1
|
Dai Y, Pan R, Pan Q, Wu X, Cai Z, Fu Y, Shi C, Sheng Y, Li J, Lin Z, Liu G, Zhu P, Li M, Li G, Zhou X. Single-cell profiling of the amphioxus digestive tract reveals conservation of endocrine cells in chordates. SCIENCE ADVANCES 2024; 10:eadq0702. [PMID: 39705360 DOI: 10.1126/sciadv.adq0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Despite their pivotal role, the evolutionary origins of vertebrate digestive systems remain enigmatic. We explored the cellular characteristics of the amphioxus (Branchiostoma floridae) digestive tract, a model for the presumed primitive chordate digestive system, using bulk tissue companioned with single-cell RNA sequencing. Our findings reveal segmentation and a rich diversity of cell clusters, and we highlight the presence of epithelial-like, ciliated cells in the amphioxus midgut and describe three types of endocrine-like cells that secrete insulin-like, glucagon-like, and somatostatin-like peptides. Furthermore, Pdx, Ilp1, Ilp2, and Ilpr knockout amphioxus lines revealed that, in amphioxus, Pdx does not influence Ilp expression. We also unravel similarity between amphioxus Ilp1 and vertebrate insulin-like growth factor 1 (Igf1) in terms of predicted structure, effects on body growth and amino acid metabolism, and interactions with Igf-binding proteins. These findings indicate that the evolutionary alterations involving the regulatory influence of Pdx over insulin gene expression could have been instrumental in the development of the vertebrate digestive system.
Collapse
Affiliation(s)
- Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zexin Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yuyu Sheng
- Becton Dickinson Medical Devices (Shanghai) Co. Ltd., Beijing 100000, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Lloyd E, Xia F, Moore K, Zertuche C, Rastogi A, Kozol R, Kenzior O, Warren W, Appelbaum L, Moran RL, Zhao C, Duboue E, Rohner N, Keene AC. Elevated DNA Damage without signs of aging in the short-sleeping Mexican Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590174. [PMID: 38659770 PMCID: PMC11042282 DOI: 10.1101/2024.04.18.590174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Dysregulation of sleep has widespread health consequences and represents an enormous health burden. Short-sleeping individuals are predisposed to the effects of neurodegeneration, suggesting a critical role for sleep in the maintenance of neuronal health. While the effects of sleep on cellular function are not completely understood, growing evidence has identified an association between sleep loss and DNA damage, raising the possibility that sleep facilitates efficient DNA repair. The Mexican tetra fish, Astyanax mexicanus provides a model to investigate the evolutionary basis for changes in sleep and the consequences of sleep loss. Multiple cave-adapted populations of these fish have evolved to sleep for substantially less time compared to surface populations of the same species without identifiable impacts on healthspan or longevity. To investigate whether the evolved sleep loss is associated with DNA damage and cellular stress, we compared the DNA Damage Response (DDR) and oxidative stress levels between A. mexicanus populations. We measured markers of chronic sleep loss and discovered elevated levels of the DNA damage marker γH2AX in the brain, and increased oxidative stress in the gut of cavefish, consistent with chronic sleep deprivation. Notably, we found that acute UV-induced DNA damage elicited an increase in sleep in surface fish but not in cavefish. On a transcriptional level, only the surface fish activated the photoreactivation repair pathway following UV damage. These findings suggest a reduction of the DDR in cavefish compared to surface fish that coincides with elevated DNA damage in cavefish. To examine DDR pathways at a cellular level, we created an embryonic fibroblast cell line from the two populations of A. mexicanus. We observed that both the DDR and DNA repair were diminished in the cavefish cells, corroborating the in vivo findings and suggesting that the acute response to DNA damage is lost in cavefish. To investigate the long-term impact of these changes, we compared the transcriptome in the brain and gut of aged surface fish and cavefish. Strikingly, many genes that are differentially expressed between young and old surface fish do not transcriptionally vary by age in cavefish. Taken together, these findings suggest that cavefish have developed resilience to sleep loss, despite possessing cellular hallmarks of chronic sleep deprivation.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Kinsley Moore
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Carolina Zertuche
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Rob Kozol
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Olga Kenzior
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Wesley Warren
- Department of Genomics, University of Missouri, Columbia, MO 65211
| | - Lior Appelbaum
- Faculty of Life Science and the Multidisciplinary Brain Research Center, Bar Illan University, Ramat Gan, Israel
| | - Rachel L Moran
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Erik Duboue
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
3
|
Alunni A, Pierre C, Torres-Paz J, Clairet N, Langlumé A, Pavie M, Escoffier-Pirouelle T, Leblanc M, Blin M, Rétaux S. An Astyanax mexicanus mao knockout line uncovers the developmental roles of monoamine homeostasis in fish brain. Dev Growth Differ 2023; 65:517-533. [PMID: 37843474 DOI: 10.1111/dgd.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Monoaminergic systems are conserved in vertebrates, yet they present variations in neuroanatomy, genetic components and functions across species. MonoAmine Oxidase, or MAO, is the enzyme responsible for monoamine degradation. While mammals possess two genes, MAO-A and MAO-B, fish possess one single mao gene. To study the function of MAO and monoamine homeostasis on fish brain development and physiology, here we have generated a mao knockout line in Astyanax mexicanus (surface fish), by CRISPR/Cas9 technology. Homozygote mao knockout larvae died at 13 days post-fertilization. Through a time-course analysis, we report that hypothalamic serotonergic neurons undergo fine and dynamic regulation of serotonin level upon loss of mao function, in contrast to those in the raphe, which showed continuously increased serotonin levels - as expected. Dopaminergic neurons were not affected by mao loss-of-function. At behavioral level, knockout fry showed a transient decrease in locomotion that followed the variations in the hypothalamus serotonin neuronal levels. Finally, we discovered a drastic effect of mao knockout on brain progenitors proliferation in the telencephalon and hypothalamus, including a reduction in the number of proliferative cells and an increase of the cell cycle length. Altogether, our results show that MAO has multiple and varied effects on Astyanax mexicanus brain development. Mostly, they bring novel support to the idea that serotonergic neurons in the hypothalamus and raphe of the fish brain are different in nature and identity, and they unravel a link between monoaminergic homeostasis and brain growth.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Natacha Clairet
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Auriane Langlumé
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | | | - Michael Leblanc
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
4
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
5
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
6
|
Miranda-Gamboa R, Espinasa L, Verde-Ramírez MDLA, Hernández-Lozano J, Lacaille JL, Espinasa M, Ornelas-García CP. A new cave population of Astyanax mexicanus from Northern Sierra de El Abra, Tamaulipas, Mexico. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.98434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The Astyanax genus represents an extraordinary example of phenotypic evolution, being their most extreme examples the blind and depigmented morphs, which have evolved from independent surface-dwelling lineages. Among cave organisms, Astyanax cavefish is a prominent model system to study regressive evolution. Before this study, 34 cave populations were known for the Astyanax genus to be inhabited by the cave morph. The majority of those cave populations are distributed in Northeast México, at the Sierra Madre Oriental (32 cavefish), in three main areas: Sierra de Guatemala, Sierra de El Abra, and Micos, and two in the Balsas basin in the state of Guerrero, Mexico. In the present study, we describe a new cave population found 4.5 km Southward of Pachón cave, the most northern cave population known for the Sierra de El Abra limestone. El Refugio cave is a resurgence with a mixed population of fish with different levels of troglomorphism, and surface fish, resembling other hybrid populations within the Sierra de El Abra. Based on a mitochondrial DNA characterization of the 16S ribosomal DNA sequence, we could identify the mitochondrial lineage of this population, which was placed closely related to the “New Lineage”, sharing haplotypes with the surface (i.e. Arroyo Lagartos) and Pachón populations, instead of with the cave populations from Central Sierra de El Abra (e.g. Tinaja cave). El Refugio cave population gives additional evidence of the intricate history of this system, where migration, drift, and selection have shaped the evolution of the cave morphs through the independent episodes of the Astyanax mexicanus history.
Collapse
|
7
|
Ratko J, Gonçalves da Silva N, Ortiz da Silva D, Paula Nascimento Corrêa A, Mauro Carneiro Pereira D, Cristina Schleger I, Karla Alves Neundorf A, Herrerias T, Rita Corso C, Rosa Dmengeon Pedreiro de Souza M, Donatti L. Can high- and low-temperature thermal stress modulate the antioxidant defense response of Astyanax lacustris brain? Brain Res 2022; 1797:148118. [PMID: 36240883 DOI: 10.1016/j.brainres.2022.148118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
Change in temperature of aquatic environment have impacts on the physiology of fish, especially in the brain, which is a vital organ and prone to oxidative damage. Astyanax lacustris is a freshwater fish that play an important role in the food market and has been increasingly used in fish farms, besides environmental monitoring studies. Therefore, this study aimed to evaluate the responses of antioxidant biomarkers and products of the oxidative process in the brains A. lacustris subjected to thermal shock. The specimens were obtained from artificial farming lakes and subjected to shock induced by exposure to high (31 °C ± 0.5) and low (15 °C ± 0.5) temperature for 2, 6, 12, 24, 48, 72 and 96 h; control group were maintained at 23 °C ± 0.5. At 31 °C, glutathione-related enzymes were more responsive, suggested by the change activity of GPx and G6PDH enzymes, in addition to GSH levels. At 15 °C, enzymes of the first line of defense were more active, evidenced by the change CAT activity. No significant changes were detected in the levels of ROS, LPO and PCO. These results indicate that the brains of A. lacustris have an efficient antioxidant defense system with the ability to acclimatize to the temperatures tested.
Collapse
Affiliation(s)
- Jonathan Ratko
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Niumaique Gonçalves da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Diego Ortiz da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | - Ana Paula Nascimento Corrêa
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | - Diego Mauro Carneiro Pereira
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Ieda Cristina Schleger
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Ananda Karla Alves Neundorf
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Lucélia Donatti
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
8
|
Pereira DMC, Resende AC, Schleger IC, Neundorf AKA, Romão S, Souza MRDPD, Herrerias T, Donatti L. Integrated biomarker response index as an ally in the observation of metabolic biomarkers in muscle of Astyanax lacustris exposed to thermal variation. Biochimie 2022:S0300-9084(22)00276-0. [DOI: 10.1016/j.biochi.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
|
9
|
Lactobacillus rhamnosus GG normalizes gut dysmotility induced by environmental pollutants via affecting serotonin level in zebrafish larvae. World J Microbiol Biotechnol 2022; 38:222. [PMID: 36100774 DOI: 10.1007/s11274-022-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Intestinal peristalsis is essential for gastrointestinal function, which could maintain the appropriate progression and digestion of food and reduce bacterial aggregation through mixing function. Even though certain ingredients of foodstuff are known to increase or decrease intestinal peristalsis, the role of environmental pollutants on intestinal peristalsis is relatively unknown. Therefore, the effects of four typical environmental pollutants (oxytetracycline, arsenic, polychlorinated biphenyls and chlorpyrifos) on intestinal peristalsis in the zebrafish model and then tested the recovery effect of the constipation-resistant probiotic. The results showed that 4-day environmental pollutants exposures on the zebrafish embryos at 1 day post fertilization clearly decreased the intestinal peristalsis through decreasing the serotonin (5-HT) production and down-regulating the expression of key genes involved in 5-HT synthesis. Pollutants-evoked change of gut motility could be normalized in the presence of Lactobacillus rhamnosus GG (LGG) via increasing 5-HT secretion. Exogenous 5-hydroxytryptophan (100 µg/L) could also rescue the dysfunction of gut motility in pollutants-treated zebrfish. The data identified that LGG normalized disorder of intestinal peristalsis induced by environmental pollutants through increasing 5-HT level. The stimulant effect of LGG on peristalsis may be associated with 5-HT system, which could provide references for the application of probiotics in regulation of gut dysmotility.
Collapse
|
10
|
Xiong S, Wang W, Kenzior A, Olsen L, Krishnan J, Persons J, Medley K, Peuß R, Wang Y, Chen S, Zhang N, Thomas N, Miles JM, Alvarado AS, Rohner N. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr Biol 2022; 32:2272-2280.e6. [PMID: 35390280 PMCID: PMC9133166 DOI: 10.1016/j.cub.2022.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
Nutrient availability varies seasonally and spatially in the wild. While many animals, such as hibernating animals or migrating birds, evolved strategies to overcome periods of nutrient scarcity,1,2 the cellular mechanisms of these strategies are poorly understood. Cave environments represent an example of nutrient-deprived environments, since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability.3 Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave-adapted cavefish populations, to study the genetic adaptation to nutrient limitations.4-9 We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue.10-12 Moreover, the lipid metabolism regulator, peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish and inhibiting Pparγ in vivo decreases fat accumulation in A. mexicanus. Finally, we identified nonsense mutations in per2, a known repressor of Pparγ, providing a possible regulatory mechanism of Pparγ in cavefish. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient-limited environments.
Collapse
Affiliation(s)
- Shaolei Xiong
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA; National Institute of Biological Sciences, Beijing 102206, China
| | | | - Luke Olsen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jenna Persons
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kyle Medley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - John M Miles
- Department of Medicine, Division of Metabolism, Endocrinology & Genetics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Lipid metabolism in adaptation to extreme nutritional challenges. Dev Cell 2021; 56:1417-1429. [PMID: 33730548 DOI: 10.1016/j.devcel.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Food shortages represent a common challenge for most animal species. As a consequence, many have evolved metabolic strategies encompassing extreme starvation-resistance capabilities, going without food for months or even years. One such strategy is to store substantial levels of fat when food is available and release these energy-rich lipids during periods of dearth. In this review, we provide an overview of the strategies and pathways underlying the extreme capacity for animals to store and mobilize lipids during nutritionally stressful environmental conditions and highlight accompanying resilience phenotypes that allow these animals to develop and tolerate such profound metabolic phenotypes.
Collapse
|
12
|
Riddle MR, Aspiras A, Damen F, Hutchinson JN, Chinnapen D, Tabin J, Tabin CJ. Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:405-422. [PMID: 32488995 PMCID: PMC7708440 DOI: 10.1002/jez.b.22954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/25/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology.
Collapse
Affiliation(s)
- Misty R. Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Ariel Aspiras
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Current affiliation: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Fleur Damen
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John N. Hutchinson
- Department of Biostatistics, The Harvard Chan School of Public Health, Boston, MA 02115
| | - Daniel Chinnapen
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Julius Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Clifford J. Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
14
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
15
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
16
|
Maldonado E, Rangel-Huerta E, Rodriguez-Salazar E, Pereida-Jaramillo E, Martínez-Torres A. Subterranean life: Behavior, metabolic, and some other adaptations of Astyanax cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:463-473. [PMID: 32346998 DOI: 10.1002/jez.b.22948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022]
Abstract
The ability of fishes to adapt to any aquatic environment seems limitless. It is enthralling how new species keep appearing at the deep sea or in subterranean environments. There are close to 230 known species of cavefishes, still today the best-known cavefish is Astyanax mexicanus, a Characid that has become a model organism, and has been studied and scrutinized since 1936. There are two morphotypes for A. mexicanus, a surface fish and a cavefish. The surface fish lives in central and northeastern Mexico and south of the United States, while the cavefish is endemic to the "Sierra del Abra-Tanchipa region" in northeast Mexico. The extensive genetic and genomic analysis depicts a complex origin for Astyanax cavefish, with multiple cave invasions and persistent gene flow among cave populations. The surface founder population prevails in the same region where the caves are. In this review, we focus on both morphotype's main morphological and physiological differences, but mainly in recent discoveries about behavioral and metabolic adaptations for subterranean life. These traits may not be as obvious as the troglomorphic characteristics, but are key to understand how Astyanax cavefish thrives in this environment of perpetual darkness.
Collapse
Affiliation(s)
- Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Rodriguez-Salazar
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Pereida-Jaramillo
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - Ataulfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| |
Collapse
|
17
|
Riddle M, Martineau B, Peavey M, Tabin C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. J Vis Exp 2018. [PMID: 30638199 DOI: 10.3791/58972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
River and cave-adapted populations of Astyanax mexicanus show differences in morphology, physiology, and behavior. Research focused on comparing adult forms has revealed the genetic basis of some of these differences. Less is known about how the populations differ at post-larval stages (at the onset of feeding). Such studies may provide insight into how cavefish survive through adulthood in their natural environment. Methods for comparing post-larval development in the laboratory require standardized aquaculture and feeding regimes. Here we describe how to raise fish on a diet of nutrient-rich rotifers in non-recirculating water for up to two-weeks post fertilization. We demonstrate how to collect post-larval fish from this nursery system and perform whole-mount immunostaining. Immunostaining is an attractive alternative to transgene expression analysis for investigating development and gene function in A. mexicanus. The nursery method can also be used as a standard protocol for establishing density-matched populations for growth into adults.
Collapse
|
18
|
Xiong S, Krishnan J, Peuß R, Rohner N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev Biol 2018; 441:297-304. [DOI: 10.1016/j.ydbio.2018.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/23/2023]
|