1
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal maldevelopment in the R6/2 mouse model of juvenile Huntington's disease. Neurobiol Dis 2025; 204:106752. [PMID: 39644979 DOI: 10.1016/j.nbd.2024.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024] Open
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABAA receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| | - Sandra M Holley
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Allison Peng
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
4
|
Bauer T, von Wrede RD, Pujar S, Rácz A, Hoppe C, Baumgartner T, Varadkar S, Held NR, Reiter JT, Enders S, David B, Prillwitz CC, Brugues M, Keil VCW, Jeub M, Borger V, Sander JW, Kunz WS, Radbruch A, Weber B, Helmstaedter C, Vatter H, Baldeweg T, Becker AJ, Cross JH, Surges R, Rüber T. Rasmussen's encephalitis: structural, functional, and clinical correlates of contralesional epileptiform activity. J Neurol 2024; 271:6680-6691. [PMID: 39138652 PMCID: PMC11446947 DOI: 10.1007/s00415-024-12607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
Progressive inflammation of one hemisphere characterises Rasmussen's encephalitis (RE), but contralesional epileptiform activity has been repeatedly reported. We aimed to quantify contralesional epileptiform activity in RE and uncover its functional and structural underpinnings. We retrospectively ascertained people with RE treated between 2000 and 2018 at a tertiary centre (Centre 1) and reviewed all available EEG datasets. The temporal occurrence of preoperative contralesional epileptiform activity (interictal/ictal) was evaluated using mixed-effects logistic regression. Cases with/without contralesional epileptiform activity were compared for cognition, inflammation (ipsilesional brain biopsies), and MRI (cortical and fixel-based morphometry). EEG findings were validated in a second cohort treated at another tertiary centre (Centre 2) between 1995 and 2020. We included 127 people with RE and 687 EEG samples. Preoperatively, contralesional epileptiform activity was seen in 30/68 (44%, Centre 1) and 8/59 (14%, Centre 2). In both cohorts, this activity was associated with younger onset age (OR = 0.9; 95% CI 0.83-0.97; P = 0.006). At centre 1, contralesional epileptiform activity was associated with contralesional MRI alterations, lower intelligence (OR = 5.19; 95% CI 1.28-21.08; P = 0.021), and impaired verbal memory (OR = 10.29; 95% CI 1.97-53.85; P = 0.006). After hemispherotomy, 11/17 (65%, Centre 1) and 28/37 (76%, Centre 2) were seizure-free. Contralesional epileptiform activity was persistent postoperatively in 6/12 (50%, Centre 1) and 2/34 (6%, Centre 2). Preoperative contralesional epileptiform activity reduced the chance of postoperative seizure freedom in both cohorts (OR = 0.69; 95% CI 0.50-0.95; P = 0.029). Our findings question the concept of strict unilaterality of RE and provide the evidence of contralesional epileptiform activity as a possible EEG predictor for persisting postoperative seizures.
Collapse
Affiliation(s)
- Tobias Bauer
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Attila Rácz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Christian Hoppe
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
- Developmental Neurosciences Research and Teaching Department, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Nina R Held
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Johannes T Reiter
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Selma Enders
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Mar Brugues
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Vera C W Keil
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Monika Jeub
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wolfram S Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | | | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | | | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
- Developmental Neurosciences Research and Teaching Department, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
- Young Epilepsy Lingfield, Lingfield, UK
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Ribierre T, Bacq A, Donneger F, Doladilhe M, Maletic M, Roussel D, Le Roux I, Chassoux F, Devaux B, Adle-Biassette H, Ferrand-Sorbets S, Dorfmüller G, Chipaux M, Baldassari S, Poncer JC, Baulac S. Targeting pathological cells with senolytic drugs reduces seizures in neurodevelopmental mTOR-related epilepsy. Nat Neurosci 2024; 27:1125-1136. [PMID: 38710875 PMCID: PMC11156583 DOI: 10.1038/s41593-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Cortical malformations such as focal cortical dysplasia type II (FCDII) are associated with pediatric drug-resistant epilepsy that necessitates neurosurgery. FCDII results from somatic mosaicism due to post-zygotic mutations in genes of the PI3K-AKT-mTOR pathway, which produce a subset of dysmorphic cells clustered within healthy brain tissue. Here we show a correlation between epileptiform activity in acute cortical slices obtained from human surgical FCDII brain tissues and the density of dysmorphic neurons. We uncovered multiple signatures of cellular senescence in these pathological cells, including p53/p16 expression, SASP expression and senescence-associated β-galactosidase activity. We also show that administration of senolytic drugs (dasatinib/quercetin) decreases the load of senescent cells and reduces seizure frequency in an MtorS2215F FCDII preclinical mouse model, providing proof of concept that senotherapy may be a useful approach to control seizures. These findings pave the way for therapeutic strategies selectively targeting mutated senescent cells in FCDII brain tissue.
Collapse
Affiliation(s)
- Théo Ribierre
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- NeuroNA Human Cellular Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Alexandre Bacq
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florian Donneger
- Institut du Fer à Moulin, INSERM, Sorbonne Université, UMR-S 1270, Paris, France
| | - Marion Doladilhe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marina Maletic
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Delphine Roussel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Isabelle Le Roux
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Francine Chassoux
- Service de Neurochirurgie, AP-HP, Hôpital Lariboisière, Paris, France
- GHU Paris, Psychiatrie et Neurosciences, Paris, France
| | - Bertrand Devaux
- Service de Neurochirurgie, AP-HP, Hôpital Lariboisière, Paris, France
- GHU Paris, Psychiatrie et Neurosciences, Paris, France
| | - Homa Adle-Biassette
- Université de Paris Cité, Service d'Anatomie Pathologique, AP-HP, Hôpital Lariboisière, DMU DREAM, UMR 1141, INSERM, Paris, France
| | | | - Georg Dorfmüller
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Mathilde Chipaux
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
6
|
Kitaura H, Fukushima K, Fukuda M, Ito Y, Kakita A. Pharmacological evaluation of E2730, a novel selective uncompetitive GAT1 inhibitor, on epileptiform activities in resected brain tissues from human focal cortical dysplasia ex vivo. Epilepsy Res 2024; 202:107364. [PMID: 38640591 DOI: 10.1016/j.eplepsyres.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Focal cortical dysplasia (FCD) is an important etiology of focal epilepsy in children and adults. However, only a few preclinical models sufficiently reproduce the characteristic histopathologic features of FCD. To improve the success rate of clinical trials for antiseizure medications (ASMs) in patients with FCD, more human-relevant preclinical models are needed, and epileptic foci resected from patients are a powerful tool for this purpose. Here, we conducted ex vivo studies using epileptic foci resected from patients with FCD type II to evaluate the pharmacologic effects of the ASM candidate E2730, a selective uncompetitive inhibitor of γ-aminobutyric acid transporter 1. We used the same ex vivo assay system to assess carbamazepine (CBZ), an ASM often prescribed for focal epilepsy, as a reference. At the higher dose tested (200 µM), both E2730 and CBZ suppressed spontaneous epileptiform activities almost completely. At the lower dose (100 µM), CBZ reduced the area of brain tissue showing epileptiform activity, whereas E2730 significantly decreased the number of epileptiforms. These findings suggest that E2730-both as a single agent and in combination with CBZ-merits evaluation in clinical trials involving patients with FCD.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Clinical Engineering, Komatsu University, 14-1 Mukaimotoori, Komatsu City, Ishikawa 923-0961, Japan; Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata City, Niigata, Japan.
| | - Kazuyuki Fukushima
- Microenvironment Dynamics Domain, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba City, Ibaraki, Japan
| | - Masafumi Fukuda
- Department of Neurosurgery, NHO Nishiniigata Chuo Hospital, 1 Masago, Nishi-ku, Niigata City, Niigata, Japan
| | - Yosuke Ito
- Department of Neurosurgery, NHO Nishiniigata Chuo Hospital, 1 Masago, Nishi-ku, Niigata City, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata City, Niigata, Japan
| |
Collapse
|
7
|
François L, Romagnolo A, Luinenburg MJ, Anink JJ, Godard P, Rajman M, van Eyll J, Mühlebner A, Skelton A, Mills JD, Dedeurwaerdere S, Aronica E. Identification of gene regulatory networks affected across drug-resistant epilepsies. Nat Commun 2024; 15:2180. [PMID: 38467626 PMCID: PMC10928184 DOI: 10.1038/s41467-024-46592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Epilepsy is a chronic and heterogenous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.
Collapse
Affiliation(s)
- Liesbeth François
- UCB Pharma, Early Solutions, Braine-l'Alleud, Belgium.
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Alessia Romagnolo
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark J Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Marek Rajman
- UCB Pharma, Early Solutions, Braine-l'Alleud, Belgium
| | | | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, Chalfont, UK
| | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| |
Collapse
|
8
|
Rodrigo Marinowic D, Bottega Pazzin D, Prates da Cunha de Azevedo S, Pinzetta G, Victor Machado de Souza J, Tonon Schneider F, Thor Ramos Previato T, Jean Varella de Oliveira F, Costa Da Costa J. Epileptogenesis and drug-resistant in focal cortical dysplasias: Update on clinical, cellular, and molecular markers. Epilepsy Behav 2024; 150:109565. [PMID: 38070410 DOI: 10.1016/j.yebeh.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Victor Machado de Souza
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Tonon Schneider
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Jean Varella de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Challal S, Skiba A, Langlois M, Esguerra CV, Wolfender JL, Crawford AD, Skalicka-Woźniak K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116740. [PMID: 37315641 DOI: 10.1016/j.jep.2023.116740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.
Collapse
Affiliation(s)
- Soura Challal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Adrianna Skiba
- Department of Natural Product Chemistry, Medical University of Lublin, Poland
| | - Mélanie Langlois
- Luxembourg Centre for Systems Biomedicine (LCSB), Belval, Luxembourg
| | - Camila V Esguerra
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway; Institute for Orphan Drug Discovery, Bremerhavener Innovations- und Gründerzentum (BRIG), Bremerhaven, Germany
| | | |
Collapse
|
10
|
Cherubini E, Ben-Ari Y. GABA Signaling: Therapeutic Targets for Neurodegenerative and Neurodevelopmental Disorders. Brain Sci 2023; 13:1240. [PMID: 37759841 PMCID: PMC10526277 DOI: 10.3390/brainsci13091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This Special Issue, "GABA Signaling: Therapeutic Targets for Neurodegenerative and Neurodevelopmental Disorders", focuses on a fundamental property of the neurotransmitter γ-aminobutyric acid (GABA), namely its capacity to shift, in particular conditions, from the hyperpolarizing to the depolarizing direction [...].
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Viale Regina Elena 293-295, 00161 Roma, Italy
| | - Yehezkel Ben-Ari
- Neurochlore, Campus Scientifique de Luminy, 163 Route de Luminy, CEDEX 09, 13288 Marseille, France;
| |
Collapse
|
11
|
Guo M, Zhang J, Wang J, Wang X, Gao Q, Tang C, Deng J, Xiong Z, Kong X, Guan Y, Zhou J, Boison D, Luan G, Li T. Aberrant adenosine signaling in patients with focal cortical dysplasia. Mol Neurobiol 2023; 60:4396-4417. [PMID: 37103687 PMCID: PMC10330374 DOI: 10.1007/s12035-023-03351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Focal cortical dysplasia (FCD), a common malformation of cortical development, is frequently associated with pharmacoresistant epilepsy in both children and adults. Adenosine is an inhibitory modulator of brain activity and a prospective anti-seizure agent with potential for clinical translation. Our previous results demonstrated that the major adenosine-metabolizing enzyme adenosine kinase (ADK) was upregulated in balloon cells (BCs) within FCD type IIB lesions, suggesting that dysfunction of the adenosine system is implicated in the pathophysiology of FCD. In our current study, we therefore performed a comprehensive analysis of adenosine signaling in surgically resected cortical specimens from patients with FCD type I and type II via immunohistochemistry and immunoblot analysis. Adenosine enzyme signaling was assessed by quantifying the levels of the key enzymes of adenosine metabolism, i.e., ADK, adenosine deaminase (ADA), and ecto-5'-nucleotidase (CD73). Adenosine receptor signaling was assessed by quantifying the levels of adenosine A2A receptor (A2AR) and putative downstream mediators of adenosine, namely, glutamate transporter-1 (GLT-1) and mammalian target of rapamycin (mTOR). Within lesions in FCD specimens, we found that the adenosine-metabolizing enzymes ADK and ADA, as well as the adenosine-producing enzyme CD73, were upregulated. We also observed an increase in A2AR density, as well as a decrease in GLT-1 levels and an increase in mTOR levels, in FCD specimens compared with control tissue. These results suggest that dysregulation of the adenosine system is a common pathologic feature of both FCD type I and type II. The adenosine system might therefore be a therapeutic target for the treatment of epilepsy associated with FCD.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qing Gao
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zhonghua Xiong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiangru Kong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
12
|
Sharma D, Tripathi M, Doddamani R, Sharma MC, Lalwani S, Sarat Chandra P, Banerjee Dixit A, Banerjee J. Correlation of age at seizure onset with GABA A receptor subunit and chloride Co-transporter configuration in Focal cortical dysplasia (FCD). Neurosci Lett 2023; 796:137065. [PMID: 36638954 DOI: 10.1016/j.neulet.2023.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Focal cortical dysplasia (FCD) represents a group of malformations of cortical development, which are speculated to be related to early developmental defects in the cerebral cortex. According to dysmature cerebral development hypothesis of FCD altered GABAA receptor function is known to contribute to abnormal neuronal network. Here, we studied the possible association between age at seizure onset in FCD with the subunit configuration of GABAA receptors in resected brain specimens obtained from patients with FCD. We observed a significantly higher ratio of α4/α1 subunit-containing GABAA receptors in patients with early onset (EO) FCD as compared to those with late onset (LO) FCD as is seen during the course of development where α4-containing GABAA receptors expression is high as compared to α1-containing GABAA receptors expression. Likewise, the influx to efflux chloride co-transporter expression of NKCC1/KCC2 was also increased in patients with EO FCD as seen during brain development. In addition, we observed that the ratio of GABA/Glutamate neurotransmitters was lower in patients with EO FCD as compared to that in patients with LO FCD. Our findings suggest altered configuration of GABAA receptors in FCD which could be contributing to aberrant depolarizing GABAergic activity. In particular, we observed a correlation of age at seizure onset in FCD with subunit configuration of GABAA receptors, levels of NKCC1/KCC2 and the ratio of GABA/Glutamate neurotransmitters such that the patients with EO FCD exhibited a more critically modulated GABAergic network.
Collapse
Affiliation(s)
- Devina Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - M C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Senger KPS, Kesavadas C. Imaging in Pediatric Epilepsy. Semin Roentgenol 2023; 58:28-46. [PMID: 36732009 DOI: 10.1053/j.ro.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - C Kesavadas
- Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
14
|
Itoh K, Pooh R, Shimokawa O, Fushiki S. Somatic mosaicism of the
PI3K‐AKT‐MTOR
pathway is associated with hemimegalencephaly in fetal brains. Neuropathology 2022; 43:190-196. [PMID: 36325654 DOI: 10.1111/neup.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
It is known that somatic activation of PI3K-AKT-MTOR signaling causes malformations of cortical development varying from hemimegalencephaly to focal cortical dysplasia. However, there have been few reports of fetal cases. Here we report two fetal cases of hemimegalencephaly, one associated with mosaic mutations in PIK3CA and another in AKT1. Both brains showed polymicrogyria, multiple subarachnoidal, subcortical, and subventricular heterotopia resulting from abnormal proliferation of neural stem/progenitor cells, cell differentiation, and migration of neuroblasts. Scattered cell nests immunoreactive for phosphorylated-S6 ribosomal protein (P-RPS6) (Ser240/244) were observed in the polymicrogyria-like cortical plate, intermediate zone, and arachnoid space, suggesting that the PI3K-AKT-MTOR pathway was actually activated in these cells. Pathological analyses could shed light on the mechanisms involved in disrupted brain development in the somatic mosaicism of the PI3K-AKT-MTOR pathway.
Collapse
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology Kyoto Prefectural University of Medicine, Graduate School of Medical Science Kyoto Japan
| | - Ritsuko Pooh
- CRIFM Prenatal Medical Clinic, Fetal Diagnostic Center Fetal Brain Center Osaka Japan
- Clinical laboratory Ritz Medical Co., Ltd. Osaka Japan
| | | | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology Kyoto Prefectural University of Medicine, Graduate School of Medical Science Kyoto Japan
| |
Collapse
|
15
|
Moorhouse FJ, Cornell S, Gerstl L, Wagner J, Tacke M, Roser T, Heinen F, von Stülpnagel C, Vollmar C, Kunz M, Ramantani G, Borggraefe I. Cognitive profiles in pediatric unilobar vs. multilobar epilepsy. Eur J Paediatr Neurol 2022; 41:48-54. [PMID: 36265333 DOI: 10.1016/j.ejpn.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We aimed to determine how cognitive impairment relates to the extent of the presumed epileptogenic zone in pediatric focal epilepsies. We analyzed the cognitive functions in unilobar compared to multilobar focal epilepsy patients that underwent neuropsychological testing at a tertiary epilepsy center. METHODS We assessed cognitive functions of pediatric focal epilepsy patients with the German version of the Wechsler Intelligence Scales that measures full-scale IQ and subcategories. We assessed differences in IQ and epilepsy-related variables between unilobar and multilobar epilepsy patients. RESULTS We included 62 patients (37 unilobar, 25 multilobar), aged 10.6 ± 3.7 years. Full-scale IQ values were significantly higher in unilobar (93.6 ± 17.7, 95% CI 87.7-99.6) than in multilobar epilepsy patients (77.3 ± 17.2, 95% CI 69.3-85.0; p = 0.001). In all but one IQ subcategory (working memory), significantly higher values were measured in unilobar than in multilobar epilepsy patients. The proportion of unilobar epilepsy patients with severe cognitive impairment (8.3%) and below-average intelligence (30.5%) was lower compared to multilobar epilepsy patients (47.6% and 61.9%; p = 0.002 and p = 0.021, respectively). Epilepsy onset occurred earlier in multilobar (4.0 years, 95% CI 2.6-5.5, SD ± 3.4 years) than in unilobar epilepsy patients (7.0 years, 95% CI 5.5-8.5, SD ± 4.4 years, p = 0.008). CONCLUSIONS Pediatric multilobar epilepsy patients face more cognitive issues than unilobar epilepsy patients on average. Our findings should help to identify children and adolescents who are most at risk for impaired cognitive development. A limitation of our study is the simple division into unilobar and multilobar epilepsies, with no specific account being taken of etiology/epilepsy syndrome, which can have a profound effect on cognition.
Collapse
Affiliation(s)
- Frederik Jan Moorhouse
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sonia Cornell
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Lucia Gerstl
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Johanna Wagner
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Moritz Tacke
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Celina von Stülpnagel
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Paracelsus Medical University, Salzburg, Austria
| | - Christian Vollmar
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Kunz
- Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany; Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; Comprehensive Epilepsy Center, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
16
|
Abuhaiba SI, Duarte IC, Castelhano J, Dionísio A, Sales F, Edden R, Castelo-Branco M. The impact of cathodal tDCS on the GABAergic system in the epileptogenic zone: A multimodal imaging study. Front Neurol 2022; 13:935029. [PMID: 35989912 PMCID: PMC9388822 DOI: 10.3389/fneur.2022.935029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives We aimed to investigate the antiepileptic effects of cathodal transcranial direct current stimulation (c-tDCS) and mechanisms of action based on its effects on the neurotransmitters responsible for the abnormal synchrony patterns seen in pharmacoresistant epilepsy. This is the first study to test the impact of neurostimulation on epileptiform interictal discharges (IEDs) and to measure brain metabolites in the epileptogenic zone (EZ) and control regions simultaneously in patients with pharmacoresistant epilepsy. Methods This is a hypothesis-driven pilot prospective single-blinded repeated measure design study in patients diagnosed with pharmacoresistant epilepsy of temporal lobe onset. We included seven patients who underwent two sessions of c-tDCS (sham followed by real). The real tDCS session was 20 min in duration and had a current intensity of 1.5 mA delivered via two surface electrodes that had dimensions of 3 × 4 cm. The cathode electrode was placed at FT7 in the center whereas the anode at Oz in the center. After each session, we performed electroencephalographic recording to count epileptiform IEDs over 30 min. We also performed magnetic resonance spectroscopy (MRS) to measure brain metabolite concentrations in the two areas of interest (EZ and occipital region), namely, gamma-aminobutyric acid (GABA), glutamate (Glx), and glutathione. We focused on a homogenous sample where the EZ and antiepileptic medications are shared among patients. Results Real tDCS decreased the number of epileptiform IEDs per min (from 9.46 ± 2.68 after sham tDCS to 5.37 ± 3.38 after real tDCS), p = 0.018, as compared to sham tDCS. GABA was decreased in the EZ after real c-tDCS stimulation as compared to sham tDCS (from 0.129 ± 0.019 to 0.096 ± 0.018, p = 0.02). The reduction in EZ GABA correlated with the reduction in the frequency of epileptiform IED per min (rho: 0.9, p = 0.003). Conclusion These results provide a window into the antiepileptic mechanisms of action of tDCS, based on local and remote changes in GABA and neural oscillatory patterning responsible for the generation of interictal epileptiform discharges.
Collapse
Affiliation(s)
- Sulaiman I. Abuhaiba
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Richard Edden
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- FM Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
- *Correspondence: Miguel Castelo-Branco
| |
Collapse
|
17
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
18
|
Avansini SH, Puppo F, Adams JW, Vieira AS, Coan AC, Rogerio F, Torres FR, Araújo PAOR, Martin M, Montenegro MA, Yasuda CL, Tedeschi H, Ghizoni E, França AFEC, Alvim MKM, Athié MC, Rocha CS, Almeida VS, Dias EV, Delay L, Molina E, Yaksh TL, Cendes F, Lopes Cendes I, Muotri AR. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 2022; 145:1962-1977. [PMID: 34957478 PMCID: PMC9336577 DOI: 10.1093/brain/awab479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
Focal cortical dysplasia is a highly epileptogenic cortical malformation with few treatment options. Here, we generated human cortical organoids from patients with focal cortical dysplasia type II. Using this human model, we mimicked some focal cortical dysplasia hallmarks, such as impaired cell proliferation, the presence of dysmorphic neurons and balloon cells, and neuronal network hyperexcitability. Furthermore, we observed alterations in the adherens junctions zonula occludens-1 and partitioning defective 3, reduced polarization of the actin cytoskeleton, and fewer synaptic puncta. Focal cortical dysplasia cortical organoids showed downregulation of the small GTPase RHOA, a finding that was confirmed in brain tissue resected from these patients. Functionally, both spontaneous and optogenetically-evoked electrical activity revealed hyperexcitability and enhanced network connectivity in focal cortical dysplasia organoids. Taken together, our findings suggest a ventricular zone instability in tissue cohesion of neuroepithelial cells, leading to a maturational arrest of progenitors or newborn neurons, which may predispose to cellular and functional immaturity and compromise the formation of neural networks in focal cortical dysplasia.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Francesca Puppo
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jason W Adams
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Andre S Vieira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Ana C Coan
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Fabio Rogerio
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
| | - Fabio R Torres
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Patricia A O R Araújo
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Mariana Martin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Maria A Montenegro
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Helder Tedeschi
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Enrico Ghizoni
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Andréa F E C França
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
| | - Marina K M Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Maria C Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Vanessa S Almeida
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Elayne V Dias
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Lauriane Delay
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Elsa Molina
- Stem Cell Genomics and Microscopy Core, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Tony L Yaksh
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Iscia Lopes Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Kavli Institute for Brain and Mind, Archealization Center (ArchC), Center for Academic Research and Training in Anthropogeny (CARTA), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Unexpected Effect of IL-1β on the Function of GABA A Receptors in Pediatric Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12060807. [PMID: 35741692 PMCID: PMC9220988 DOI: 10.3390/brainsci12060807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) type II is an epileptogenic malformation of the neocortex, as well as a leading cause of drug-resistant focal epilepsy in children and young adults. The synaptic dysfunctions leading to intractable seizures in this disease appear to have a tight relationship with the immaturity of GABAergic neurotransmission. The likely outcome would include hyperpolarizing responses upon activation of GABAARs. In addition, it is well-established that neuroinflammation plays a relevant role in the pathogenesis of FCD type II. Here, we investigated whether IL-1β, a prototypical pro-inflammatory cytokine, can influence GABAergic neurotransmission in FCD brain tissues. To this purpose, we carried out electrophysiological recordings on Xenopus oocytes transplanted with human tissues and performed a transcriptomics analysis. We found that IL-1β decreases the GABA currents amplitude in tissue samples from adult individuals, while it potentiates GABA responses in samples from pediatric cases. Interestingly, these cases of pediatric FCD were characterized by a more depolarized EGABA and an altered transcriptomics profile, that revealed an up-regulation of chloride cotransporter NKCC1 and IL-1β. Altogether, these results suggest that the neuroinflammatory processes and altered chloride homeostasis can contribute together to increase the brain excitability underlying the occurrence of seizures in these children.
Collapse
|
20
|
Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:275-286. [PMID: 35322263 DOI: 10.1038/s41583-022-00572-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Genetic mosaicism is the result of the accumulation of somatic mutations in the human genome starting from the first postzygotic cell generation and continuing throughout the whole life of an individual. The rapid development of next-generation and single-cell sequencing technologies is now allowing the study of genetic mosaicism in normal tissues, revealing unprecedented insights into their clonal architecture and physiology. The somatic variant repertoire of an adult human neuron is the result of somatic mutations that accumulate in the brain by different mechanisms and at different rates during development and ageing. Non-pathogenic developmental mutations function as natural barcodes that once identified in deep bulk or single-cell sequencing can be used to retrospectively reconstruct human lineages. This approach has revealed novel insights into the clonal structure of the human brain, which is a mosaic of clones traceable to the early embryo that contribute differentially to the brain and distinct areas of the cortex. Some of the mutations happening during development, however, have a pathogenic effect and can contribute to some epileptic malformations of cortical development and autism spectrum disorder. In this Review, we discuss recent findings in the context of genetic mosaicism and their implications for brain development and disease.
Collapse
|
21
|
Zhang X, Yang X, Chen B, Shen K, Liu G, Wang Z, Huang K, Zhu G, Wang T, Lv S, Zhang C, Yang H, Hou Z, Liu S. Glucocorticoid receptors participate in epilepsy in FCDII patients and MP model rats: A potential therapeutic target for epilepsy in patients with focal cortical dysplasia II (FCDII). Expert Opin Ther Targets 2022; 26:171-186. [PMID: 35132930 DOI: 10.1080/14728222.2022.2032650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are involved in neuronal excitability, neurogenesis, and neuroinflammation. However, the roles of GRs and MRs in epilepsy in focal cortical dysplasia II (FCDII) have not been reported. RESEARCH DESIGN AND METHODS We evaluated GRs and MRs expression and distribution in FCDII patients and methylazoxymethanol-pilocarpine-induced epilepsy model rats (MP rats), and the effects of a GR agonist on neurons in human FCDII and investigated the electrophysiological properties of cultured neurons and neurons of MP rats after lentivirus-mediated GR knockdown or overexpression and GR agonist or antagonist administration. RESULTS GR expression (not MR) was decreased in specimens from FCDII patients and model rats. GR agonist dexamethasone reduced neuronal excitatory transmission and increased neuronal inhibitory transmission in FCDII. GR knockdown increased the excitability of cultured neurons, and GR overexpression rescued the hyperexcitability of MP-treated neurons. Moreover, dexamethasone decreased neuronal excitability and excitatory transmission in MP rats, while GR antagonist exerted the opposite effects. Dexamethasone reduced the seizure number and duration by approximately 85% and 60% in MP rats within one to two hours. CONCLUSIONS These results suggested that GRs play an important role in epilepsy in FCDII and GR activation may have protective and antiepileptic effects in FCDII.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaolin Yang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Kaifeng Shen
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guolong Liu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Neurosurgery, Armed police Hospital, Chongqing, China
| | - Kaixuan Huang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Gang Zhu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Tingting Wang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shengqing Lv
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Hou
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shiyong Liu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun 2021; 3:fcab222. [PMID: 34632383 PMCID: PMC8495134 DOI: 10.1093/braincomms/fcab222] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.
Collapse
Affiliation(s)
- Patrick B Moloney
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Norman Delanty
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| |
Collapse
|
23
|
Lee DA, Lee HJ, Kim HC, Park KM. Alterations of structural connectivity and structural co-variance network in focal cortical dysplasia. BMC Neurol 2021; 21:330. [PMID: 34452597 PMCID: PMC8394627 DOI: 10.1186/s12883-021-02358-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background The aim of this study was to investigate alterations in structural connectivity and structural co-variance network in patients with focal cortical dysplasia (FCD). Methods We enrolled 37 patients with FCD and 35 healthy controls. All subjects underwent brain MRI with the same scanner and with the same protocol, which included diffusion tensor imaging (DTI) and T1-weighted imaging. We analyzed the structural connectivity based on DTI, and structural co-variance network based on the structural volume with T1-weighted imaging. We created a connectivity matrix and obtained network measures from the matrix using the graph theory. We tested the difference in network measure between patients with FCD and healthy controls. Results In the structural connectivity analysis, we found that the local efficiency in patients with FCD was significantly lower than in healthy controls (2.390 vs. 2.578, p = 0.031). Structural co-variance network analysis revealed that the mean clustering coefficient, global efficiency, local efficiency, and transitivity were significantly decreased in patients with FCD compared to those in healthy controls (0.527 vs. 0.635, p = 0.036; 0.545 vs. 0.648, p = 0.026; 2.699 vs. 3.801, p = 0.019; 0.791 vs. 0.954, p = 0.026, respectively). Conclusions We demonstrate that there are significant alterations in structural connectivity, based on DTI, and structural co-variance network, based on the structural volume, in patients with FCD compared to healthy controls. These findings suggest that focal lesions with FCD could affect the whole-brain network and that FCD is a network disease.
Collapse
Affiliation(s)
- Dong Ah Lee
- Neurology Department, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, 48108, Busan, Korea
| | - Ho-Joon Lee
- Radiology Department, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hyung Chan Kim
- Neurology Department, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, 48108, Busan, Korea
| | - Kang Min Park
- Neurology Department, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, 48108, Busan, Korea.
| |
Collapse
|
24
|
HMGB1-RAGE Pathway Contributes to the Abnormal Migration of Endogenous Subventricular Zone Neural Progenitors in an Experimental Model of Focal Microgyria. J Mol Neurosci 2021; 72:56-68. [PMID: 34373986 DOI: 10.1007/s12031-021-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 12/09/2022]
Abstract
Abnormal migration of subventricular zone (SVZ)-derived neural progenitor cells (SDNPs) is involved in the pathological and epileptic processes of focal cortical dysplasias (FCDs), but the underlying mechanisms are not clear. Recent studies indicated that high mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) are widely expressed in epileptic specimens of FCDs, which suggests that the HMGB1-RAGE pathway is involved in the pathological and/or epileptic processes of FCDs. The present study used Nestin-GFPtg/+ transgenic mice, and we established a model of freezing lesion (FL), as described in our previous report. A "migrating stream" composed of GFP-Nestin+ SDNPs was derived from the SVZ region and migrated to the cortical FL area. We found that translocated HMGB1 and RAGE were expressed in cortical lesion in a clustered distribution pattern, which was especially obvious in the early stage of FL compared to the sham group. Notably, the number of GFP-Nestin+ SDNPs within the "migrating stream" was significantly decreased when the HMGB1-RAGE pathway was blocked by a RAGE antagonist or deletion of the RAGE gene. The absence of RAGE also decreased the activity of pentylenetetrazol-induced cortical epileptiform discharge. In summary, this study provided experimental evidence that the levels of extranuclear HMGB1 and its receptor RAGE were increased in cortical lesion in the early stage of the FL model. Activation of the HMGB1-RAGE pathway may contribute to the abnormal migration of SDNPs and the hyperexcitability of cortical lesion in the FL model.
Collapse
|
25
|
Calandrelli R, Pilato F, Battaglia D, Panfili M, Quinci V, Colosimo C. Epileptic children with hemispheres' asymmetry. Quantitative brain magnetic resonance-based analysis of apparently unaffected hemisphere. Case-control study. Epilepsy Res 2021; 174:106642. [PMID: 33892221 DOI: 10.1016/j.eplepsyres.2021.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We performed a quantitative hemispheres analysis in epileptic children with hemispheres' asymmetry -due to unilateral dysplastic malformation- in order to recognize subtle volumetric changes of the contralateral and apparently unaffected hemisphere. METHODS 13 children with Hemimegalencephaly (HME) and 20 with Hemimicrencephaly (Hme) were clustered in subgroups according to underlying hemispheric cortical dysplastic malformation and epilepsy pattern. 3D FSPGR T1weighted images were used to assess white and grey matter volumes for both hemispheres. Each volumetric parameter was compared with the average of an age-matched healthy control group. RESULTS HME subgroups: HME with pachygyria and focal (HME-PG-F; n 6) or multifocal epilepsy (HME-PG-MF; n.7). In both subgroups affected hemisphere (AH) volume was increased and contralateral hemisphere (CH) showed white matter volume reduction; in HME-PG-MF grey matter volume of CH was more reduced than HME-PG-F. Hme subgroups: Hme with polimicrogyria and focal epilepsy (Hme-PMG-F; n.8), Hme with giant subcortical nodular heterotopia and focal (Hme-SCH-F; n.6) or multifocal epilepsy (Hme-SCH-MF; n.6). In all subgroups AH volume was reduced; the volume of CH was significantly increased in Hme-PMG-F and Hme-SCH-MF while it was not significantly increased in Hme-SCH-F compared to affected hemisphere. CONCLUSIONS In patients with hemispheres' asymmetry, quantitative high-resolution MRI offers a more objective assessment of brain structures volume. The type of hemispheric dysplastic malformation together with the age of epilepsy onset and epileptic pattern may contribute to changes in contralateral and apparently unaffected hemisphere. Future studies are warranted to evaluate whether the early identification of these changes might help in planning future antiepileptic treatments.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Fabio Pilato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - Domenica Battaglia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma -UOC Neurologia - Polo Scienze dell'Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Dipartimento di Neuropsichiatria Infantile, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| | - Marco Panfili
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Vincenzo Quinci
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Cesare Colosimo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| |
Collapse
|
26
|
Lazzarotto G, Klippel Zanona Q, Cagliari Zenki K, Calcagnotto ME. Effect of Memantine on Pentylenetetrazol-induced Seizures and EEG Profile in Animal Model of Cortical Malformation. Neuroscience 2021; 457:114-124. [PMID: 33465407 DOI: 10.1016/j.neuroscience.2020.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
Developmental cortical malformations (DCM) are one of the main causes of refractory epilepsy. Many are the mechanisms underlying the hyperexcitability in DCM, including the important contribution of N-methyl-D-aspartate receptors (NMDAR). NMDAR blockers are shown to abolish seizures and epileptiform activity. Memantine, a NMDAR antagonist used to treat Alzheimeŕs disease, has been recently investigated as a possible treatment for other neurological disorders. However, the effects on preventing or diminishing seizures are controversial. Here we aimed to evaluate the effects of memantine on pentylenetetrazole (PTZ)-induced seizures in the freeze-lesion (FL) model. Bilateral cortical microgyria were induced (FL) or not (Sham) in male Wistar neonate rats. At P30, subdural electrodes were implanted and 7 days later, video-EEG was recorded in animals receiving either memantine (FL-M or Sham-M) or saline (FL-S or Sham-S), followed by PTZ. Seizures were evaluated by video-EEG during one hour and scored according to Racine scale. The video-EEG analyses revealed that the number of seizures and the total duration of stage IV-V seizures developed during the 1 h-period increased after memantine application in all groups. The EEG power spectral density (PSD) analysis showed an increased PSD of pre-ictal delta in Sham-M animals and increased PSD of slow, middle and fast gamma oscillations after memantine injection that persists during the pre-ictal period in all groups. Our findings suggested that memantine was unable to control the PTZ-induced seizures and that the associated enhancement of PSD of gamma oscillations may contribute to the increased probability of seizure development in these animals.
Collapse
Affiliation(s)
- Gabriela Lazzarotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Querusche Klippel Zanona
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Wu K, Yue J, Shen K, He J, Zhu G, Liu S, Zhang C, Yang H. Increased expression of fibroblast growth factor 13 in cortical lesions of the focal cortical dysplasia. Brain Res Bull 2020; 168:36-44. [PMID: 33285262 DOI: 10.1016/j.brainresbull.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Focal cortical dysplasias (FCDs) are well recognized as important causes of medically intractable epilepsy in both children and adults. To explore the potential role of fibroblast growth factor 13 (FGF13) in intractable epilepsy caused by FCDs, we examined the expression of FGF13 in cortical lesions from 23 patients with FCD type Ia (FCDIa), 24 patients with FCD type IIa (FCDIIa), and 12 patients with FCD type IIb (FCDIIb), and we compared the results with the FGF13 expression levels in control cortex (CTX) brain tissues from 12 nonepileptic normal subjects. Both the mRNA levels and protein levels of FGF13 were significantly higher in the cortical lesions from patients with FCD than in the control cortices. The immunohistochemical results showed that strong FGF13 immunoreactivity was observed in misshapen cells, including neuronal microcolumns, hypertrophic neurons, dysmorphic neurons, and most balloon cells. Moreover, double-label immunofluorescence analyses confirmed that FGF13 was mainly localized in neurons and nearly absent in glia-like cells. Taken together, our results suggest that the overexpression of FGF13 in FCDs and the cell-specific distribution patterns of FGF13 in misshapen neurons in FCDs could potentially contribute to intractable epilepsy caused by FCDs.
Collapse
Affiliation(s)
- Kefu Wu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kaifeng Shen
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Zhu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Focal cortical dysplasia: etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Childs Nerv Syst 2020; 36:2939-2947. [PMID: 32766946 DOI: 10.1007/s00381-020-04851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is the most prevalent cause of intractable epilepsy in children. It was first described by Taylor et al. in 1971. In 2011, the International League against Epilepsy described an international consensus of classification for FCD. However, the exact mechanism causing this pathology remains unclear. The diagnosis and recognition of FCD increase with the advances in neuroradiology and electrophysiology. FOCUS OF REVIEW In this paper, we discuss the literature regarding management of FCD with a focus on etiology, pathophysiology, classification, clinical presentation, and imaging modalities. We will also discuss certain variables affecting surgical outcome of patients with FCD. CONCLUSION Based on our review findings, it is concluded that surgical management with complete resection of the lesion following preoperative localization of the epileptogenic zone in patients with FCD subtypes can provide a seizure-free outcome.
Collapse
|
29
|
Vinters HV. The 'ACCIDENTAL NEUROPATHOLOGIST'-PERSPECTIVES on 40 years in Neuropathology. FREE NEUROPATHOLOGY 2020; 1. [PMID: 34291231 DOI: 10.17879/freeneuropathology-2020-2956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Harry V Vinters
- Distinguished Professor Emeritus, Depts. of Pathology & Laboratory Medicine & Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA; formerly Chief of Neuropathology, David Geffen School of Medicine at UCLA (1993-2016)
| |
Collapse
|
30
|
Han P, Welsh CT, Smith MT, Schmidt RE, Carroll SL. Complex Patterns of GABAergic Neuronal Deficiency and Type 2 Potassium-Chloride Cotransporter Immaturity in Human Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2020; 78:365-372. [PMID: 30856249 DOI: 10.1093/jnen/nlz009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a "broad pattern." In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this "restricted pattern." The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) "broad" GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.
Collapse
Affiliation(s)
- Pengcheng Han
- Department of Pathology and Laboratory Medicine.,Department of Pathology and Laboratory Medicine Residency Program, Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
31
|
Expression of TRPC3 in cortical lesions from patients with focal cortical dysplasia. Neurosci Lett 2020; 724:134880. [PMID: 32135163 DOI: 10.1016/j.neulet.2020.134880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022]
Abstract
Focal cortical dysplasia (FCD) is one of the main causes of medically intractable epilepsy. Some studies have reported that transient receptor potential canonical channel 3 (TRPC3) may play an important role in the occurrence of seizures. In this study, we investigated the expression patterns of TRPC3 in different types of FCD. Forty-five FCD specimens and 12 control samples from autopsies were used in our study. Western blotting, immunohistochemistry, and immunofluorescence staining were employed to detect protein expression and distribution. The amount of TRPC3 protein was markedly elevated in the FCD group. The immunohistochemistry results revealed that TRPC3 staining was strong in the malformed cells and microcolumns. Most of the TRPC3-positive cells were colabeled with glutamatergic and GABAergic markers. The overexpression and altered cellular distribution of TRPC3 in the FCD samples suggest that TRPC3 may be related to epileptogenesis in FCD.
Collapse
|
32
|
Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, Mathern GW, Cepeda C. Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABA B Receptors in the Generation of Ictal Activity. Front Cell Neurosci 2020; 14:54. [PMID: 32265658 PMCID: PMC7099654 DOI: 10.3389/fncel.2020.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, we characterized the effects of bath application of the proconvulsant drug 4-aminopyridine (4-AP) alone or in combination with GABAA and/or GABAB receptor antagonists, in cortical dysplasia (CD type I and CD type IIa/b), tuberous sclerosis complex (TSC), and non-CD cortical tissue samples from pediatric epilepsy surgery patients. Whole-cell patch clamp recordings in current and voltage clamp modes were obtained from cortical pyramidal neurons (CPNs), interneurons, and balloon/giant cells. In pyramidal neurons, bath application of 4-AP produced an increase in spontaneous synaptic activity as well as rhythmic membrane oscillations. In current clamp mode, these oscillations were generally depolarizing or biphasic and were accompanied by increased membrane conductance. In interneurons, membrane oscillations were consistently depolarizing and accompanied by bursts of action potentials. In a subset of balloon/giant cells from CD type IIb and TSC cases, respectively, 4-AP induced very low-amplitude, slow membrane oscillations that echoed the rhythmic oscillations from pyramidal neurons and interneurons. Bicuculline reduced the amplitude of membrane oscillations induced by 4-AP, indicating that they were mediated principally by GABAA receptors. 4-AP alone or in combination with bicuculline increased cortical excitability but did not induce seizure-like discharges. Ictal activity was observed in pyramidal neurons and interneurons from CD and TSC cases only when phaclofen, a GABAB receptor antagonist, was added to the 4-AP and bicuculline solution. These results emphasize the critical and permissive role of GABAB receptors in the transition to an ictal state in pediatric CD tissue and highlight the importance of these receptors as a potential therapeutic target in pediatric epilepsy.
Collapse
Affiliation(s)
- Simon Levinson
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Conny H Tran
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joshua Barry
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brett Viker
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W Mathern
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
Traub RD, Moeller F, Rosch R, Baldeweg T, Whittington MA, Hall SP. Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev Neurosci 2020; 31:181-200. [PMID: 31525161 DOI: 10.1515/revneuro-2019-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 11/15/2022]
Abstract
Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more - the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis - emphasizing the importance of brain pH - to explain the commonalities and differences of EEG signals in IS versus focal seizures.
Collapse
Affiliation(s)
- Roger D Traub
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Torsten Baldeweg
- Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Stephen P Hall
- Hull York Medical School, University of York, Heslington YO10 5DD, UK
| |
Collapse
|
34
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
35
|
Chelban V, Alsagob M, Kloth K, Chirita-Emandi A, Vandrovcova J, Maroofian R, Davagnanam I, Bakhtiari S, AlSayed MD, Rahbeeni Z, AlZaidan H, Malintan NT, Johannsen J, Efthymiou S, Ghayoor Karimiani E, Mankad K, Al-Shahrani SA, Beiraghi Toosi M, AlShammari M, Groppa S, Haridy NA, AlQuait L, Qari A, Huma R, Salih MA, Almass R, Almutairi FB, Hamad MH, Alorainy IA, Ramzan K, Imtiaz F, Puiu M, Kruer MC, Bierhals T, Wood NW, Colak D, Houlden H, Kaya N. Genetic and phenotypic characterization of NKX6-2-related spastic ataxia and hypomyelination. Eur J Neurol 2019; 27:334-342. [PMID: 31509304 PMCID: PMC6946857 DOI: 10.1111/ene.14082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022]
Abstract
Background and purpose Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Bi‐allelic mutations in NKX6‐2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy. Methods Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6‐2 mutations in a multicentre setting is described. Then, all reported NKX6‐2 mutations and those identified in this study were combined and an in‐depth analysis of NKX6‐2‐related disease spectrum was provided. Results Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6‐2 were identified, evidencing a high NKX6‐2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6‐2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur. Conclusions NKX6‐2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6‐2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels.
Collapse
Affiliation(s)
- V Chelban
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK.,Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Moldova
| | - M Alsagob
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - K Kloth
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - A Chirita-Emandi
- Genetics Department, University 'Victor Babes', Timisoara, Romania
| | - J Vandrovcova
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - R Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - I Davagnanam
- Brain Repair and Rehabilitation, University College London Institute of Neurology, London, UK
| | - S Bakhtiari
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, Cellular and Molecular Medicine, Department of Neurology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - M D AlSayed
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - Z Rahbeeni
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - H AlZaidan
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - N T Malintan
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - J Johannsen
- Department of Paediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - S Efthymiou
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - E Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
| | - K Mankad
- Great Ormond Street Hospitals, London, UK
| | | | - M Beiraghi Toosi
- Department of Paediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M AlShammari
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - S Groppa
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Moldova
| | - N A Haridy
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt
| | - L AlQuait
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - A Qari
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - R Huma
- Medical Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - R Almass
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - F B Almutairi
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M H Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - I A Alorainy
- Department of Radiology & Medical Imaging, College of Medicine, King Saud University KFSHRC, Riyadh, Saudi Arabia
| | - K Ramzan
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - F Imtiaz
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| | - M Puiu
- Genetics Department, University 'Victor Babes', Timisoara, Romania
| | - M C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, Cellular and Molecular Medicine, Department of Neurology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - T Bierhals
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - N W Wood
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - D Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, KFSHRC, Riyadh, Saudi Arabia
| | - H Houlden
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - N Kaya
- Department of Genetics, KFSHRC, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Majolo F, Marinowic DR, Palmini ALF, DaCosta JC, Machado DC. Migration and Synaptic Aspects of Neurons Derived from Human Induced Pluripotent Stem Cells from Patients with Focal Cortical Dysplasia II. Neuroscience 2019; 408:81-90. [DOI: 10.1016/j.neuroscience.2019.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
37
|
Kim SH, Choi J. Pathological Classification of Focal Cortical Dysplasia (FCD) : Personal Comments for Well Understanding FCD Classification. J Korean Neurosurg Soc 2019; 62:288-295. [PMID: 31085954 PMCID: PMC6514319 DOI: 10.3340/jkns.2019.0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/09/2019] [Indexed: 11/27/2022] Open
Abstract
In 2011, the International League against Epilepsy (ILAE) proposed a first international consensus of the classification of focal cortical dysplasia (FCD). This FCD classification had been widely used in worldwide. In this review paper, the authors would like to give helpful comments for better understanding of the current FCD classification. Especially, the basic concepts of FCD type I, such as “radial”, “tangential” and “microcolumn” will be discussed with figures. In addition, the limitations, genetic progress and prospect of FCD will be suggested.
Collapse
Affiliation(s)
- Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junjeong Choi
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Korea
| |
Collapse
|
38
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
39
|
Sousa GK, Capitelli CS, Dombroski TCD, Zanella CAB, Terra VC, Velasco TR, Machado HR, Assirati JA, Carlotti CG, Alves VM, DaCosta JC, Palmini AL, Paglioli E, Sakamoto AC, Spreafico R, Garbelli R, Neder L, Martins AR. Identification and immunophenotype of abnormal cells present in focal cortical dysplasia type IIb. SURGICAL AND EXPERIMENTAL PATHOLOGY 2018. [DOI: 10.1186/s42047-018-0024-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Focal cortical dysplasias (FCDs) are malformations of cortical development that present cortical dyslamination and abnormal cell morphology and are frequently associated with refractory epilepsy. FCD type IIb presents dysmorphic neurons (DNs) and balloon cells (BCs), which are the hallmarks of this dysplasia. Moreover, hypertrophic neurons (HyNs) may be present in FCD types I, II and III. The objective of this study was to perform a detailed morphology and immunophenotype study of BCs, DNs, and HyNs in a cohort of FCD IIb patients.
Methods
Cortices resected as a treatment for refractory epilepsy from 18 cases of FCD type IIb were analysed using Bielschowsky method and haematoxylin and eosin as routine stains. Immunophenotype was performed using specific antibodies to detect epitopes differentially expressed by abnormal cells.
Results
All cases showed cortical dyslamination, BCs, DNs, and HyNs. No cell layer or column could be identified, except for cortical layer I. Lesions predominated in the frontal cortex (11 cases). DNs were large neurons and presented a clumped and or displaced Nissl substance towards the cell membrane, and a cytoplasm accumulation of neurofilament that displaced the nucleus to the cell periphery, as shown by Bielschowsky staining and immunohistochemistry. HyNs were as large as DNs, but without alterations of Nissl substance or dense neurofilament accumulation, with a central nucleus. BCs were identified as large, oval-shaped and pale eosinophilic cells, which lacked the Nissl substance, and presented an eccentric nucleus. BCs and DNs expressed epitopes of both undifferentiated and mature cells, detected using antibodies against nestin, vimentin, class III β-tubulin, pan-neuronal filaments, neurofilament proteins, β-tubulin and NeuN. Only BCs expressed GFAP.
Conclusion
FCDs present with disorganization of the cerebral cortex architecture, abnormal cell morphology, are frequently associated with refractory epilepsy, and their post-surgical prognosis depends on the type of FCD. The diagnosis of focal cortical dysplasia in a surgical specimen relies on the identification of the abnormal cells present in a dysplastic cortex specimen. The current report contributes to the identification of balloon cells, dysmorphic and hypertrophic neurons in the context of focal cortical dysplasia type IIb.
Collapse
|
40
|
Martinez-Lizana E, Fauser S, Brandt A, Schuler E, Wiegand G, Doostkam S, San Antonio-Arce V, Jacobs J, Bast T, Shah M, Zentner J, Schulze-Bonhage A. Long-term seizure outcome in pediatric patients with focal cortical dysplasia undergoing tailored and standard surgical resections. Seizure 2018; 62:66-73. [PMID: 30296740 DOI: 10.1016/j.seizure.2018.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Focal cortical dysplasia (FCD) is the major cause of focal intractable epilepsy in childhood. Here we analyze the factors influencing the success of surgical treatment in a large cohort of children with histologically ascertained FCD. METHOD A retrospective study of the effects of FCD type, surgical intervention, and age at surgery in a pediatric cohort. RESULTS A total of 113 patients (71 male; mean age at surgery 10.3 years; range 0-18) were analyzed; 45 had undergone lesionectomy, 42 lobectomy, 18 multi-lobectomy, and eight hemispherotomy. Complete seizure control (Engel Ia) was achieved in 56% after two years, 52% at five years, and 50% at last follow-up (18-204 months). Resections were more extensive in younger patients (40% of the surgeries affecting more than one lobe in patients aged nine years or younger vs. 22% in patients older than nine years). While resections were more limited in older children, their long-term outcome tended to be superior (42% seizure freedom in patients aged nine years or younger vs. 56% in patients older than nine years). The outcome in FCD I was not significantly inferior to that in FCD II. CONCLUSIONS Our data confirm the long-term efficacy of surgery in children with FCD and epilepsy. An earlier age at surgery within this cohort did not predict a better long-term outcome, but it involved less-tailored surgical approaches. The data suggest that in patients with an unclear extent of the dysplastic area, later resections may offer advantages in terms of the precision of surgical-resection planning.
Collapse
Affiliation(s)
- Eva Martinez-Lizana
- Dept. of Epileptology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| | | | - Armin Brandt
- Dept. of Epileptology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | | | - Gert Wiegand
- Dept. of Pediatric Neurology, University of Kiel, Kiel, Germany
| | - Soroush Doostkam
- Faculty of Medicine, University of Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Germany
| | - Victoria San Antonio-Arce
- Dept. of Epileptology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Dept. of Pediatric Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Julia Jacobs
- Dept. of Epileptology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Bast
- Faculty of Medicine, University of Freiburg, Germany; Epilepsy Center Kork, Germany
| | - Mukesch Shah
- Faculty of Medicine, University of Freiburg, Germany; Dept. Neurosurgery, Medical Center - University of Freiburg, Germany
| | - Josef Zentner
- Faculty of Medicine, University of Freiburg, Germany; Dept. Neurosurgery, Medical Center - University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Dept. of Epileptology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
41
|
Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res 2018; 145:1-17. [DOI: 10.1016/j.eplepsyres.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
|
42
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
43
|
Avansini SH, Torres FR, Vieira AS, Dogini DB, Rogerio F, Coan AC, Morita ME, Guerreiro MM, Yasuda CL, Secolin R, Carvalho BS, Borges MG, Almeida VS, Araújo PAOR, Queiroz L, Cendes F, Lopes-Cendes I. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia. Ann Neurol 2018; 83:623-635. [PMID: 29461643 PMCID: PMC5901021 DOI: 10.1002/ana.25187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are an important cause of drug-resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. METHODS We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. RESULTS hsa-let-7f (p = 0.039), hsa-miR-31 (p = 0.0078), and hsa-miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2-target, is upregulated (p < 0.001). In vitro experiments showed that hsa-miR-34a downregulates NEUROG2 by binding to its 5'-untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. INTERPRETATION Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa-miR-34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623-635.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fábio R Torres
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - André S Vieira
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Danyella B Dogini
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fabio Rogerio
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ana C Coan
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marcia E Morita
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilisa M Guerreiro
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Benilton S Carvalho
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Murilo G Borges
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Vanessa S Almeida
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Patrícia A O R Araújo
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Luciano Queiroz
- Department of Anatomical Pathology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas and Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
44
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
45
|
D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere CM, Najm I, Ying Z, Yang E, Barkovich AJ, Kwiatkowski DJ, Vinters HV, Madsen JR, Mathern GW, Blümcke I, Poduri A, Walsh CA. Somatic Mutations Activating the mTOR Pathway in Dorsal Telencephalic Progenitors Cause a Continuum of Cortical Dysplasias. Cell Rep 2017; 21:3754-3766. [PMID: 29281825 PMCID: PMC5752134 DOI: 10.1016/j.celrep.2017.11.106] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 01/16/2023] Open
Abstract
Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Amer A Hossain
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole E Hatem
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhong Ying
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - A James Barkovich
- Departments of Radiology and Diagnostic Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Harry V Vinters
- Departments of Pathology and Laboratory Medicine (Neuropathology) and Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Gary W Mathern
- Departments of Neurosurgery and Psychiatry and Biobehavioral Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingmar Blümcke
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
46
|
Isler C, Kucukyuruk B, Ozkara C, Gunduz A, Is M, Tanriverdi T, Comunoglu N, Oz B, Uzan M. Comparison of clinical features and surgical outcome in focal cortical dysplasia type 1 and type 2. Epilepsy Res 2017; 136:130-136. [PMID: 28850830 DOI: 10.1016/j.eplepsyres.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent ILAE classification defined focal cortical dysplasia (FCD) patients with accompanying epileptic lesions as a separate group. We investigated data of patients with sole FCD lesions regarding long-term seizure outcome and different characteristics of FCD type 1 and type 2 patients. METHODS Eighty children and adult patients underwent surgery for FCD were included to the analysis of factors differentiating FCD type 1 and type 2 groups and their effect on long-term outcome. RESULTS FCD type 2 patients had earlier epilepsy onset (8.1 vs. 6.1 years. p=0.019) and underwent surgery younger than type 1 (18.2 vs. 23.7 years. p=0.034). FCD type 2 patients were more prominently MR positive (77.8% vs. 53.8%. p=0.029), which increased within FCD type 2 group as patients become younger (p=0.028). FCD Type 1 lesions showed mostly multilobar extension and FCD type 2 mostly located in frontal lobe. Seizure freedom was achieved in 65.4% of FCD type 1 patients and 70.4% of FCD type 2 patients. Seven patients had permanent de novo neurological deficits. Mean follow-up time was 5.5 years (Range: 1-11 years). CONCLUSION Surgical intervention in carefully selected patients may facilitate favorable seizure outcome leading to better quality of life. FCD type 1 and type 2 groups present with evident differences, which may promote medical and surgical management of these pathologies.
Collapse
Affiliation(s)
- Cihan Isler
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Baris Kucukyuruk
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aysegul Gunduz
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merih Is
- Department of Neurosurgery, Fatih Sultan Mehmet Research and Education Hospital, Health Sciences University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nil Comunoglu
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
47
|
Wang DD, Piao YS, Blumcke I, Coras R, Zhou WJ, Gui QP, Liu CC, Hu JX, Cao LZ, Zhang GJ, Lu DH. A distinct clinicopathological variant of focal cortical dysplasia IIId characterized by loss of layer 4 in the occipital lobe in 12 children with remote hypoxic-ischemic injury. Epilepsia 2017; 58:1697-1705. [PMID: 28833053 DOI: 10.1111/epi.13855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE In 2011, the International League Against Epilepsy (ILAE) proposed a consensus classification system of focal cortical dysplasia (FCD) to distinguish clinicopathological subtypes, for example, "isolated" FCD type Ia-c and IIa-b, versus "associated" FCD type IIIa-d. The histopathological differentiation of FCD type I and III variants remains, however, a challenging issue in everyday practice. We present a unique histopathological pattern in patients with difficult-to-diagnose FCD, which highlights this dilemma, but also helps to refine the current ILAE classification scheme of FCD. METHODS We present a retrospective series of 11 male and one female patient with early onset pharmacoresistant epilepsy of the posterior quadrant (mean age at seizure onset = 4.6 years). All surgical specimens were reviewed. Clinical histories were retrieved and extracted from archival patient files. RESULTS Microscopic inspection revealed abnormalities in cortical architecture with complete loss of layer 4 in all surgical samples of the occipital lobe, as confirmed by semiquantitative measurements (p < 0.01). Clinical history reported early transient hypoxic condition in nine patients (75%). Magnetic resonance imaging (MRI) revealed abnormal signals in the occipital lobe in all patients, and signal changes suggestive of subcortical encephalomalacia were found in seven patients. Surgical treatment achieved favorable seizure control (Engel class I and II) in seven patients with an available follow-up period of 6.1 years. SIGNIFICANCE Prominent disorganization of cortical layering and lack of any other microscopically visible principle lesion in the surgical specimen would result in this neuropathological pattern hitherto being classified as FCD ILAE type Ib. However, perinatal hypoxia with distinctive MRI changes suggested primarily a hypoxemic lesion and acquired pathomechanism of neuronal cell loss in the occipital lobe of our patient series. We propose, therefore, classifying this distinctive clinicopathological pattern as a separate variant of FCD ILAE type IIId.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue-Shan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ingmar Blumcke
- Neuropathological Institute, University Hospitals Erlangen, Erlangen, Germany
| | - Roland Coras
- Neuropathological Institute, University Hospitals Erlangen, Erlangen, Germany
| | - Wen-Jing Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Qiu-Ping Gui
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Cui-Cui Liu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing-Xia Hu
- Department of Pathology, Tsinghua University Yuquan Hospital, Beijing, China
| | - Li-Zhen Cao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo-Jun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - De-Hong Lu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Iffland PH, Crino PB. Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:547-571. [PMID: 28135561 DOI: 10.1146/annurev-pathol-052016-100138] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway-a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.
Collapse
Affiliation(s)
- Philip H Iffland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
49
|
Li ZH, Li LL, Jin MF, Chen XQ, Sun Q, Ni H. Dysregulation of zinc/lipid metabolism‑associated genes in the rat hippocampus and cerebral cortex in early adulthood following recurrent neonatal seizures. Mol Med Rep 2017; 16:4701-4709. [PMID: 28791347 PMCID: PMC5647039 DOI: 10.3892/mmr.2017.7160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Although it has been established that recurrent or prolonged clinical seizures during infancy may cause lifelong brain damage, the underlying molecular mechanism is still not well elucidated. The present study, to the best of our knowledge, is the first to investigate the expression of twenty zinc (Zn)/lipid metabolism-associated genes in the hippocampus and cerebral cortex of rats following recurrent neonatal seizures. In the current study, 6-day-old Sprague-Dawley rats were randomly divided into control (CONT) and recurrent neonatal seizure (RS) groups. On postnatal day 35 (P35), mossy fiber sprouting and gene expression were assessed by Timm staining and reverse transcription-quantitative polymerase chain reaction, respectively. Of the twenty genes investigated, seven were significantly downregulated, while four were significantly upregulated in the RS group compared with CONT rats, which was observed in the hippocampus but not in the cerebral cortex. Meanwhile, aberrant mossy fiber sprouting was observed in the supragranular region of the dentate gyrus and Cornu Ammonis 3 subfield of the hippocampus in the RS group. In addition, linear correlation analysis identified significant associations between the expression of certain genes in the hippocampus, which accounted for 40% of the total fifty-five gene pairs among the eleven regulated genes. However, only eight gene pairs in the cerebral cortex exhibited significant positive associations, which accounted for 14.5% of the total. The results of the present study indicated the importance of hippocampal Zn/lipid metabolism-associated genes in recurrent neonatal seizure-induced aberrant mossy fiber sprouting, which may aid the identification of novel potential targets during epileptogenesis.
Collapse
Affiliation(s)
- Zhen-Hong Li
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xu-Qin Chen
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Qi Sun
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
50
|
Compatibility of MRI and FDG-PET findings with histopathological results in patients with focal cortical dysplasia. Seizure 2017; 45:80-86. [DOI: 10.1016/j.seizure.2016.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
|