1
|
Zhang B, He R, Yao Z, Li P, Niu G, Yan Z, Zou Y, Tong X, Yang M. Exploring Causal Relationships between Circulating Inflammatory Proteins and Thromboangiitis Obliterans: A Mendelian Randomization Study. Thromb Haemost 2024; 124:1075-1083. [PMID: 38788766 PMCID: PMC11518616 DOI: 10.1055/s-0044-1786809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Thromboangiitis obliterans (TAO) is a vascular condition characterized by poor prognosis and an unclear etiology. This study employs Mendelian randomization (MR) to investigate the causal impact of circulating inflammatory proteins on TAO. METHODS In this MR analysis, summary statistics from a genome-wide association study meta-analysis of 91 inflammation-related proteins were integrated with independently sourced TAO data from the FinnGen consortium's R10 release. Methods such as inverse variance weighting, MR-Egger regression, weighted median approaches, MR-PRESSO, and multivariable MR (MVMR) analysis were utilized. RESULTS The analysis indicated an association between higher levels of C-C motif chemokine 4 and a reduced risk of TAO, with an odds ratio (OR) of 0.44 (95% confidence interval [CI]: 0.29-0.67; p = 1.4 × 10-4; adjusted p = 0.013). Similarly, glial cell line-derived neurotrophic factor exhibited a suggestively protective effect against TAO (OR: 0.43, 95% CI: 0.22-0.81; p = 0.010; adjusted p = 0.218). Conversely, higher levels of C-C motif chemokine 23 were suggestively linked to an increased risk of TAO (OR: 1.88, 95% CI: 1.21-2.93; p = 0.005; adjusted p = 0.218). The sensitivity analysis and MVMR revealed no evidence of heterogeneity or pleiotropy. CONCLUSION This study identifies C-C motif chemokine 4 and glial cell line-derived neurotrophic factor as potential protective biomarkers for TAO, whereas C-C motif chemokine 23 emerges as a suggestive risk marker. These findings elucidate potential causal relationships and highlight the significance of these proteins in the pathogenesis and prospective therapeutic strategies for TAO.
Collapse
Affiliation(s)
- Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Rui He
- Department of Plastic Surgery and Burn, Peking University First Hospital, Beijing, China
| | - Ziping Yao
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Pengyu Li
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Guochen Niu
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaoqiang Tong
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Xu Z, Yang HH, Chen HZ, Huang BZ, Yang M, Liao ZH, Xiao BQ, Chen HQ, Ran J. ZEB1 Promotes Epithelial-Mesenchymal Transition of Endometrial Epithelial Cells and Plays a Critical Role in Embryo Implantation in Mice. Reprod Sci 2024:10.1007/s43032-024-01646-0. [PMID: 39218837 DOI: 10.1007/s43032-024-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) promotes epithelial-mesenchymal transition (EMT) in carcinogenesis, but its role in embryo implantation has not yet been well studied. In the present study we evaluated the hypothesis that ZEB1-induced EMT is essential for embryo implantation in vivo. Endometrial epithelium from female Kunming mice (non-pregnant, and pregnant from day 2.5 to 6.5) were collected for assessment of mRNA/protein expression of ZEB1, and EMT markers E-cadherin and vimentin, by employment of real-time quantitative reverse transcription PCR, Western blot, and immunohistochemical staining. To test if knockdown of ZEB1 affects embryo implantation in vivo, mice received intrauterine injection of shZEB1 before the number of embryos implanted was counted. The results showed that, ZEB1 was highly expressed at both mRNA and protein levels in the mouse endometrium on day 4.5 of pregnancy, paralleled with down-regulated E-cadherin and up-regulated vimentin expression (P < 0.05). Intrauterine injection of shZEB1 markedly suppressed embryo implantation in mice (P < 0.01). Conclusively, the present work demonstrated that ZEB1 is essential for embryo implantation under in vivo condition, and is possibly due to its effect on modulation of endometrial receptivity through EMT.
Collapse
Affiliation(s)
- Zhong Xu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China
| | - Huan-Huan Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China
| | - Hou-Zhi Chen
- Duke Kunshan University, Duke University, Durham, NC, 27708, USA
| | - Bi-Zhen Huang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China
| | - Ming Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China
| | - Zhen-Hua Liao
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China
| | - Bi-Qing Xiao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Hong-Qin Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350001, Fujian, PR China
| | - Jing Ran
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, PR China.
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350001, Fujian, PR China.
| |
Collapse
|
3
|
Deng B, Liao F, Liu Y, He P, Wei S, Liu C, Dong W. Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis. Front Immunol 2023; 14:1158648. [PMID: 37287987 PMCID: PMC10243217 DOI: 10.3389/fimmu.2023.1158648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is a critical factor in the development of ulcerative colitis (UC); however, the underlying molecular mechanisms remain unclear. This study aims to identify pivotal molecular mechanisms related to ERS in UC pathogenesis and provide novel therapeutic targets for UC. Methods Colon tissue gene expression profiles and clinical information of UC patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database, and the ERS-related gene set was downloaded from GeneCards for analysis. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were utilized to identify pivotal modules and genes associated with UC. A consensus clustering algorithm was used to classify UC patients. The CIBERSORT algorithm was employed to evaluate the immune cell infiltration. Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore potential biological mechanisms. The external sets were used to validate and identify the relationship of ERS-related genes with biologics. Small molecule compounds were predicted using the Connectivity Map (CMap) database. Molecular docking was performed to simulate the binding conformation of small molecule compounds and key targets. Results The study identified 915 differentially expressed genes (DEGs) and 11 ERS-related genes (ERSRGs) from the colonic mucosa of UC patients and healthy controls, and these genes had good diagnostic value and were highly correlated. Five potential small-molecule drugs sharing tubulin inhibitors were identified, including albendazole, fenbendazole, flubendazole, griseofulvin, and noscapine, among which noscapine exhibited the highest correlation with a high binding affinity to the targets. Active UC and 10 ERSRGs were associated with a large number of immune cells, and ERS was also associated with colon mucosal invasion of active UC. Significant differences in gene expression patterns and immune cell infiltration abundance were observed among ERS-related subtypes. Conclusion The results suggest that ERS plays a vital role in UC pathogenesis, and noscapine may be a promising therapeutic agent for UC by affecting ERS.
Collapse
Affiliation(s)
- Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
5
|
Bae H, Yang C, Lee JY, Park S, Bazer FW, Song G, Lim W. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy. J Pineal Res 2020; 69:e12670. [PMID: 32421880 DOI: 10.1111/jpi.12670] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Melatonin has been shown to improve in vitro fertilization and offspring survival after bacterial infection, but its role in regulating maternal-fetal communication during early pregnancy has not been investigated. Results of this study demonstrated expression of abundant melatonin receptors in conceptus and endometrium during early pregnancy. In gilts, expression of melatonin receptor 1A (MTNR1A or MT1) and melatonin receptor 1B (MTNR1B or MT2) increased in trophectoderm (Tr) and uterine luminal epithelium (LE) with advancing days during early pregnancy in a different manner. Melatonin increased proliferation and migration of porcine trophectoderm (pTr) cell, the percent pTr cells in the G2 phase of the cell cycle, and the expression of implantation-related genes by pTr cells and endometrial luminal epithelium (pLE). Melatonin also attenuated the production of LPS-induced pro-inflammatory cytokines and tunicamycin-induced endoplasmic reticulum (ER) stress-sensing proteins. The expression of sirtuin 1 (SIRT1) as a potential target of melatonin increased between Days 9 and 14 of gestation. Co-treatment with SIRT1 inhibitor EX527 and melatonin restored cell-cell interactions through PI3K and MAPK signaling. Knockdown of SIRT1 decreased the expression of implantation-related genes, as well as migration of pTr and pLE cells. The expression of microRNAs regulated by SIRT1 was suppressed in response to melatonin. Furthermore, melatonin significantly increased lipopolysaccharide (LPS)-reduced fertilization and embryogenesis in zebrafish model. These results suggest that melatonin may improve the uterine-conceptus interactions via the regulation of SIRT1 during early pregnancy.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Korea
| |
Collapse
|
6
|
Złotkowska A, Andronowska A. Modulatory effect of chemokines on porcine endometrial stromal and endothelial cells. Domest Anim Endocrinol 2020; 72:106475. [PMID: 32371294 DOI: 10.1016/j.domaniend.2020.106475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
The endometrium undergoes cyclical changes during the estrous cycle and pregnancy. These alterations are controlled by various factors, including cytokines. The present study aimed to screen the effect of several chemokines (CCL2, CCL4, CCL5, CCL8, CXCL2, CXCL8, CXCL9, CXCL10, and CXCL12) on endometrial stromal and endothelial cells. Real-time PCR analysis revealed mRNA expression of all examined chemokines and their receptors in primary stromal cells and undetectable levels of CXCL9, CXCL10, and CXCR3 in endothelial cells. Immunocytochemical staining showed variable distribution of chemokine receptors in stromal and endothelial cells. All examined chemokines enhanced stromal cell proliferation, and CCL2 and CXCL12 also increased the migratory potential of these cells. The evaluation of a possible indirect effect of chemokines on angiogenesis and lymphangiogenesis demonstrated that CXCL12 may potentially negatively affect lymphatic vessel creation. Downregulation of VEGFC mRNA and protein expression was noticed after CXCL12 stimulation. Among all examined chemokines, CCL4 and CCL8 positively affected the proliferation and migration of endothelial cells. The number of capillary-like structures was significantly reduced after CXCL8, CXCL10, and CXCL12 stimulation. In conclusion, among all examined chemokines, CCL2 is thought to act as the modulator of stromal cell functions, whereas CCL4 and CCL8 are suggested to be potent factors directly stimulating blood vessel creation.
Collapse
Affiliation(s)
- A Złotkowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland; Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - A Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
7
|
Zhou C, Cai G, Meng F, Xu Z, He Y, Hu Q, Zheng E, Huang S, Xu Z, Gu T, Hu B, Wu Z, Hong L. Deep-Sequencing Identification of MicroRNA Biomarkers in Serum Exosomes for Early Pig Pregnancy. Front Genet 2020; 11:536. [PMID: 32528535 PMCID: PMC7264423 DOI: 10.3389/fgene.2020.00536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Early pregnancy diagnosis in sows can significantly improve the efficiency of pig industry. Exosomes are membrane-covered nanovesicles that can transport microRNAs (miRNAs) and other molecular signals between cells. In other species, serum exosome-derived miRNAs can serve as good biomarkers of diseases and different physiological states, including pregnancy status. We hypothesized that circulating exosome-derived miRNAs might be used to differentiate the pregnancy status as early as several days after insemination in pigs. To test this hypothesis, we randomly assigned pigs for artificial insemination with fertile or dead semen (control group). Serum samples were obtained from pregnant pigs on days 9, 12, and 15 after insemination and from non-pregnant pigs on days 0, 9, 12, and 15 after insemination. Exosomes were isolated for RNA extraction. The exosomal RNA samples from pigs on day 9 of the estrus cycle and pregnancy were used for small-RNA sequencing. A total 321 miRNAs were identified in all samples. Twenty eight differentially abundant miRNAs were identified between the pregnant and control groups. miRNAs with | log2 (fold change)| > 2 from sequencing results were selected for validation by quantitative reverse-transcription-polymerase chain reaction (RT-qPCR) in larger samples. Finally two upregulated miRNAs (miR-92b-3p and miR-17-5p) in the pregnant groups (on days 9, 12, and 15 of pregnancy) were confirmed by RT-qPCR. In summary, we have successfully identified circulating exosomal miRNA profiles in the serum of pigs in early pregnancy. miR-92b-3p and miR-17-5p could be used as potential circulating biomarkers for early pregnancy diagnosis.
Collapse
Affiliation(s)
- Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
8
|
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM, Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, Zhou WJ, Li MQ. The role of CXC chemokine ligand 16 in physiological and pathological pregnancies. Am J Reprod Immunol 2020; 83:e13223. [PMID: 31972050 DOI: 10.1111/aji.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of a series of cytokines and immune cells. Chemokines are a type of special cytokine those were originally described as having a role in leukocyte trafficking. CXC chemokine ligand (CXCL) 16 is a member of the chemokine family, and CXC chemokine receptor (CXCR) 6 is its sole receptor. Emerging evidence has shown that CXCL16/CXCR6 is expressed at the maternal-fetal interface, by cell types that include trophoblast cells, decidual stroma cells, and decidual immune cells (eg, monocytes, γδT cells, and natural killer T (NKT) cells). The regulation of expression of CXCL16 is quite complex, and this process involves a multitude of factors. CXCL16 exerts a critical role in the establishment of a successful pregnancy through a series of molecular interactions at the maternal-fetal interface. However, an abnormal expression of CXCL16 is associated with certain pathological states associated with pregnancy, including recurrent miscarriage, pre-eclampsia, and gestational diabetes mellitus (GDM). In the present review, the expression and pleiotropic roles of CXCL16 under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chemokines as the modulators of endometrial epithelial cells remodelling. Sci Rep 2019; 9:12968. [PMID: 31506569 PMCID: PMC6736846 DOI: 10.1038/s41598-019-49502-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies highlighted chemokines as potential factors regulating changes in the endometrium during early pregnancy. The current study aimed to screen the effects of a broad range of chemokines and indicate those that are involved in porcine luminal epithelial (LE) cell remodelling. Messenger RNA expression of chemokines (CCL2, CCL4, CCL5, CCL8, CXCL2, CXCL8, CXCL10 and CXCL12) and both the mRNA and protein expression of their receptors (CCR1, CCR2, CCR3, CCR5, CXCR2, CXCR3, CXCR4) were detected in LE cells. Exogenous CCL8 enhanced the proliferative and migration potential of LE cells and their motility in the environment with its stable concentration. The adhesive properties of LE cells were negatively affected by CCL8. However, CXCL12 positively affected the proliferation, motility and adhesion of LE cells as well as caused a decrease in MUC1 mRNA expression. To conclude, our studies determined that exogenous chemokines affected critical endometrial epithelial cell functions in the context of embryo implantation. We suggest that of all the examined factors, chemokine CCL8 participates in the establishment of a proper environment for embryo implantation, whereas CXCL12, apart from participation in endometrial receptivity, promotes embryo attachment.
Collapse
|
10
|
Hong L, Liu R, Qiao X, Wang X, Wang S, Li J, Wu Z, Zhang H. Differential microRNA Expression in Porcine Endometrium Involved in Remodeling and Angiogenesis That Contributes to Embryonic Implantation. Front Genet 2019; 10:661. [PMID: 31402929 PMCID: PMC6677090 DOI: 10.3389/fgene.2019.00661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background: In western swine breeds, up to 30% of embryonic losses occur during early pregnancy, and the majority of embryonic losses happens during implantation. In this period, maternal recognition of pregnancy begins to occur and blastocysts undergo dramatic morphologic changes. As with other species, changes in the uterine environment plays an important role in the process of embryo implantation in pigs. Erhualian (ER) pigs, one of the Chinese Taihu swine breeds, are known to have the highest litter size in the world. Experiments demonstrated that the greater embryonic survival on gestation day (GD) 12 in Chinese Taihu pigs is one important factor that contributes to enhanced litter size. This is largely controlled by maternal genes. In this study, endometrial samples were collected from pregnant Landrace×Large Yorkshire (LL) sows (parity 3) and ER sows (parity 3) on GD12 and the expression profiles of microRNAs (miRNAs) in the endometrium were compared between ER and LL using miRNA-seq technology. Results: A total of 288 miRNAs were identified in the pig endometrium, including 202 previously known and 86 novel miRNAs. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that highly abundant miRNAs might affect endometrial remodeling. Comparison between LL and ER sows revealed that 96 known miRNAs were differentially expressed between the two groups (including 78 up-regulated and 18 down-regulated miRNAs in ER compared to LL). Bioinformatics analysis showed that the target genes of some differentially expressed miRNAs were involved in pathways related to angiogenesis, proliferation, apoptosis, and tissue remodeling, which play critical roles in implantation by regulating endometrial structural changes and secretions of hormones, growth factors, and nutrients. Furthermore, the results demonstrated that insulin-like growth factor-1 protein expression was directly inhibited by miR-206. The lower expression of miR-206 in ER compared to LL might facilitate the angiogenesis of the endometrium during embryo implantation. Conclusions: The identified miRNAs that are differentially expressed in the endometrium of ER and LL pigs will contribute to the understanding of the role of miRNAs in embryonic implantation and the molecular mechanisms of the highest embryonic survival in Chinese ER pigs.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruize Liu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiwu Qiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouqi Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Bae H, Lim W, Bazer FW, Whang KY, Song G. Mitigation of ER-stress and inflammation by chemokine (C-C motif) ligand 21 during early pregnancy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:73-84. [PMID: 30711450 DOI: 10.1016/j.dci.2019.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The immune system plays an important role in pregnancy. Chemokines recruit leukocytes at the maternal-fetal interface during early pregnancy. However, the role of the chemokine, C-C motif chemokine ligand 21 (CCL21), is less known. The aim of this study was to identify the expression of CCL21 and its receptor, CCR7, in the endometrium during estrous cycle and early pregnancy, and to investigate the functional effects of CCL21 on porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells. Our results indicated that CCL21 and CCR7 are increased in the glandular (GE) and luminal epithelium (LE) of the endometrium during early pregnancy, compared to estrous pigs. Recombinant CCL21 improved pTr and pLE cell proliferation through activation of the PI3K and MAPK pathways and suppression of tunicamycin-induced endoplasmic reticulum (ER) stress or LPS-induced inflammation. Collectively, these results provide novel insights into CCL21-mediated signaling mechanisms at the maternal-fetal interface during early pregnancy.
Collapse
Affiliation(s)
- Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Kwang-Youn Whang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Złotkowska A, Andronowska A. Variable chemokine expression in porcine trophoblasts and endometrium during the peri-implantation period. Theriogenology 2019; 131:16-27. [PMID: 30928625 DOI: 10.1016/j.theriogenology.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Successful embryo implantation and its further development depends on appropriate endometrial remodelling. Porcine early pregnancy is associated with intensive endometrial angiogenesis and establishment of an immunotolerant environment for the embryo. An increasing number of factors are believed to participate in endometrial remodelling. The aim of this study was to elucidate the involvement of selected chemokines at the porcine maternal-foetal interface during the peri-implantation period. Real-time PCR analysis revealed several upregulated chemokines during the time of implantation, and Western blot/ELISA analyses and immunohistochemical staining confirmed their presence at the protein level. The gene expression of several chemokines and receptors was also confirmed in early porcine trophoblasts. The results indicated that IFNG, a porcine trophoblast signal, positively influenced the expression of some chemokines in endometrial cells. In conclusion, we suggest that some of the examined chemokines may be involved in endometrial communication with the trophoblast (CCL2, CCL5, CCL11, CXCL12), whereas others are implicated in the recruitment of immune cells and establishment of an immunotolerant environment for the embryo (CXCL9, CXCL10).
Collapse
Affiliation(s)
- Aleksandra Złotkowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
13
|
Park C, Bae H, Bazer FW, Song G, Lim W. Activation of CCL20 and its receptor CCR6 promotes endometrium preparation for implantation and placenta development during the early pregnancy period in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:35-42. [PMID: 30414404 DOI: 10.1016/j.dci.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
The success of implantation and placentation during early pregnancy depends on the intrauterine environment of diverse histotrophs, including nutrients, growth factors, cytokines, and chemokines. Here, we determined the functional role and signal transduction of CC-motif chemokine 20 (CCL20) in the porcine endometrium during pregnancy. The expression of CCL20 and its receptor CCR6 was abundant in the glandular epithelium (GE) and luminal epithelium (LE) of the porcine endometrium during early pregnancy. Administration of CCL20 to porcine endometrial LE cells increased cellular proliferation with strong PCNA expression by activation of PI3K and MAPK signaling. Blocking PI3K and MAPK decreased the CCL20-mediated elevated proliferation of pLE cells. Moreover, the proliferation of pLE cells was enhanced by inhibiting the LPS-induced cytokines and tunicamycin-induced endoplasmic reticulum (ER) stress response proteins. Overall, these results suggest that CCL20 may improve the endometrial receptivity through inducing proliferative signal transduction in the porcine endometrium during the early gestational period.
Collapse
Affiliation(s)
- Chanho Park
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea; Biomedical Institute of Mycological Resource, College of Medicine, Catholic Kwandong University, Incheon, 22711, Republic of Korea.
| |
Collapse
|