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.
Collapse
Affiliation(s)
- Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ronak M Shah
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
5
|
Russell NX, Burra K, Shah R, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523309. [PMID: 36711918 PMCID: PMC9882072 DOI: 10.1101/2023.01.10.523309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.
Collapse
Affiliation(s)
- Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Ronak Shah
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program Current Affiliation: Renaissance School of Medicine at Stony Brook University
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: P&G Cincinnati, OH
| | - Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
6
|
Bottasso-Arias N, Burra K, Sinner D, Riede T. Disruption of BMP4 signaling is associated with laryngeal birth defects in a mouse model. Dev Biol 2023; 500:10-21. [PMID: 37230380 PMCID: PMC10330877 DOI: 10.1016/j.ydbio.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Laryngeal birth defects are considered rare, but they can be life-threatening conditions. The BMP4 gene plays an important role in organ development and tissue remodeling throughout life. Here we examined its role in laryngeal development complementing similar efforts for the lung, pharynx, and cranial base. Our goal was to determine how different imaging techniques contribute to a better understanding of the embryonic anatomy of the normal and diseased larynx in small specimens. Contrast-enhanced micro CT images of embryonic larynx tissue from a mouse model with Bmp4 deletion informed by histology and whole-mount immunofluorescence were used to reconstruct the laryngeal cartilaginous framework in three dimensions. Laryngeal defects included laryngeal cleft, laryngeal asymmetry, ankylosis and atresia. Results implicate BMP4 in laryngeal development and show that the 3D reconstruction of laryngeal elements provides a powerful approach to visualize laryngeal defects and thereby overcoming shortcomings of 2D histological sectioning and whole mount immunofluorescence.
Collapse
Affiliation(s)
- N Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - K Burra
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D Sinner
- Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - T Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
7
|
Wu H, Wang P, Liu Z, Lu C, Yin W. Systematic Analysis of Smooth Muscle and Cartilage Ring Formation during Mouse Tracheal Tubulogenesis. Bio Protoc 2023; 13:e4711. [PMID: 37449041 PMCID: PMC10336568 DOI: 10.21769/bioprotoc.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 07/18/2023] Open
Abstract
The trachea tube is the exclusive route to allow gas exchange between the external environment and the lungs. Recent studies have shown the critical role of mesenchymal cells in tracheal tubulogenesis. Improved methods for studying the dynamics of the tracheal mesenchyme development are needed to investigate the cellular and molecular mechanisms during tracheal tubulogenesis. Here, we describe a detailed protocol for a systematic analysis of tracheal tube development to enable observing tracheal smooth muscle (SM) and cartilage ring formation. We describe immunostaining, confocal and stereomicroscopy imaging, and quantitative methods to study the process of tracheal SM and cartilage ring development, including SM cell alignment, polarization, and changes in cell shape as well as mesenchymal condensation. The technologies and approaches described here not only improve analysis of the patterning of the developing trachea but also help uncover the mechanisms underlying airway disease. This protocol also provides a useful technique to analyze cell organization, polarity, and nuclear shape in other organ systems.
Collapse
Affiliation(s)
- Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Ping Wang
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ziying Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| |
Collapse
|
8
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Li B, Xiao L, Ye D, Zhong S, Yan Q. The expression of NOTUM in replantation of severed fingers may be an important treatment factor. Ann Hum Genet 2023; 87:18-27. [PMID: 36465015 DOI: 10.1111/ahg.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND After years of development, digital replantation has become a mature treatment. Although the NOTUM gene has been shown to be involved in the formation of vertebrate nerves, whether it contributes to the osteogenic mechanism of severed finger replantation remains unknown. In response to this, this study investigates the specific details of NOTUM involvement in replantation of severed fingers. METHODS The experimental subjects are patients with replantation of severed fingers from Shulan International Medical College of Shulan (Hangzhou) Hospital affiliated to Zhejiang Shuren University. In addition to using bone marrow mesenchymal stem cells (BMSCs) as an in vitro system, this experiment also involves quantitative polymerase chain reaction, microarray analysis, cell counting Kit-8, ethynyl deoxyuridine staining and Western blot analysis. RESULTS The expression level of NOTUM in the severed finger replantation group is lower than that in the normal group. NOTUM inhibits cell growth and cell transfer, osteogenic differentiation and β-catenin gene expression in BMSCs. Luciferase reporter assay illustrated that β-catenin wild type closely correlated with NOTUM. The inhibition of β-catenin increases the effects of NOTUM on cell growth, cell transfer and osteogenic differentiation of BMSCs. CONCLUSIONS Considering that NOTUM can inhibit cell growth, cell transfer, osteogenic differentiation of BMSCs, as well as the gene expression of β-catenin, it may be a biomarker of osteogenic differentiation and a potential therapeutic target for replantation of severed fingers.
Collapse
Affiliation(s)
- Bin Li
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Libing Xiao
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Danhong Ye
- Department of Emergency, Chouzhou Hospital, Yiwu, China
| | - Siyi Zhong
- Department of Plastic Surgery and Hand Microsurgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Qiaoyu Yan
- Department of Plastic Surgery, Hangzhou Maternity Hospital, Hangzhou, China
| |
Collapse
|
10
|
The Role of the miR-548au-3p/CA12 Axis in Tracheal Chondrogenesis in Congenital Pulmonary Airway Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6428579. [PMID: 36846718 PMCID: PMC9957630 DOI: 10.1155/2023/6428579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 02/19/2023]
Abstract
Background Literature has identified differentially expressed miRNAs in congenital pulmonary airway malformation (CPAM). However, the functional role of these miRNAs in CPAM remains unclear. Methods We obtained diseased lung tissues as well as adjacent normal lung tissue from CPAM patients attending the centre. Hematoxylin and eosin (H&E) and Alcian blue staining were performed. Differentially expressed mRNA expression profile was CPAM tissue, and matched normal tissue specimens were examined by high-throughput RNA sequencing. CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and the Transwell assay were performed to investigate the effect of miR-548au-3p/CA12 axis on proliferation, apoptosis, and chondrogenic differentiation in rat tracheal chondrocytes. mRNA and protein expression levels were determined using reverse transcription-quantitative PCR and western blot analysis, respectively. The relationship between miR-548au-3p and CA12 was evaluated using the luciferase reporter assay. Results The expression level of miR-548au-3p was significantly increased in diseased tissues compared with normal adjacent tissues from patients with CPAM. Our results indicate that miR-548au-3p functions as a positive regulator in rat tracheal chondrocyte proliferation and chondrogenic differentiation. At molecular level, miR-548au-3p promoted N-cadherin, MMP13, and ADAMTS4 expressions and reduced E-cadherin, aggrecan, and Col2A1 expressions. CA12 has been previously reported as a predicted target of miR-548au-3p, and here, we show that overexpression of CA12 in rat tracheal chondrocyte mimics the effects of inhibition of miR-548au-3p. On the other hand, CA12 knockdown reversed the effects of miR-548au-3p on cell proliferation, apoptosis, and chondrogenic differentiation. Conclusions In conclusion, the miR-548au-3p/CA12 axis plays a role in the pathogenesis of CPAM and may lead to identification of new approaches for CPAM treatment.
Collapse
|
11
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
12
|
Sun D, Llora Batlle O, van den Ameele J, Thomas JC, He P, Lim K, Tang W, Xu C, Meyer KB, Teichmann SA, Marioni JC, Jackson SP, Brand AH, Rawlins EL. SOX9 maintains human foetal lung tip progenitor state by enhancing WNT and RTK signalling. EMBO J 2022; 41:e111338. [PMID: 36121125 PMCID: PMC9627674 DOI: 10.15252/embj.2022111338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.
Collapse
Affiliation(s)
- Dawei Sun
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Oriol Llora Batlle
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jelle van den Ameele
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Present address:
Department of Clinical Neurosciences and MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - John C Thomas
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Peng He
- Wellcome Sanger InstituteCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Walfred Tang
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Chufan Xu
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Department of Anaesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | | | - Sarah A Teichmann
- Wellcome Sanger InstituteCambridgeUK
- Department of Physics/Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | - John C Marioni
- Wellcome Sanger InstituteCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Stephen P Jackson
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Andrea H Brand
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
13
|
Lewis ZR, Kerney R, Hanken J. Developmental basis of evolutionary lung loss in plethodontid salamanders. SCIENCE ADVANCES 2022; 8:eabo6108. [PMID: 35977024 PMCID: PMC9385146 DOI: 10.1126/sciadv.abo6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
One or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching. Initiation of pulmonary development coincides with expression of the lung-specification gene Wnt2b in adjacent mesoderm, and the lung rudiment expresses pulmonary markers Nkx2.1 and Sox9. Lung developmental-genetic pathways are at least partially conserved despite the absence of functional adult lungs for at least 25 and possibly exceeding 60 million years. Adult lung loss appears associated with altered expression of signaling molecules that mediate later stages of tracheal and pulmonary development.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Yin W, Liontos A, Koepke J, Ghoul M, Mazzocchi L, Liu X, Lu C, Wu H, Fysikopoulos A, Sountoulidis A, Seeger W, Ruppert C, Günther A, Stainier DYR, Samakovlis C. An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development 2022; 149:274222. [PMID: 35112129 PMCID: PMC8918789 DOI: 10.1242/dev.199804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development. Summary: A conserved autocrine role for HH signaling in tracheal epithelial cell proliferation and differentiation is revealed, suggesting potential new interventions for airway epithelial proliferation and differentiation defects.
Collapse
Affiliation(s)
- Wenguang Yin
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Janine Koepke
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Maroua Ghoul
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Luciana Mazzocchi
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Athanasios Fysikopoulos
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Alexandros Sountoulidis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Werner Seeger
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Andreas Günther
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
15
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
16
|
Zhao Y, Svensson F, Steadman D, Frew S, Monaghan A, Bictash M, Moreira T, Chalk R, Lu W, Fish PV, Jones EY. Structural Insights into Notum Covalent Inhibition. J Med Chem 2021; 64:11354-11363. [PMID: 34292747 PMCID: PMC8365597 DOI: 10.1021/acs.jmedchem.1c00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 12/28/2022]
Abstract
The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer's disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4-oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Tiago Moreira
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Rod Chalk
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Weixian Lu
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| |
Collapse
|
17
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
18
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Nasr T, Holderbaum AM, Chaturvedi P, Agarwal K, Kinney JL, Daniels K, Trisno SL, Ustiyan V, Shannon JM, Wells JM, Sinner D, Kalinichenko VV, Zorn AM. Disruption of a hedgehog-foxf1-rspo2 signaling axis leads to tracheomalacia and a loss of sox9+ tracheal chondrocytes. Dis Model Mech 2020; 14:dmm.046573. [PMID: 33328171 PMCID: PMC7875488 DOI: 10.1242/dmm.046573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital tracheomalacia, resulting from incomplete tracheal cartilage development, is a relatively common birth defect that severely impairs breathing in neonates. Mutations in the Hedgehog (HH) pathway and downstream Gli transcription factors are associated with tracheomalacia in patients and mouse models; however, the underlying molecular mechanisms are unclear. Using multiple HH/Gli mouse mutants including one that mimics Pallister-Hall Syndrome, we show that excessive Gli repressor activity prevents specification of tracheal chondrocytes. Lineage tracing experiments show that Sox9+ chondrocytes arise from HH-responsive splanchnic mesoderm in the fetal foregut that expresses the transcription factor Foxf1. Disrupted HH/Gli signaling results in 1) loss of Foxf1 which in turn is required to support Sox9+ chondrocyte progenitors and 2) a dramatic reduction in Rspo2, a secreted ligand that potentiates Wnt signaling known to be required for chondrogenesis. These results reveal a HH-Foxf1-Rspo2 signaling axis that governs tracheal cartilage development and informs the etiology of tracheomalacia.
Collapse
Affiliation(s)
- Talia Nasr
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Andrea M Holderbaum
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Kunal Agarwal
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Jessica L Kinney
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Keziah Daniels
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Stephen L Trisno
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Debora Sinner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| |
Collapse
|
20
|
Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y. Runx2 Regulates Mouse Tooth Root Development Via Activation of WNT Inhibitor NOTUM. J Bone Miner Res 2020; 35:2252-2264. [PMID: 32569388 PMCID: PMC7689689 DOI: 10.1002/jbmr.4120] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Progenitor cells are crucial in controlling organ morphogenesis. Tooth development is a well-established model for investigating the molecular and cellular mechanisms that regulate organogenesis. Despite advances in our understanding of how tooth crown formation is regulated, we have limited understanding of tooth root development. Runt-related transcription factor 2 (RUNX2) is a well-known transcription factor in osteogenic differentiation and early tooth development. However, the function of RUNX2 during tooth root formation remains unknown. We revealed in this study that RUNX2 is expressed in a subpopulation of GLI1+ root progenitor cells, and that loss of Runx2 in these GLI1+ progenitor cells and their progeny results in root developmental defects. Our results provide in vivo evidence that Runx2 plays a crucial role in tooth root development and in regulating the differentiation of root progenitor cells. Furthermore, we identified that Gli1, Pcp4, NOTUM, and Sfrp2 are downstream targets of Runx2 by integrating bulk and single-cell RNA sequencing analyses. Specifically, ablation of Runx2 results in downregulation of WNT inhibitor NOTUM and upregulation of canonical WNT signaling in the odontoblastic site, which disturbs normal odontoblastic differentiation. Significantly, exogenous NOTUM partially rescues the impaired root development in Runx2 mutant molars. Collectively, our studies elucidate how Runx2 achieves functional specificity in regulating the development of diverse organs and yields new insights into the network that regulates tooth root development. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,Peking University Hospital of Stomatology First Clinical Division, Beijing, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
21
|
Kuwahara A, Lewis AE, Coombes C, Leung FS, Percharde M, Bush JO. Delineating the early transcriptional specification of the mammalian trachea and esophagus. eLife 2020; 9:e55526. [PMID: 32515350 PMCID: PMC7282815 DOI: 10.7554/elife.55526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.
Collapse
Affiliation(s)
- Akela Kuwahara
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Developmental and Stem Cell Biology Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Ace E Lewis
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Coohleen Coombes
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
- Department of Biology, San Francisco State UniversitySan FranciscoUnited States
| | - Fang-Shiuan Leung
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS)LondonUnited Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
23
|
Sinner DI, Carey B, Zgherea D, Kaufman KM, Leesman L, Wood RE, Rutter MJ, de Alarcon A, Elluru RG, Harley JB, Whitsett JA, Trapnell BC. Complete Tracheal Ring Deformity. A Translational Genomics Approach to Pathogenesis. Am J Respir Crit Care Med 2019; 200:1267-1281. [PMID: 31215789 PMCID: PMC6857493 DOI: 10.1164/rccm.201809-1626oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Complete tracheal ring deformity (CTRD) is a rare congenital abnormality of unknown etiology characterized by circumferentially continuous or nearly continuous cartilaginous tracheal rings, variable degrees of tracheal stenosis and/or shortening, and/or pulmonary arterial sling anomaly.Objectives: To test the hypothesis that CTRD is caused by inherited or de novo mutations in genes required for normal tracheal development.Methods: CTRD and normal tracheal tissues were examined microscopically to define the tracheal abnormalities present in CTRD. Whole-exome sequencing was performed in children with CTRD and their biological parents ("trio analysis") to identify gene variants in patients with CTRD. Mutations were confirmed by Sanger sequencing, and their potential impact on structure and/or function of encoded proteins was examined using human gene mutation databases. Relevance was further examined by comparison with the effects of targeted deletion of murine homologs important to tracheal development in mice.Measurements and Main Results: The trachealis muscle was absent in all of five patients with CTRD. Exome analysis identified six de novo, three recessive, and multiple compound-heterozygous or rare hemizygous variants in children with CTRD. De novo variants were identified in SHH (Sonic Hedgehog), and inherited variants were identified in HSPG2 (perlecan), ROR2 (receptor tyrosine kinase-like orphan receptor 2), and WLS (Wntless), genes involved in morphogenetic pathways known to mediate tracheoesophageal development in mice.Conclusions: The results of the present study demonstrate that absence of the trachealis muscle is associated with CTRD. Variants predicted to cause disease were identified in genes encoding Hedgehog and Wnt signaling pathway molecules, which are critical to cartilage formation and normal upper airway development in mice.
Collapse
Affiliation(s)
- Debora I. Sinner
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | | | - K. M. Kaufman
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | | | - Michael J. Rutter
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alessandro de Alarcon
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ravindhra G. Elluru
- Division of Ear Nose and Throat Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, and
- Department of Pediatrics and
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Neonatology
- Division of Pulmonary Biology
- Department of Pediatrics and
| | - Bruce C. Trapnell
- Division of Neonatology
- Division of Pulmonary Biology
- Translational Pulmonary Science Center
- Department of Pediatrics and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
24
|
Yin W, Kim HT, Wang S, Gunawan F, Li R, Buettner C, Grohmann B, Sengle G, Sinner D, Offermanns S, Stainier DYR. Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse tracheal tubulogenesis. Eur Respir J 2019; 53:13993003.00840-2018. [PMID: 30578393 DOI: 10.1183/13993003.00840-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.
Collapse
Affiliation(s)
- Wenguang Yin
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| | - Hyun-Taek Kim
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany
| | - Carmen Buettner
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Beate Grohmann
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine Cincinnati, OH, USA
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| |
Collapse
|
25
|
Suciu RM, Cognetta AB, Potter ZE, Cravatt BF. Selective Irreversible Inhibitors of the Wnt-Deacylating Enzyme NOTUM Developed by Activity-Based Protein Profiling. ACS Med Chem Lett 2018; 9:563-568. [PMID: 29937983 PMCID: PMC6004566 DOI: 10.1021/acsmedchemlett.8b00191] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
![]()
Wnt
proteins are secreted morphogens that play critical roles in
embryonic development and tissue remodeling in adult organisms. Aberrant
Wnt signaling contributes to diseases such as cancer. Wnts are modified
by an unusual O-fatty acylation event (O-linked palmitoleoylation of a conserved serine) that is required
for binding to Frizzled receptors. O-Palmitoleoylation
of Wnts is introduced by the porcupine (PORCN) acyltransferase and
removed by the serine hydrolase NOTUM. PORCN inhibitors are under
development for oncology, while NOTUM inhibitors have potential for
treating degenerative diseases. Here, we describe the use of activity-based
protein profiling (ABPP) to discover and advance a class of N-hydroxyhydantoin (NHH) carbamates that potently and selectively
inhibit NOTUM. An optimized NHH carbamate inhibitor, ABC99, preserves
Wnt-mediated cell signaling in the presence of NOTUM and was also
converted into an ABPP probe for visualizing NOTUM in native biological
systems.
Collapse
Affiliation(s)
- Radu M. Suciu
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Armand B. Cognetta
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zachary E. Potter
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Notum balances Wnt signaling during tracheal cartilage development. Dev Biol 2018; 437:61-62. [DOI: 10.1016/j.ydbio.2018.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022]
|