1
|
Mula M. E&B honoring founding editor Dr. Steven Schachter. Epilepsy Behav 2022; 137:108856. [PMID: 36463047 DOI: 10.1016/j.yebeh.2022.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Marco Mula
- Institute of Medical and Biomedical Education, St George's University of London and the Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Zannoni EM, Yang C, Meng LJ. Design Study of an Ultrahigh Resolution Brain SPECT System Using a Synthetic Compound-Eye Camera Design With Micro-Slit and Micro-Ring Apertures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3711-3727. [PMID: 34255626 PMCID: PMC8711775 DOI: 10.1109/tmi.2021.3096920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we discuss the design study for a brain SPECT imaging system, referred to as the HelmetSPECT system, based on a spherical synthetic compound-eye (SCE) gamma camera design. The design utilizes a large number ( ∼ 500 ) of semiconductor detector modules, each coupled to an aperture with a very narrow opening for high-resolution SPECT imaging applications. In this study, we demonstrate that this novel system design could provide an excellent spatial resolution, a very high sensitivity, and a rich angular sampling without scanning motion over a clinically relevant field-of-view (FOV). These properties make the proposed HelmetSPECT system attractive for dynamic imaging of epileptic patients during seizures. In ictal SPECT, there is typically no prior information on where the seizures would happen, and both the imaging resolution and quantitative accuracy of the dynamic SPECT images would provide critical information for staging the seizures outbreak and refining the plans for subsequent surgical intervention.We report the performance evaluation and comparison among similar system geometries using non-conventional apertures, such as micro-ring and micro-slit, and traditional lofthole apertures. We demonstrate that the combination of ultrahigh-resolution imaging detectors, the SCE gamma camera design, and the micro-ring and micro-slit apertures would offer an interesting approach for the future ultrahigh-resolution clinical SPECT imaging systems without sacrificing system sensitivity and FOV.
Collapse
|
3
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
4
|
Functional MRI Correlates of Resting-State Temporal Theta and Delta EEG Rhythms. J Clin Neurophysiol 2017; 34:69-76. [DOI: 10.1097/wnp.0000000000000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1335-45. [DOI: 10.1016/j.nano.2016.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
|
6
|
Krukiewicz K, Stokfisz A, Zak JK. Two approaches to the model drug immobilization into conjugated polymer matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:176-81. [PMID: 26046281 DOI: 10.1016/j.msec.2015.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/10/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
The purpose of this study is to develop biocompatible and conducting coating being carrier of biologically active compounds with the potential use in neuroprosthetics. Conducting polypyrrole matrix has been used to immobilize and release model drugs, quercetin and ciprofloxacin. Two routes of immobilization are described: drugs have been incorporated in the polymer matrix in the course of the electropolymerization process or after polymerization, in the course of polymer oxidation. Using UV/Vis spectroscopic detection we demonstrate that both immobilization approaches display different drug-loading efficiencies. In the case of ciprofloxacin, drug incorporation following synthesis is a more efficient immobilization approach (final drug concentration: 43.3 (±9.5) μM/cm(2)), while for quercetin the highest loading is accomplished by drug incorporation during synthesis (final drug concentration: 29.1 (±5.9) μM/cm(2)). The process of drug incorporation results in the variation of surface morphology with respect to the method of immobilization as well as the choice of drug. The results prove that electrochemical methods are efficient procedures for making multifunctional polymer matrices which might be perspective bioactive coatings for implantable neuroprosthetic devices.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| | - Anna Stokfisz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| | - Jerzy K Zak
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
7
|
Samba R, Fuchsberger K, Matiychyn I, Epple S, Kiesel L, Stett A, Schuhmann W, Stelzle M. Application of PEDOT-CNT Microelectrodes for Neurotransmitter Sensing. ELECTROANAL 2014. [DOI: 10.1002/elan.201300547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Handreck A, Backofen-Wehrhahn B, Bröer S, Löscher W, Gernert M. Anticonvulsant Effects by Bilateral and Unilateral Transplantation of GABA-Producing Cells into the Subthalamic Nucleus in an Acute Seizure Model. Cell Transplant 2014. [DOI: 10.3727/096368912x658944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural transplantation of GABA-producing cells into key structures within seizure-suppressing circuits holds promise for medication-resistant epilepsy patients not eligible for resection of the epileptic focus. The substantia nigra pars reticulata (SNr), a basal ganglia output structure, is well known to modulate different seizure types. A recent microinjection study by our group indicated that the subthalamic nucleus (STN), which critically regulates nigral activity, might be a more promising target for focal therapy in epilepsies than the SNr. As a proof of principle, we therefore assessed the anticonvulsant efficacy of bilateral and unilateral allografting of GABA-producing cell lines into the STN using the timed intravenous pentylenetetrazole seizure threshold test, which allows repeated seizure threshold determinations in individual rats. We observed (a) that grafted cells survived up to the end of the experiments, (b) that anticonvulsant effects can be induced by bilateral transplantation into the STN using immortalized GABAergic cells derived from the rat embryonic striatum and cells additionally transfected to obtain higher GABA synthesis than the parent cell line, and (c) that anticonvulsant effects were observed even after unilateral transplantation into the STN. Neither grafting of control cells nor transplantation outside the STN induced anticonvulsant effects, emphasizing the site and cell specificity of the observed anticonvulsant effects. To our knowledge, the present study is the first showing anticonvulsant effects by grafting of GABA-producing cells into the STN. The STN can be considered a highly promising target region for modulation of seizure circuits and, moreover, has the advantage of being clinically established for functional neurosurgery.
Collapse
Affiliation(s)
- Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Gabran SRI, Salam MT, Dian J, El-Hayek Y, Perez Velazquez JL, Genov R, Carlen PL, Salama MMA, Mansour RR. High-density intracortical microelectrode arrays with multiple metallization layers for fine-resolution neuromonitoring and neurostimulation. IEEE Trans Neural Syst Rehabil Eng 2013; 21:869-79. [PMID: 24122564 DOI: 10.1109/tnsre.2013.2279403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracortical microelectrodes play a prominent role in the operation of neural interfacing systems. They provide an interface for recording neural activities and modulating their behavior through electric stimulation. The performance of such systems is thus directly meliorated by advances in electrode technology. We present a new architecture for intracortical electrodes designed to increase the number of recording/stimulation channels for a given set of shank dimensions. The architecture was implemented on silicon using microfabrication process and fabricated 3-mm-long electrode shanks with six relatively large (110 μm ×110 μm) pads in each shank for electrographic signal recording to detect important precursors with potential clinical relevance and electrical stimulation to correct neural behavior with low-power dissipation in an implantable device. Moreover, an electrode mechanical design was developed to increase its stiffness and reduce shank deflection to improve spatial accuracy during an electrode implantation. Furthermore, the pads were post-processed using pulsated low current electroplating and reduced their impedances by ≈ 30 times compared to the traditionally fabricated pads. The paper also presents microfabrication process, electrodes characterization, comparison to the commercial equivalents, and in vitro and in vivo validations.
Collapse
|
10
|
Rogel-Salazar G, Luna-Munguía H, Stevens KE, Besio WG. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test. Epilepsy Behav 2013; 27:154-8. [PMID: 23419871 PMCID: PMC3606894 DOI: 10.1016/j.yebeh.2013.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/17/2022]
Abstract
Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs.
Collapse
Affiliation(s)
- G Rogel-Salazar
- Electrical, Computer, and Biomedical Engineering, University of Rhode Island, 4 East Alumni Ave., Kingston, Rhode Island 02881, USA
| | - H Luna-Munguía
- Electrical, Computer, and Biomedical Engineering, University of Rhode Island, 4 East Alumni Ave., Kingston, Rhode Island 02881, USA
| | - KE Stevens
- Dept. of Psychiatry, University of Colorado, Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Medical Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220;USA
| | - WG Besio
- Electrical, Computer, and Biomedical Engineering, University of Rhode Island, 4 East Alumni Ave., Kingston, Rhode Island 02881, USA
| |
Collapse
|
11
|
Lu H, Pan Y, Mandal B, Eng HL, Guan C, Chan DWS. Quantifying Limb Movements in Epileptic Seizures Through Color-Based Video Analysis. IEEE Trans Biomed Eng 2013. [DOI: 10.1109/tbme.2012.2228649] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Feldwisch-Drentrup H, Ihle M, Quyen MLV, Teixeira C, Dourado A, Timmer J, Sales F, Navarro V, Schulze-Bonhage A, Schelter B. Anticipating the unobserved: prediction of subclinical seizures. Epilepsy Behav 2011; 22 Suppl 1:S119-26. [PMID: 22078512 DOI: 10.1016/j.yebeh.2011.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022]
Abstract
Subclinical seizures (SCS) have rarely been considered in the diagnosis and therapy of epilepsy and have not been systematically analyzed in studies on seizure prediction. Here, we investigate whether predictions of subclinical seizures are feasible and how their occurrence may affect the performance of prediction algorithms. Using the European database of long-term recordings of surface and invasive electroencephalography data, we analyzed the data from 21 patients with SCS, including in total 413 clinically manifest seizures (CS) and 3341 SCS. Based on the mean phase coherence we investigated the predictive performance of CS and SCS. The two types of seizures had similar prediction sensitivities. Significant performance was found considerably more often for SCS than for CS, especially for patients with invasive recordings. When analyzing false alarms triggered by predicting CS, a significant number of these false predictions were followed by SCS for 9 of 21 patients. Although currently observed prediction performance may not be deemed sufficient for clinical applications for the majority of the patients, it can be concluded that the prediction of SCS is feasible on a similar level as for CS and allows a prediction of more of the seizures impairing patients, possibly also reducing the number of false alarms that were in fact correct predictions of CS. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.
Collapse
|
13
|
Salam MT, Sawan M. A novel low-power-implantable epileptic seizure-onset detector. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 5:568-578. [PMID: 23852554 DOI: 10.1109/tbcas.2011.2157153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel implantable low-power integrated circuit is proposed for real-time epileptic seizure detection. The presented chip is part of an epilepsy prosthesis device that triggers focal treatment to disrupt seizure progression. The proposed chip integrates a front-end preamplifier, voltage-level detectors, digital demodulators, and a high-frequency detector. The preamplifier uses a new chopper stabilizer topology that reduces instrumentation low-frequency and ripple noises by modulating the signal in the analog domain and demodulating it in the digital domain. Moreover, each voltage-level detector consists of an ultra-low-power comparator with an adjustable threshold voltage. The digitally integrated high-frequency detector is tunable to recognize the high-frequency activities for the unique detection of seizure patterns specific to each patient. The digitally controlled circuits perform accurate seizure detection. A mathematical model of the proposed seizure detection algorithm was validated in Matlab and circuits were implemented in a 2 mm(2) chip using the CMOS 0.18- μm process. The proposed detector was tested by using intracerebral electroencephalography (icEEG) recordings from seven patients with drug-resistant epilepsy. The seizure signals were assessed by the proposed detector and the average seizure detection delay was 13.5 s, well before the onset of clinical manifestations. The measured total power consumption of the detector is 51 μW.
Collapse
|
14
|
Rolston JD, Desai SA, Laxpati NG, Gross RE. Electrical stimulation for epilepsy: experimental approaches. Neurosurg Clin N Am 2011; 22:425-42, v. [PMID: 21939841 PMCID: PMC3190668 DOI: 10.1016/j.nec.2011.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Direct electrical stimulation of the brain is an increasingly popular means of treating refractory epilepsy. Although there has been moderate success in human trials, the rate of seizure freedom does not yet compare favorably to resective surgery. It therefore remains critical to advance experimental investigations aimed toward understanding brain stimulation and its utility. This article introduces the concepts necessary for understanding these experimental studies, describing recording and stimulation technology, animal models of epilepsy, and various subcortical targets of stimulation. Bidirectional and closed-loop device technologies are also highlighted, along with the challenges presented by their experimental use.
Collapse
Affiliation(s)
- John D Rolston
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Patrick Kwan
- Division of Neurology, Department of Medicine and Therapeutics, the Chinese University of Hong Kong and Prince of Wales Hospital, Hong Kong, China.
| | | | | |
Collapse
|
16
|
Zhang Q, Yan X, Strangman GE. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:087008. [PMID: 21895335 PMCID: PMC3170398 DOI: 10.1117/1.3615248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 05/18/2023]
Abstract
Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight.
Collapse
Affiliation(s)
- Quan Zhang
- Massachusetts General Hospital, Harvard Medical School, Neural Systems Group, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
17
|
Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol 2011; 123:303-9. [PMID: 21775199 DOI: 10.1016/j.clinph.2011.06.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Sleep spindles and K-complexes are EEG hallmarks of non-REM sleep. However, the brain regions generating these discharges and the functional connections of their generators to other regions are not fully known. We investigated the neuroanatomical correlates of spindles and K-complexes using simultaneous EEG and fMRI. METHODS EEGs recorded during EEG-fMRI studies of 7 individuals were used for fMRI analysis. Higher-level group analyses were performed, and images were thresholded at Z ≥ 2.3. RESULTS fMRI of 106 spindles and 60 K-complexes was analyzed. Spindles corresponded to increased signal in thalami and posterior cingulate, and right precuneus, putamen, paracentral cortex, and temporal lobe. K-complexes corresponded to increased signal in thalami, superior temporal lobes, paracentral gyri, and medial regions of the occipital, parietal and frontal lobes. Neither corresponded to regions of decreased signal. CONCLUSIONS fMRI of both spindles and K-complexes depicts signal subjacent to the vertex, which likely indicates each discharges' source. The thalamic signal is consistent with thalamic involvement in sleep homeostasis. The limbic region's signal is consistent with roles in memory consolidation. Unlike the spindle, the K-complex corresponds to extensive signal in primary sensory cortices. SIGNIFICANCE Identification of these active regions contributes to the understanding of sleep networks and the physiology of awareness and memory during sleep.
Collapse
|
18
|
Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, Mumford JA, Parvizi J, Poldrack RA. Functional imaging of sleep vertex sharp transients. Clin Neurophysiol 2011; 122:1382-6. [PMID: 21310653 DOI: 10.1016/j.clinph.2010.12.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). METHODS Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. RESULTS Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. CONCLUSION The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. SIGNIFICANCE The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep.
Collapse
Affiliation(s)
- John M Stern
- Department of Neurology, University of California, Los Angeles, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu H, Eng HL, Mandal B, Chan DWS, Ng YL. Markerless video analysis for movement quantification in pediatric epilepsy monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:8275-8278. [PMID: 22256264 DOI: 10.1109/iembs.2011.6092040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient's body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.
Collapse
Affiliation(s)
- Haiping Lu
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore.
| | | | | | | | | |
Collapse
|
20
|
Schachter SC. What needs to change: Goals for clinical and social management and research in the next 60 years. Seizure 2010; 19:686-9. [DOI: 10.1016/j.seizure.2010.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Rolston JD, Gross RE, Potter SM. Closed-loop, open-source electrophysiology. Front Neurosci 2010; 4. [PMID: 20859448 PMCID: PMC2940414 DOI: 10.3389/fnins.2010.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 05/11/2010] [Indexed: 11/25/2022] Open
Abstract
Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.
Collapse
Affiliation(s)
- John D Rolston
- Laboratory for Neuroengineering, Georgia Institute of Technology and Emory University School of Medicine Atlanta, GA, USA
| | | | | |
Collapse
|
22
|
Salam M, Sawan M, Nguyen D. Low-Power Implantable Device for Onset Detection and Subsequent Treatment of Epileptic Seizures: A Review. JOURNAL OF HEALTHCARE ENGINEERING 2010. [DOI: 10.1260/2040-2295.1.2.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Ludvig N, Medveczky G, French JA, Carlson C, Devinsky O, Kuzniecky RI. Evolution and prospects for intracranial pharmacotherapy for refractory epilepsies: the subdural hybrid neuroprosthesis. EPILEPSY RESEARCH AND TREATMENT 2010; 2010:725696. [PMID: 22937227 PMCID: PMC3428620 DOI: 10.1155/2010/725696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Abstract
Intracranial pharmacotherapy is a novel strategy to treat drug refractory, localization-related epilepsies not amenable to resective surgery. The common feature of the method is the use of some type of antiepileptic drug (AED) delivery device placed inside the cranium to prevent or stop focal seizures. This distinguishes it from other nonconventional methods, such as intrathecal pharmacotherapy, electrical neurostimulation, gene therapy, cell transplantation, and local cooling. AED-delivery systems comprise drug releasing polymers and neuroprosthetic devices that can deliver AEDs into the brain via intraparenchymal, ventricular, or transmeningeal routes. One such device is the subdural Hybrid Neuroprosthesis (HNP), designed to deliver AEDs, such as muscimol, into the subdural/subarachnoid space overlaying neocortical epileptogenic zones, with electrophysiological feedback from the treated tissue. The idea of intracranial pharmacotherapy and HNP treatment for epilepsy originated from multiple sources, including the advent of implanted medical devices, safety data for intracranial electrodes and catheters, evidence for the seizure-controlling efficacy of intracerebral AEDs, and further understanding of the pathophysiology of focal epilepsy. Successful introduction of intracranial pharmacotherapy into clinical practice depends on how the intertwined scientific, engineering, clinical, neurosurgical and regulatory challenges will be met to produce an effective and commercially viable device.
Collapse
Affiliation(s)
- Nandor Ludvig
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| | - Geza Medveczky
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| | - Jacqueline A. French
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| | - Chad Carlson
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| | - Ruben I. Kuzniecky
- Comprehensive Epilepsy Center, New York University School of Medicine, NYU Langone Medical Center, 223 East 34th Street, New York, NY 10016, USA
| |
Collapse
|
24
|
English J, Davis B. Case report: Death associated with stroke following intracarotid amobarbital testing. Epilepsy Behav 2010; 17:283-4. [PMID: 20075010 DOI: 10.1016/j.yebeh.2009.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE One previous accidental death during intracarotid amobarbital testing (IAT) associated with cerebral angiography (CA) has been reported in the literature. The objectives of this article are to briefly review morbidity and mortality risks for patients undergoing diagnostic CA and to describe a case with a fatal outcome. METHOD The case of a 38-year-old man who had a right middle cerebral artery stroke while undergoing IAT is described. The patient was not high risk by Centers for Medicare and Medicaid Services criteria or invasive procedures; neither did he have risk factors for embolic stroke. CONCLUSIONS A problem noted is that IAT procedures vary from center to center and that IAT may increase the risk for individual patients because of differences between IAT and other CA interventions.
Collapse
Affiliation(s)
- James English
- University of Nebraska Medical Center, Omaha, NE 68198-4185, USA.
| | | |
Collapse
|