1
|
Ciubotaru AD, Leferman CE, Ignat BE, Knieling A, Salaru DL, Turliuc DM, Foia LG, Dima L, Minea B, Hritcu LD, Cioroiu BI, Stoica L, Ciureanu IA, Ciobica AS, Stoica BA, Ghiciuc CM. Anti-Epileptic Activity of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model. Pharmaceuticals (Basel) 2024; 17:1611. [PMID: 39770453 PMCID: PMC11678555 DOI: 10.3390/ph17121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Background/Objectives: Ongoing challenges in epilepsy therapy warrant research on alternative treatments that offer improved efficacy and reduced side effects. Designed to enhance mitochondrial targeting and increase bioavailability, mitocurcumin (MitoCur) was evaluated for the first time as an antiepileptic agent, with curcumin (Cur) and sodium valproate (VPA), a standard antiepileptic drug, included for comparison. This study investigated the effects on seizure onset, severity, and progression in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures and measured the concentrations of the compounds in brain tissue. Methods: Zebrafish were pre-treated with MitoCur and Cur (both at 0.25 and 0.5 µM doses) and VPA (0.25 and 0.5 mM) and observed for four minutes to establish baseline locomotor behavior. Subsequently, the animals were exposed to a 5 mM PTZ solution for 10 min, during which seizure progression was observed and scored as follows: 1-increased swimming; 2-burst swimming, left and right movements; 3-circular movements; 4-clonic seizure-like behavior; 5-loss of body posture. The studied compounds were quantified in brain tissue through HPLC and LC-MS. Results: Compared to the control group, all treatments reduced the distance moved and the average velocity, without significant differences between compounds or doses. During PTZ exposure, seizure latencies revealed that all treatments effectively delayed seizure onset up to score 4, demonstrating efficacy in managing moderate seizure activity. Notably, MitoCur also provided significant protection against the most severe seizure score (score 5). Brain tissue uptake analysis indicated that MitoCur achieved higher concentrations in the brain compared to Cur, at both doses. Conclusions: These results highlight the potential of MitoCur as a candidate for seizure management.
Collapse
Affiliation(s)
- Alin Dumitru Ciubotaru
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
| | - Carmen-Ecaterina Leferman
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
| | - Bogdan-Emilian Ignat
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
- Discipline of Neurology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anton Knieling
- Discipline of Forensic Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| | - Delia Lidia Salaru
- Institute of Cardiovascular Diseases, 50 Carol I Avenue, 700503 Iasi, Romania;
| | - Dana Mihaela Turliuc
- Discipline of Neurosurgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Liliana Georgeta Foia
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transylvania University of Brasov, 59 Nicolae Balcescu Street, 500019 Brasov, Romania;
| | - Bogdan Minea
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Bogdan Ionel Cioroiu
- Research Center for Oenology, Romanian Academy, Iasi Branch, 9 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Laura Stoica
- Discipline of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 20A Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Bogdan Alexandru Stoica
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- St. Mary’s Emergency Children Hospital, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
2
|
Orellana-Paucar AM. Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities. Molecules 2024; 29:4210. [PMID: 39275058 PMCID: PMC11397039 DOI: 10.3390/molecules29174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The therapeutic properties of turmeric essential oil have been extensively documented in both preclinical and clinical studies. Research indicates that its primary active compounds are promising candidates for addressing a wide range of pathologies, exhibiting anticancer, anti-inflammation, antioxidant, cardiovascular, hypoglycemic, dermatological, hepatoprotective, neurological, antiparasitic, antiviral, insecticidal, antifungal, and antivenom activities. While numerous compounds possess similar potential applications, the isolated active constituents of turmeric essential oil stand out due to their unique pharmacological profiles and absence of toxicity. This literature review meticulously compiles and analyzes the bioactivities of these constituents, emphasizing their molecular mechanisms of action, reported pharmacological effects, and potential therapeutic applications. The aim of this review is to provide a comprehensive synthesis of currently available clinical and preclinical findings related to individual turmeric essential oil compounds, while also identifying critical knowledge gaps. By summarizing these findings, this work encourages further research into the isolated compounds from turmeric oil as viable drug candidates, ultimately contributing to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Monserrath Orellana-Paucar
- Nutrition and Dietetics School, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
- Pharmacology and Nutritional Sciences Interdisciplinary Research Group, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
| |
Collapse
|
3
|
Moussavi N, van der Ent W, Diallo D, Sanogo R, Malterud KE, Esguerra CV, Wangensteen H. Inhibition of Seizure-Like Paroxysms and Toxicity Effects of Securidaca longepedunculata Extracts and Constituents in Zebrafish Danio rerio. ACS Chem Neurosci 2024; 15:617-628. [PMID: 38270158 PMCID: PMC10853935 DOI: 10.1021/acschemneuro.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant Securidaca longepedunculata is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities. This study explores the potential in vivo inhibition of seizure-like paroxysms and toxicity effects of dichloromethane (DCM) and ethanol (EtOH) extracts, as well as isolated xanthones and benzoates of S. longepedunculata. Ten phenolic compounds were isolated from the DCM extract. All of the substances were identified by nuclear magnetic resonance spectroscopy. Assays for toxicity and inhibition of pentylenetetrazole (PTZ)-induced seizure-like paroxysms were performed in zebrafish larvae. Among the compounds assessed in the assay for maximum tolerated concentration (MTC), benzyl-2-hydroxy-6-methoxy-benzoate (MTC 12.5 μM), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (MTC 25 μM), and 1,7-dihydroxy-4-methoxyxanthone (MTC 6.25 μM) were the most toxic. The DCM extract, 1,7-dihydroxy-4-methoxyxanthone and 2-hydroxy-1,7-dimethoxyxanthone displayed the most significant inhibition of paroxysms by altering the locomotor behavior in GABAA receptor antagonist, PTZ, which induced seizures in larval zebrafish. The EtOH extract, benzyl benzoate, and benzyl-2-hydroxy-6-methoxy-benzoate unexpectedly increased locomotor activity in treated larval zebrafish and decreased locomotor activity in nontreated larval zebrafish, seemingly due to paradoxical excitation. The results reveal promising medicinal activities of this plant, contributing to our understanding of its use as an antiepileptic drug. It also shows us the presence of potentially new lead compounds for future drug development.
Collapse
Affiliation(s)
- Nastaran Moussavi
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Wietske van der Ent
- NCMM,
Chemical Neuroscience Group, Centre for Molecular Medicine Norway,
Faculty of Medicine, University of Oslo, Oslo 0349, Norway
| | - Drissa Diallo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Rokia Sanogo
- Department
of Traditional Medicine, National Institute
of Public Health, PB, Bamako 1746, Mali
- Faculty
of Pharmacy, University of Sciences, Techniques
and Technologies of Bamako (USTTB), Bamako 1746, Mali
| | - Karl E. Malterud
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| | - Camila V. Esguerra
- Section
for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O.
Box 1068, Oslo 0316, Norway
| | - Helle Wangensteen
- Section
for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Oslo 0316, Norway
| |
Collapse
|
4
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Szep D, Dittrich B, Gorbe A, Szentpeteri JL, Aly N, Jin M, Budan F, Sik A. A comparative study to optimize experimental conditions of pentylenetetrazol and pilocarpine-induced epilepsy in zebrafish larvae. PLoS One 2023; 18:e0288904. [PMID: 37506089 PMCID: PMC10381053 DOI: 10.1371/journal.pone.0288904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
A common way to investigate epilepsy and the effect of antiepileptic pharmaceuticals is to analyze the movement patterns of zebrafish larvae treated with different convulsants like pentylenetetrazol (PTZ), pilocarpine, etc. Many articles have been written on this topic, but the research methods and exact settings are not sufficiently defined in most. Here we designed and executed a series of experiments to optimize and standardize the zebrafish epilepsy model. We found that during the light and the dark trials, the zebrafish larvae moved significantly more in the light, independent of the treatment, both in PTZ and pilocarpine-treated and the control groups. As expected, zebrafish larvae treated with convulsants moved significantly more than the ones in the control group, although this difference was higher between the individuals treated with PTZ than pilocarpine. When examining the optimal observation time, we divided the half-hour period into 5-minute time intervals, and between these, the first 5 minutes were found to be the most different from the others. There were fewer significant differences in the total movement of larvae between the other time intervals. We also performed a linear regression analysis with the cumulative values of the distance moved during the time intervals that fit the straight line. In conclusion, we recommend 30 minutes of drug pretreatment followed by a 10-minute test in light conditions with a 5-minute accommodation time. Our result paves the way toward improved experimental designs using zebrafish to develop novel pharmaceutical approaches to treat epilepsy.
Collapse
Affiliation(s)
- David Szep
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Bianka Dittrich
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Aniko Gorbe
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef L Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
| | - Nour Aly
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, P.R. China
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Li DS, Shi LL, Guo K, Luo SH, Liu YC, Chen YG, Liu Y, Li SH. A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities. PHYTOCHEMISTRY 2023; 211:113681. [PMID: 37080413 DOI: 10.1016/j.phytochem.2023.113681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The sesquiterpene β-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-β-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-β-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-β-bisabolene synthase. The production of (R)-β-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-β-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-β-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin-Lin Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
10
|
Skiba A, Kozioł E, Luca SV, Budzyńska B, Podlasz P, Van Der Ent W, Shojaeinia E, Esguerra CV, Nour M, Marcourt L, Wolfender JL, Skalicka-Woźniak K. Evaluation of the Antiseizure Activity of Endemic Plant Halfordia kendack Guillaumin and Its Main Constituent, Halfordin, on a Zebrafish Pentylenetetrazole (PTZ)-Induced Seizure Model. Int J Mol Sci 2023; 24:ijms24032598. [PMID: 36768918 PMCID: PMC9916433 DOI: 10.3390/ijms24032598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 μg/mL and 100 μg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 μM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.
Collapse
Affiliation(s)
- Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| | - Ewelina Kozioł
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Wietske Van Der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Elham Shojaeinia
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mohammed Nour
- Institut des Sciences Exactes et Appliquées (ISEA)-EA 4243, France University of New Caledonia, 98851 Nouméa, New Caledonia, France
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| |
Collapse
|
11
|
Protection against Paraquat-Induced Oxidative Stress by Curcuma longa Extract-Loaded Polymeric Nanoparticles in Zebrafish Embryos. Polymers (Basel) 2022; 14:polym14183773. [PMID: 36145919 PMCID: PMC9503139 DOI: 10.3390/polym14183773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The link between oxidative stress and environmental factors plays an important role in chronic degenerative diseases; therefore, exogenous antioxidants could be an effective alternative to combat disease progression and/or most significant symptoms. Curcuma longa L. (CL), commonly known as turmeric, is mostly composed of curcumin, a multivalent molecule described as having antioxidant, anti-inflammatory and neuroprotective properties. Poor chemical stability and low oral bioavailability and, consequently, poor absorption, rapid metabolism, and limited tissue distribution are major restrictions to its applicability. The advent of nanotechnology, by combining nanosacale with multi-functionality and bioavailability improvement, offers an opportunity to overcome these limitations. Therefore, in this work, poly-Ɛ-caprolactone (PCL) nanoparticles were developed to incorporate the methanolic extract of CL, and their bioactivity was assessed in comparison to free or encapsulated curcumin. Their toxicity was evaluated using zebrafish embryos by applying the Fish Embryo Acute Toxicity test, following recommended OECD guidelines. The protective effect against paraquat-induced oxidative damage of CL extract, free or encapsulated in PCL nanoparticles, was evaluated. This herbicide is known to cause oxidative damage and greatly affect neuromotor functions. The overall results indicate that CL-loaded PCL nanoparticles have an interesting protective capacity against paraquat-induced damage, particularly in neuromuscular development that goes well beyond that of CL extract itself and other known antioxidants.
Collapse
|
12
|
Pharmacological Profile, Bioactivities, and Safety of Turmeric Oil. Molecules 2022; 27:molecules27165055. [PMID: 36014301 PMCID: PMC9414992 DOI: 10.3390/molecules27165055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological attributes of turmeric have been extensively described and frequently related to the action of curcuminoids. However, there is also scientific evidence of the contribution of turmeric oil. Since the oil does not contain curcuminoids in its composition, it is crucial to better understand the therapeutic role of other constituents in turmeric. The present review discusses the pharmacokinetics of turmeric oil, pointing to the potential application of its active molecules as therapeutic compounds. In addition, the bioactivities of turmeric oil and its safety in preclinical and clinical studies were revised. This literature-based research intends to provide an updated overview to promote further research on turmeric oil and its constituents.
Collapse
|
13
|
Inhaled turmerones can be incorporated in the organs via pathways different from oral administration and can affect weight-gain of mice. Sci Rep 2022; 12:11039. [PMID: 35773461 PMCID: PMC9247068 DOI: 10.1038/s41598-022-15168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Turmerones (α-turmerone, β-turmerone, and ar-turmerone) are the major volatile compounds in turmeric (Curcuma longa), a perennial herb of the ginger family. We previously reported that inhaled volatile turmerones could be transferred in the blood and organs. However, the difference between the two pathways, oral administration and inhalation, and the effect of inhaled turmerones on biological activities remain unknown. In this study, we compared the distribution patterns of turmerones after oral administration and inhalation. The relative levels (concentrations of turmerones in each organ/serum) in the lung, olfactory bulb, brain, heart, kidney, and epididymal fat in the inhalation group tended to be, or are significantly, higher than in the oral administration group. The relative levels of brown adipose tissue in the inhalation group were lower than in the oral administration group. Long-term (50 days) inhalation to volatile turmerones suppressed weight gain and hypertrophy of adipocytes in the epididymal fat of mice fed a high-fat diet. These results suggest that inhaled turmerones can be incorporated into the organs of mice via different pathway from as to those from oral administration and can affect the biological function of the organs under certain conditions.
Collapse
|
14
|
Nascimento CP, Ferreira LO, da Silva ALM, da Silva ABN, Rodrigues JCM, Teixeira LL, Azevedo JEC, de Araujo DB, Hamoy AO, Gonçalves BH, Coelho BHDO, Lopes DCF, Hamoy M. A Combination of Curcuma longa and Diazepam Attenuates Seizures and Subsequent Hippocampal Neurodegeneration. Front Cell Neurosci 2022; 16:884813. [PMID: 35774084 PMCID: PMC9237424 DOI: 10.3389/fncel.2022.884813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, which occurs due to the instability in the inhibitory and excitatory synaptic transmissions in the brain. However, many patients develop resistance to the available drugs, which results in cell degeneration caused due to inadequate control of the seizures. Curcumin, Curcuma longa, is known to be effective for the treatment of organic disorders and may prevent seizures, reduce oxidative stress, and decrease brain damage. Given this, the present study evaluated the antiepileptic effects of C. longa in comparison with both the diazepam and the combined application of these two substances, in terms of their effects on the brain activity and the potential histopathological changes in the hippocampus. This study used male Wistar rats (age: 10–12 weeks; weight: 260 ± 20 g), which were pretreated for 4 days with either saline, C. longa, diazepam, or C. longa + diazepam; and on the fifth day, pentylenetetrazol (PTZ) was administered to induce the seizure. In the C. longa group, a significant increase was observed in the latency of the onset of seizure-related behavior. Surprisingly, however, the combined treatment resulted in the best control of the seizure-related behavior, with the greatest latency of the onset of spasms and isolated clonic seizures. This group also obtained the best results in the electroencephalographic trace and seizure control, with a reduction in the frequency and amplitude of the spike-waves. In the saline group, PTZ significantly reduced the number of cells present in the CA1 and CA3 regions of the hippocampus, while the combined treatment obtained the best results in terms of the preservation of the neuron-like cells. These findings indicate that C. longa may contribute to the control of both seizures and the cell damage induced by PTZ, and that its association with diazepam may be a potentially effective option for the treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Chirlene Pinheiro Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Alex Luiz Menezes da Silva
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Ana Beatriz Nardelli da Silva
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Joao Cleiton Martins Rodrigues
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Leonan Lima Teixeira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Julianne Elba Cunha Azevedo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Daniella Bastos de Araujo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Beatriz Holanda Gonçalves
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Brenda Hosana De Oliveira Coelho
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- *Correspondence: Dielly Catrina Favacho Lopes,
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute Biological Science, Federal University of Pará, Belém, Brazil
- Moisés Hamoy,
| |
Collapse
|
15
|
Memarzia A, Saadat S, Behrouz S, Boskabady MH. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 2022; 48:521-551. [PMID: 34932258 DOI: 10.1002/biof.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/23/2023]
Abstract
Curcuma longa and its constituents, mainly curcumin, showed various of pharmacological effects in previous studies. This review article provides updated and comprehensive experimental and clinical evidence regarding the effects of C. longa and curcumin on respiratory, allergic, and immunologic disorders. Using appropriate keywords, databases including PubMed, Science Direct, and Scopus were searched until the end of October 2021. C. longa extracts and its constituent, curcumin, showed the relaxant effect on tracheal smooth muscle, which indicates their bronchodilatory effect in obstructive pulmonary diseases. The preventive effects of extracts of C. longa and curcumin were shown in experimental animal models of different respiratory diseases through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. C. longa and curcumin also showed preventive effects on some lung disorders in the clinical studies. It was shown that the effects of C. longa on pulmonary diseases were mainly due to its constituent, curcumin. Pharmacological effects of C. longa extracts and curcumin on respiratory, allergic, and immunologic disorders indicate the possible therapeutic effect of the plant and curcumin on these diseases.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Shaw PAG, Panda SK, Stanca A, Luyten W. Optimization of a locomotion-based zebrafish seizure model. J Neurosci Methods 2022; 375:109594. [PMID: 35421798 DOI: 10.1016/j.jneumeth.2022.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Locomotor assays in zebrafish have emerged as a screening test in early drug discovery for antiseizure compounds. However, parameters differ considerably between published studies, which may explain some discrepant results with (candidate) antiseizure medications. NEW METHOD We optimized a locomotor-based seizure assay in zebrafish with pentylenetetrazol (PTZ) as the pharmacological proconvulsant to generate a therapeutic window in which proconvulsant-treated zebrafish larvae could be discriminated from a non-treated control. To generate a reliable control, exposure time and concentration of valproate (VPA, anticonvulsant) was optimized. RESULTS Wells with one or three larvae show a similar PTZ dose-dependent increase in locomotion with less variability in motility for the latter. Zebrafish immersed in 10 mM PTZ showed a significant increase in movement with a sustained effect, without any indication of toxicity. Animals treated with 3 mM VPA showed the strongest reduction of PTZ-induced movement without toxicity. The decrease in PTZ-induced locomotion was greater after 18 h versus 2 h. COMPARISON WITH EXISTING METHOD(S) For the larval zebrafish PTZ-induced seizure model, varying experimental parameters have been reported in literature. Our results show that PTZ is often used at toxic concentrations, and we provide instead reliable conditions to quantify convulsant behaviour using an infrared-beam motility assay. CONCLUSIONS We recommend using three zebrafish larvae per well to quantify locomotion in 96-multiwell plates. Larvae should preferably be exposed to 10 mM PTZ for 1 h, consisting of 30 min acclimation and 30 min subsequent recording. As positive control for anticonvulsant activity, we recommend exposure to 3 mM VPA for 18 h before administration of PTZ.
Collapse
Affiliation(s)
| | - Sujogya Kumar Panda
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| | - Alexandru Stanca
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Gwedela MNV, Terai H, Lampiao F, Matsunami K, Aizawa H. Anti-seizure effects of medicinal plants in Malawi on pentylenetetrazole-induced seizures in zebrafish larvae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114763. [PMID: 34688800 DOI: 10.1016/j.jep.2021.114763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are used to manage and treat epilepsy in Malawi because of traditional beliefs and barriers to conventional anti-seizure drugs. Among the plants prescribed by traditional medical practitioners are Margaritaria discoidea, Dalbergia boehmii, Dalbergia nitidula, Catunaregam spinosa, and Lannea discolor. Despite the wide use of these plants, there is a lack of scientific evidence to support their anti-seizure efficacy. AIM OF THE STUDY This study used the pentylenetetrazole (PTZ)-induced larval zebrafish seizure model to screen for anti-seizure effects of a collection of medicinal plants traditionally used in Malawi. MATERIALS AND METHODS Zebrafish larvae were incubated in decoctions at maximum tolerated concentrations for 18 h and exposed to PTZ. As a primary screen, the effects of the decoctions on seizure-induced locomotor activity were determined. Decoctions that significantly reduced total distance traveled were further checked for effects on seizure latency and frequency, brain activity, immediate early gene expression, and c-fos protein expression. RESULTS M. discoidea male leaves, D. boehmii roots, and D. nitidula leaves showed significant anti-seizure effects in the primary screen and were selected for further study. Electrophysiological and immediate early gene analyses corroborated anti-seizure effect of D. boehmii and D. nitidula. The results of c-fos protein expression further suggested that the anti-seizure effects in the larval brain may be mediated by the suppression of neurons localized in midbrain regions. CONCLUSIONS These findings provide pioneering scientific evidence of the presence of anti-seizure activity in M. discoidea, D. boehmii, and D. nitidula, prescribed by traditional Malawian medical practitioners. Further studies are needed to identify and isolate compounds responsible for such biological activities and elucidate the possible mechanisms of action.
Collapse
Affiliation(s)
- Mayeso Naomi Victoria Gwedela
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Haruhi Terai
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Fanuel Lampiao
- Africa Centre of Excellence in Public Health and Herbal Medicine, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
| |
Collapse
|
18
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
19
|
Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, Koirala N, Adnan M, Alghamdi S, Assaggaf H, Alsiwiehri NO. A comprehensive review on antiepileptic properties of medicinal plants. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
20
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
21
|
Ren Q, Gao D, Mou L, Zhang S, Zhang M, Li N, Sik A, Jin M, Liu K. Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. Eur J Pharmacol 2021; 912:174589. [PMID: 34699755 DOI: 10.1016/j.ejphar.2021.174589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Epilepsy is one of common neurological disorders, greatly distresses the well-being of the sufferers. Melatonin has been used in clinical anti-epileptic studies, but its effect on epileptic comorbidities is unknown, and the underlying mechanism needs further investigation. Herein, by generating PTZ-induced zebrafish seizure model, we carried out interdisciplinary research using neurobehavioral assays, bioelectrical detection, molecular biology, and network pharmacology to investigate the activity of melatonin as well as its pharmacological mechanisms. We found melatonin suppressed seizure-like behavior by using zebrafish regular locomotor assays. Zebrafish freezing and bursting activity assays revealed the ameliorative effect of melatonin on comorbidity-like symptoms. The preliminary screening results of neurobehavioral assays were further verified by the expression of key genes involved in neuronal activity, neurodevelopment, depression and anxiety, as well as electrical signal recording from the midbrain of zebrafish. Subsequently, network pharmacology was introduced to identify potential targets of melatonin and its pathways. Real-time qPCR and protein-protein interaction (PPI) were conducted to confirm the underlying mechanisms associated with glutathione metabolism. We also found that melatonin receptors were involved in this process, which were regulated in response to melatonin exposure before PTZ treatment. The antagonists of melatonin receptors affected anticonvulsant activity of melatonin. Overall, current study revealed the considerable ameliorative effects of melatonin on seizure and epileptic comorbidity-like symptoms and unveiled the underlying mechanism. This study provides an animal model for the clinical application of melatonin in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Mengqi Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
22
|
Lamotrigine effects on immune gene expression in larval zebrafish. Epilepsy Res 2021; 178:106823. [PMID: 34844088 DOI: 10.1016/j.eplepsyres.2021.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Despite growing evidence that neuroinflammation and pro-inflammatory cytokines are involved in the pathogenesis of seizures and epilepsy, this knowledge has not been incorporated in the proposed mechanism of action of any of the current antiseizure medications (ASMs). Here, we tested the hypothesis by assessing inflammation markers in larval zebrafish (Danio rerio) exposed to lamotrigine (LTG). METHODS In order to establish the most appropriate LTG concentrations for the transcriptome analysis (RNAseq), we initially assessed for teratogenic (spinal cord deformation, heart oedema, failed inflation of the swim bladder) and behavioural effects (distance moved, time spent active, and average swimming speed during a light/dark test) in zebrafish larvae exposed to 0, 50, 100, 300, 500, 750, and 1000 μM LTG continuously between 5 and 120 h post fertilisation. Subsequently, we repeated the experiment with 0, 50, 100, or 300 μM LTG for transcriptomic analyses. Two databases (Kyoto Encyclopedia of Genes and Genomes; Gene Ontology) were used to interpret changes in gene expression between groups. RESULTS Major teratogenic effects were observed at concentrations of ≥ 500 μM LTG, whereas behavioural changes were observed at ≥ 300 μM LTG. Transcriptome analysis revealed a non-linear response to LTG. From the suite of differentially expressed genes (DEG), 85% (n = 80 DEGs) were upregulated following exposure to 50 μM LTG, whereas 58% (n = 12 DEGs) and 91% (n = 210 DEGs) were downregulated in response to 100 and 300 μM LTG. The metabolic pathways affected following exposure to 50 and 300 μM LTG were associated with responses to inflammation and pathogens as well development and regulation of the immune system in both groups. Notable genes within the lists of DEGs included component complement 3 (C3.a), which was significantly upregulated in response to 50 μM LTG, whereas interleukin 1β (IL-1β) was significantly downregulated in the 300 μM LTG group. The lowest exposure of 50 μM LTG is regarded as clinically relevant to therapeutic exposure. CONCLUSION We demonstrated that LTG had an impact on the immune system, with a non-monotonic response curve. This dose-dependent relation could indicate that LTG can affect inflammatory responses and also at clinically relevant concentration. Further studies are needed to establish this method as a tool for screening the effects of ASMs on the immune system.
Collapse
|
23
|
Comparative Antiseizure Analysis of Diverse Natural Coumarin Derivatives in Zebrafish. Int J Mol Sci 2021; 22:ijms222111420. [PMID: 34768849 PMCID: PMC8584229 DOI: 10.3390/ijms222111420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Coumarins are a well-known group of plant secondary metabolites with various pharmacological activities, including antiseizure activity. In the search for new antiseizure drugs (ASDs) to treat epilepsy, it is yet unclear which types of coumarins are particularly interesting as a systematic analysis has not been reported. The current study performed behavioral antiseizure activity screening of 18 different coumarin derivatives in the larval zebrafish pentylenetetrazole (PTZ) model using locomotor measurements. Activity was confirmed for seven compounds, which lowered seizure-like behavior as follows: oxypeucedanin 38%, oxypeucedanin hydrate 74%, notopterol 54%, nodakenetin 29%, hyuganin C 35%, daphnoretin 65%, and pimpinellin 60%. These coumarins, together with nodakenin, underwent further antiepileptiform analysis by local field potential recordings from the zebrafish opticum tectum (midbrain). All of them, except for nodakenetin, showed pronounced antiepileptiform activity, decreasing PTZ-induced elevation in power spectral density (PSD) by 83-89% for oxypeucedanin, oxypeucedanin hydrate, and notopterol, 77% for nodakenin, 26% for nodakenetin, 65% for hyuganin C, 88% for daphnoretin, and 81% for pimpinellin. These data demonstrate the potential of diverse coumarin scaffolds for ASD discovery. Finally, the structural differences between active and inactive coumarins were investigated in silico for oxypeucedanin hydrate and byacangelicin for their interaction with GABA-transaminase, a hypothetical target.
Collapse
|
24
|
Bertoncello KT, Bonan CD. Zebrafish as a tool for the discovery of anticonvulsant compounds from botanical constituents. Eur J Pharmacol 2021; 908:174342. [PMID: 34265297 DOI: 10.1016/j.ejphar.2021.174342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy affects about 65 million people in the world, which makes this disease a public health problem. In addition to the incidence of recurrent seizures, this neurological condition also culminates in cognitive, psychological, behavioral, and social consequences to the patients. Epilepsy treatment is based on the use of drugs that aim to inhibit repetitive neuronal discharges, and consequently, the recurrence of seizures. However, despite the large number of antiepileptic drugs currently available, about 30-40% of patients with epilepsy do not respond satisfactorily to treatments. Therefore, the investigation of new therapeutic alternatives for epilepsy becomes relevant, especially the search for new compounds with anticonvulsant properties. The therapeutic potential of plant-derived bioactive compounds has been a target for alternative treatments for epilepsy. The use of animal models for drug screening, such as zebrafish, contributes to a better understanding of the mechanisms involved in seizures and for investigating methods and alternative treatments to decrease seizure incidence. The sensitivity of zebrafish to chemoconvulsants and its use in genetic approaches reinforces the contribution of this animal to epilepsy research. Moreover, we summarize advances in zebrafish-based studies that focus on plant-derived bioactive compounds with potential antiseizure properties, contributing to the screening of new drugs for epilepsy treatment.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Gawel K, Kukula-Koch W, Banono NS, Nieoczym D, Targowska-Duda KM, Czernicka L, Parada-Turska J, Esguerra CV. 6-Gingerol, a Major Constituent of Zingiber officinale Rhizoma, Exerts Anticonvulsant Activity in the Pentylenetetrazole-Induced Seizure Model in Larval Zebrafish. Int J Mol Sci 2021; 22:7745. [PMID: 34299361 PMCID: PMC8305044 DOI: 10.3390/ijms22147745] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland;
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Marie Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | | | - Lidia Czernicka
- Chair and Department of Food and Nutrition, Medical University of Lublin, Chodzki Str. 4a, 20-093 Lublin, Poland;
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| |
Collapse
|
26
|
Takemoto Y, Sumi T, Kishi C, Makino S, Yoshioka Y, Matsumura S, Moriyama T, Zaima N. Distribution of inhaled volatile turmerones in the mouse. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Vázquez OA, Rahman MS. An ecotoxicological approach to microplastics on terrestrial and aquatic organisms: A systematic review in assessment, monitoring and biological impact. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103615. [PMID: 33607259 DOI: 10.1016/j.etap.2021.103615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Marine and land plastic debris biodegrades at micro- and nanoscales through progressive fragmentation. Oceanographic model studies confirm the presence of up to ∼2.41 million tons of microplastics across the Atlantic, Pacific, and Indian subtropical gyres. Microplastics distribute from primary (e.g., exfoliating cleansers) and secondary (e.g., chemical deterioration) sources in the environment. This anthropogenic phenomenon poses a threat to the flora and fauna of terrestrial and aquatic ecosystems as ingestion and entanglement cases increase over time. This review focuses on the impact of microplastics across taxa at suggested environmentally relevant concentrations, and advances the groundwork for future ecotoxicological-based research on microplastics including the main points: (i) adhesion of chemical pollutants (e.g., PCBs); (ii) biological effects (e.g., bioaccumulation, biomagnification, biotransportation) in terrestrial and aquatic organisms; (iii) physico-chemical properties (e.g., polybrominated diphenyl ethers) and biodegradation pathways in the environment (e.g., chemical stress, heat stress); and (iv) an ecotoxicological prospect for optimized impact assessments.
Collapse
Affiliation(s)
- Omar A Vázquez
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
28
|
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. PLANTS 2020; 9:plants9101345. [PMID: 33053800 PMCID: PMC7601530 DOI: 10.3390/plants9101345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.
Collapse
|
29
|
Brillatz T, Jacmin M, Vougogiannopoulou K, Petrakis EA, Kalpoutzakis E, Houriet J, Pellissier L, Rutz A, Marcourt L, Queiroz EF, Crawford AD, Skaltsounis AL, Wolfender JL. Antiseizure potential of the ancient Greek medicinal plant Helleborus odorus subsp. cyclophyllus and identification of its main active principles. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112954. [PMID: 32445663 DOI: 10.1016/j.jep.2020.112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnopharmacological data and ancient texts support the use of black hellebore (Helleborus odorus subsp. cyclophyllus, Ranunculaceae) for the management and treatment of epilepsy in ancient Greece. AIM OF THE STUDY A pharmacological investigation of the root methanolic extract (RME) was conducted using the zebrafish epilepsy model to isolate and identify the compounds responsible for a potential antiseizure activity and to provide evidence of its historical use. In addition, a comprehensive metabolite profiling of this studied species was proposed. MATERIALS AND METHODS The roots were extracted by solvents of increasing polarity and root decoction (RDE) was also prepared. The extracts were evaluated for antiseizure activity using a larval zebrafish epilepsy model with pentylenetetrazole (PTZ)-induced seizures. The RME exhibited the highest antiseizure activity and was therefore selected for bioactivity-guided fractionation. Isolated compounds were fully characterized by NMR and high-resolution tandem mass spectrometry (HRMS/MS). The UHPLC-HRMS/MS analyses of the RME and RDE were used for dereplication and metabolite profiling. RESULTS The RME showed 80% inhibition of PTZ-induced locomotor activity (300 μg/ml). This extract was fractionated and resulted in the isolation of a new glucopyranosyl-deoxyribonolactone (1) and a new furostanol saponin derivative (2), as well as of 20-hydroxyecdysone (3), hellebrin (4), a spirostanol glycoside derivative (5) and deglucohellebrin (6). The antiseizure activity of RME was found to be mainly due to the new furostanol saponin (2) and hellebrin (4), which reduced 45% and 60% of PTZ-induced seizures (135 μM, respectively). Besides, the aglycone of hellebrin, hellebrigenin (S34), was also active (45% at 7 μM). To further characterize the chemical composition of both RME and RDE, 30 compounds (A7-33, A35-37) were annotated based on UHPLC-HRMS/MS metabolite profiling. This revealed the presence of additional bufadienolides, furostanols, and evidenced alkaloids. CONCLUSIONS This study is the first to identify the molecular basis of the ethnopharmacological use of black hellebore for the treatment of epilepsy. This was achieved using a microscale zebrafish epilepsy model to rapidly quantify in vivo antiseizure activity. The UHPLC-HRMS/MS profiling revealed the chemical diversity of the extracts and the presence of numerous bufadienolides, furostanols and ecdysteroids, also present in the decoction.
Collapse
Affiliation(s)
- Théo Brillatz
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg 6, Avenue du Swing, 4367, Belvaux, Luxembourg; Theracule S.á r.l., 9, Avenue des Hauts-Fourneaux, 4362, Belval, Luxembourg
| | - Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Eleftherios A Petrakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Eleftherios Kalpoutzakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Joëlle Houriet
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Léonie Pellissier
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg 6, Avenue du Swing, 4367, Belvaux, Luxembourg; Theracule S.á r.l., 9, Avenue des Hauts-Fourneaux, 4362, Belval, Luxembourg; Department of Preclinical Sciences & Pathology, Norwegian University of Life Sciences, Ullevålsveien 72, 0454, Oslo, Norway
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
30
|
Brillatz T, Kubo M, Takahashi S, Jozukuri N, Takechi K, Queiroz EF, Marcourt L, Allard PM, Fish R, Harada K, Ishizawa K, Crawford AD, Fukuyama Y, Wolfender JL. Metabolite Profiling of Javanese Ginger Zingiber purpureum and Identification of Antiseizure Metabolites via a Low-Cost Open-Source Zebrafish Bioassay-Guided Isolation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7904-7915. [PMID: 32628839 DOI: 10.1021/acs.jafc.0c02641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rhizomes of Zingiber purpureum, "Bangle", were investigated for its antiseizure properties using a streamlined and cost-effective zebrafish screening strategy and a mouse epilepsy assay. Its hexane extract demonstrated strong antiseizure activity in zebrafish epilepsy assay and was, therefore, selected for bioactivity-guided fractionation. Twelve compounds (1-12) were isolated, and two bioactive phenylbutenoids, trans- (11) and cis-banglene (12), reduced up to 70% of pentylenetetrazole (PTZ)-induced seizures. These compounds showed moderate activity against PTZ-induced seizures in a mouse epilepsy assay. To understand the specificity of Z. purpureum active compounds, its chemical profile was compared to that of Z. officinale. Their composition was assessed by differential metabolite profiling visualized by a molecular network, which revealed only vanillin derivatives and terpenoids as common metabolites and gave a comprehensive view of Z. purpureum composition. This study demonstrates the efficacy of a streamlined zebrafish epilepsy assay, which is therefore suitable for routine screening in phytochemistry laboratories.
Collapse
Affiliation(s)
- Théo Brillatz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shimon Takahashi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Natsumi Jozukuri
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | | | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Richard Fish
- Department of Genetic Medicine and Development, University of Geneva, Faculty of Medicine, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Alexander D Crawford
- Department of Preclinical Sciences & Pathology, Norwegian University of Life Sciences, Ulleva°lsveien 72, 0454 Oslo, Norway
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
31
|
Li J, Copmans D, Partoens M, Hunyadi B, Luyten W, de Witte P. Zebrafish-Based Screening of Antiseizure Plants Used in Traditional Chinese Medicine: Magnolia officinalis Extract and Its Constituents Magnolol and Honokiol Exhibit Potent Anticonvulsant Activity in a Therapy-Resistant Epilepsy Model. ACS Chem Neurosci 2020; 11:730-742. [PMID: 32083464 DOI: 10.1021/acschemneuro.9b00610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
With the aim to discover interesting lead compounds that could be further developed into compounds active against pharmacoresistant epilepsies, we first collected 14 medicinal plants used in traditional Chinese medicine (TCM) against epilepsy. Of the six extracts that tested positive in a pentylenetetrazole (PTZ) behavioral zebrafish model, only the ethanol and acetone extracts from Magnolia officinalis (M. officinalis) also showed effective antiseizure activity in the ethylketopentenoate (EKP) zebrafish model. The EKP model is regarded as an interesting discovery platform to find mechanistically novel antiseizure drugs, as it responds poorly to a large number of marketed anti-epileptics. We then demonstrated that magnolol and honokiol, two major constituents of M. officinalis, displayed an effective behavioral and electrophysiological antiseizure activity in both the PTZ and the EKP models. Out of six structural analogues tested, only 4-O-methylhonokiol was active and to a lesser extent tetrahydromagnolol, whereas the other analogues (3,3'-dimethylbiphenyl, 2,2'-biphenol, 2-phenylphenol, and 3,3',5,5'-tetra-tert-butyl-[1,1'-biphenyl]-2,2'-diol) were not consistently active in the aforementioned assays. Finally, magnolol was also active in the 6 Hz psychomotor mouse model, an acute therapy-resistant rodent model, thereby confirming the translation of the findings from zebrafish larvae to mice in the field of epilepsy. We also developed a fast and automated power spectral density (PSD) analysis of local field potential (LFP) recordings. The PSD results are in agreement with the visual analysis of LFP recordings using Clampfit software and manually counting the epileptiform events. Taken together, screening extracts of single plants employed in TCM, using a combination of zebrafish- and mouse-based assays, allowed us to identify allyl biphenol as a chemical scaffold for the future development of compounds with potential activity against therapy-resistant epilepsies.
Collapse
Affiliation(s)
- Jing Li
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Borbála Hunyadi
- STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Patra JK, Das G, Bose S, Banerjee S, Vishnuprasad CN, Del Pilar Rodriguez-Torres M, Shin HS. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020; 34:1248-1267. [PMID: 31997473 DOI: 10.1002/ptr.6614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/25/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
Abstract
Medicinal herbs are one of the imperative sources of drugs all over the world. Star anise (Illicium verum), an evergreen, medium-sized tree with star-shaped fruit, is an important herb with wide distribution throughout southwestern parts of the Asian continent. Besides its use as spice in culinary, star anise is one of the vital ingredients of the Chinese medicinal herbs and is widely known for its antiviral effects. It is also the source of the precursor molecule, shikimic acid, which is used in the manufacture of oseltamivir (Tamiflu®), an antiviral medication for influenza A and influenza B. Besides, several other molecules with numerous biological benefits including the antiviral effects have been reported from the same plant. Except the antiviral potential, star anise possesses a number of other potentials such as antioxidant, antimicrobial, antifungal, anthelmintic, insecticidal, secretolytic, antinociceptive, anti-inflammatory, gastroprotective, sedative properties, expectorant and spasmolytic, and estrogenic effects. This review aimed to integrate the information on the customary attributes of the plant star anise with a specific prominence on its antiviral properties and the phytochemical constituents along with its clinical aptness.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol, West Bengal, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Maria Del Pilar Rodriguez-Torres
- Laboratorio de Ondas de Choque (LOCH), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México Campus UNAM Juriquilla Boulevard Juriquilla no. 3001 Santiago de Querétaro, Qro., C.P. 76230, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
33
|
Brillatz T, Jacmin M, Queiroz EF, Marcourt L, Slacanin I, Petit C, Carrupt PA, Bum EN, Herrling P, Crawford AD, Wolfender JL. Zebrafish bioassay-guided isolation of antiseizure compounds from the Cameroonian medicinal plant Cyperus articulatus L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153175. [PMID: 32302934 DOI: 10.1016/j.phymed.2020.153175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epilepsy is a chronic neurological disorder affecting more than 50 million people worldwide, of whom 80% live in low- and middle-income countries. Due to the limited availability of antiseizure drugs (ASDs) in these countries, medicinal plants are the first-line treatment for most epilepsy patients. In Cameroon, a decoction of Cyperus articulatus L. rhizomes is traditionally used to treat epilepsy. PURPOSE The aim of this study was to identify and isolate the active compounds responsible for the antiseizure activity of C. articulatus in order to confirm both its traditional medicinal usage and previous in vivo studies on extracts of this plant in mouse epilepsy models. METHODS The dried rhizomes of C. articulatus were extracted with solvents of increasing polaritie (hexane, dichloromethane, methanol and water). A traditional decoction and an essential oil were also prepared. These extracts were evaluated for antiseizure activity using a larval zebrafish seizure model with seizures induced by the GABAA antagonist pentylenetetrazole (PTZ). The hexane extract demonstrated the highest antiseizure activity and was therefore selected for bioassay-guided fractionation. The isolated bioactive compounds were characterized by classical spectroscopic methods. Since they were found to be volatile, they were quantified by GC-FID. In addition, the absorption of the active compounds through the gastrointestinal tract and the blood-brain barrier was evaluated using a hexadecane and a blood-brain barrier parallel artificial membrane permeability assays (HDM-PAMPA and PAMPA-BBB). RESULTS The hexane extract of C. articulatus exhibited the highest antiseizure activity with a reduction of 93% of PTZ-induced seizures, and was therefore subjected to bioassay-guided fractionation in order to isolate the active principles. Four sesquiterpenoids were identified as cyperotundone (1), mustakone (2), 1,2-dehydro-α-cyperone (3) and sesquichamaenol (4) and exhibited significant antiseizure activity. These volatile compounds were quantified by GC in the hexane extract, the essential oil and the simulated traditional decoction. In addition, the constituents of the hexane extract including compounds 1 and 2 were found to cross the gastrointestinal barrier and the major compound 2 crossed the blood-brain barrier as well. CONCLUSION These results highlight the antiseizure activity of various sesquiterpene compounds from a hexane extract of C. articulatus dried rhizomes and support its use as a traditional treatment for epilepsy.
Collapse
Affiliation(s)
- Théo Brillatz
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 6, avenue du Swing, Belvaux 4367, Luxembourg; Theracule S.á r.l., 9, avenue des Hauts-Fourneaux, Belval 4362, Luxembourg
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland
| | - Laurence Marcourt
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland
| | - Ivan Slacanin
- ILIS Institut & Laboratory, Chemin de la Passerelle 17, Bienne CH-2503, Switzerland
| | - Charlotte Petit
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland
| | - Pierre-Alain Carrupt
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Paul Herrling
- Novartis Pharma Ltd., Research, Basel CH-4002, Switzerland
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 6, avenue du Swing, Belvaux 4367, Luxembourg; Theracule S.á r.l., 9, avenue des Hauts-Fourneaux, Belval 4362, Luxembourg; Department of Preclinical Sciences & Pathology, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo 0454, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, CMU - Rue Michel-Servet 1, Geneva 4 CH-1211, Switzerland.
| |
Collapse
|
34
|
Molecular Cloning and Functional Characterization of Bisabolene Synthetase (SaBS) Promoter from Santalum album. FORESTS 2020. [DOI: 10.3390/f11010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bisabolene-type sesquiterpenoids, which have multiple bioactivities, including anticancer activity, are one of the main groups of compounds in the essential oil extracted from Santalum album L. and other Santalum species. Bisabolene synthetase (SaBS) is a key enzyme for the synthesis of bisabolene in S. album, but the regulation of the SaBS gene’s expression is poorly understood. In this study, a 1390-bp promoter sequence of the SaBS gene was isolated from the leaves of six-year-old S. album. A bioinformatics analysis showed that certain environment stresses and phytohormone-activated cis-acting elements were distributed in different regions of the SaBS promoter (PSaBS). Transgenic Arabidopsis carrying full-length PSaBS had significantly higher β-glucuronidase (GUS) activity than the untreated control after treatment with salicylic acid (SA), suggesting that PSaBS is a SA-inducible promoter. Histochemical GUS staining and GUS fluorometric assays of transgenic Arabidopsis showed that the GUS activity directed by PSaBS was mainly expressed in stem tissue, followed by leaves and flowers. Moreover, different regions of PSaBS showed significantly different GUS activity. A 171-bp fragment upstream of the transcriptional initiation codon (ATG) is the core promoter region of PSaBS. Our results provide insight into and a greater understanding of the transcriptional regulation mechanism of the SaBS gene, which could serve as an alternative inducible promoter for transgenic plant breeding.
Collapse
|
35
|
The effects of Curcuma Longa L. and its constituents in respiratory disorders and molecular mechanisms of their action. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817905-5.00007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Kamiński K, Socała K, Zagaja M, Andres-Mach M, Abram M, Jakubiec M, Pieróg M, Nieoczym D, Rapacz A, Gawel K, Esguerra CV, Latacz G, Lubelska A, Szulczyk B, Szewczyk A, Łuszczki JJ, Wlaź P. N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug. Neurotherapeutics 2020; 17:309-328. [PMID: 31486023 PMCID: PMC7007424 DOI: 10.1007/s13311-019-00773-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result, AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZ-induced seizures in mice. Thus, AS-1 may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 μM, as well as no hepatotoxic properties in HepG2 cells (concentration of 10 μM).
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Michał Abram
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Marcin Jakubiec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Rapacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688, Cracow, Poland
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Cracow, Poland
| | - Annamaria Lubelska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Cracow, Poland
| | - Bartłomiej Szulczyk
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Jarogniew Jacek Łuszczki
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
37
|
Khan AU, Akram M, Daniyal M, Akhter N, Riaz M, Akhtar N, Shariati MA, Anjum F, Khan SG, Parveen A, Ahmad S. Awareness and current knowledge of epilepsy. Metab Brain Dis 2020; 35:45-63. [PMID: 31605258 DOI: 10.1007/s11011-019-00494-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Epilepsy is a severe neural disorder that affects approximately fifty million individuals globally. Despite the fact that for most of the people with epilepsy, convulsions are better controlled by current accessible antiepileptic medicines, yet there are more than 30% of individuals affected with medically intractable epilepsy and around 30-40% of all patients with epilepsy affected by many adverse reactions and convulsion resistance to the present antiepileptic drugs. Consequently, various scientists attempt to develop new strategies to treat epilepsy, for instance, to find out novel antiepileptic ingredients from traditional medicines. This work aims to present a complete summary of natural medicines prescribed as antiepileptic agents all over the world by ethnic groups and different tribes. We undertook an extensive bibliographic analysis by searching peer reviewed papers and classical textbooks and further consulting well accepted worldwide scientific databases. We carried out PubMed, EMbase and CENTRAL searches by means of terms such as "antiepileptic" and "anti-convulsant" activity of plants. Medicinal plants have been prescribed to treat epilepsy and have been recognized as antiepileptic medicines. In this review, a variety of herbs have been reviewed for thorough studies such as Cuminum cyminum, Butea monosperma, Solanum americanum, Anacyclus pyrethrum, Leonotis leonurus, Elaeocarpus ganitrus and Angelica archangelica. This paper shows that it was high time experimental studies are increased to obtain novel potential active principles from medicinal plants. Plant extracts and their chemical constituents should be further evaluated to clarify their mechanisms of action. This paper provides a solid base upon which to further investigate the clinical efficacy of medicinal plants that are both currently prescribed by physicians as traditional antiepileptic agents, but also could be effective as an antiepileptic drug with further research and study.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Department of Eastern Medicine, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naheed Akhter
- College of Allied Health Professional, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food industry (Semey branch), Semey, Kazakhstan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Saeed Ahmad
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
38
|
Copmans D, Kildgaard S, Rasmussen SA, Ślęzak M, Dirkx N, Partoens M, Esguerra CV, Crawford AD, Larsen TO, de Witte PAM. Zebrafish-Based Discovery of Antiseizure Compounds from the North Sea: Isoquinoline Alkaloids TMC-120A and TMC-120B. Mar Drugs 2019; 17:md17110607. [PMID: 31731399 PMCID: PMC6891649 DOI: 10.3390/md17110607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.
Collapse
Affiliation(s)
- Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Sara Kildgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
| | - Silas A. Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
| | - Monika Ślęzak
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Nina Dirkx
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Current affiliation: Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Current affiliation: Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
- Correspondence: (T.O.L.); (P.A.M.-d.W.); Tel.: +45-4525-2632 (T.O.L.); +32-16-32-34-32 (P.A.M.-d.W.)
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Correspondence: (T.O.L.); (P.A.M.-d.W.); Tel.: +45-4525-2632 (T.O.L.); +32-16-32-34-32 (P.A.M.-d.W.)
| |
Collapse
|
39
|
Demiray M, Miller DJ, Allemann RK. Harnessing enzyme plasticity for the synthesis of oxygenated sesquiterpenoids. Beilstein J Org Chem 2019; 15:2184-2190. [PMID: 31598175 PMCID: PMC6774066 DOI: 10.3762/bjoc.15.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/26/2019] [Indexed: 12/05/2022] Open
Abstract
8-Methoxy-γ-humulene, (E)-8-methoxy-β-farnesene, 12-methoxy-β-sesquiphellandrene and 12-methoxyzingiberene can be synthesised in amorphadiene synthase-catalysed reactions from 8- and 12-methoxyfarnesyl diphosphates due to the highly plastic yet tightly controlled carbocationic chemistry of this sesquiterpene cyclase.
Collapse
Affiliation(s)
- Melodi Demiray
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| | - David J Miller
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| |
Collapse
|
40
|
Jin M, Zhang B, Sun Y, Zhang S, Li X, Sik A, Bai Y, Zheng X, Liu K. Involvement of peroxisome proliferator-activated receptor γ in anticonvulsant activity of α-asaronol against pentylenetetrazole-induced seizures in zebrafish. Neuropharmacology 2019; 162:107760. [PMID: 31493468 DOI: 10.1016/j.neuropharm.2019.107760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
In mammals, peroxisome proliferators activated receptors (PPARs), the nuclear hormone receptors, have been reported to be involved in seizure control. Selective agonists and antagonists of PPARs raise seizure thresholds and suppress seizures, respectively. In this study, we evaluated the anticonvulsant effects of α-asaronol, a metabolic product of α-asarone, on pentylenetetrazole (PTZ)-induced seizures in zebrafish and investigated the underlying mechanisms. As a result, α-asaronol ameliorated seizures with increase of seizure latency, as well as decrease of seizure-like behavior, c-fos expression, and abnormal neuronal discharge in a concentration dependent manner. By comparing gene expression profiles of zebrafish undergoing seizures and α-asaronol pretreated zebrafish, we found that α-asaronol attenuate seizures through increase of PPAR γ expression, while PPAR γ antagonist GW9662 inhibit the anti-seizures actions of α-asaronol. Moreover, molecular docking simulation implied the physical interaction between α-asaronol and PPAR γ. The overall results indicated that the anticonvulsant effects of α-asaronol are regulated through PPAR γ-mediated pathway, which shed light on development of α-asaronol as a potential antiepileptic drug. In addition, it is for first time to report that PPAR γ is associated with seizures in zebrafish, supporting previous evidence that zebrafish is a suitable alternative for studying seizures.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ying Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO.44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
41
|
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9:10565. [PMID: 31332210 PMCID: PMC6646331 DOI: 10.1038/s41598-019-46715-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Epilepsy, that comprises a wide spectrum of neuronal disorders and accounts for about one percent of global disease burden affecting people of all age groups, is recognised as apasmara in the traditional medicinal system of Indian antiquity commonly known as Ayurveda. Towards exploring the molecular level complex regulatory mechanisms of 63 anti-epileptic Ayurvedic herbs and thoroughly examining the multi-targeting and synergistic potential of 349 drug-like phytochemicals (DPCs) found therein, in this study, we develop an integrated computational framework comprising of network pharmacology and molecular docking studies. Neuromodulatory prospects of anti-epileptic herbs are probed and, as a special case study, DPCs that can regulate metabotropic glutamate receptors (mGluRs) are inspected. A novel methodology to screen and systematically analyse the DPCs having similar neuromodulatory potential vis-à-vis DrugBank compounds (NeuMoDs) is developed and 11 NeuMoDs are reported. A repertoire of 74 DPCs having poly-pharmacological similarity with anti-epileptic DrugBank compounds and those under clinical trials is also reported. Further, high-confidence PPI-network specific to epileptic protein-targets is developed and the potential of DPCs to regulate its functional modules is investigated. We believe that the presented schema can open-up exhaustive explorations of indigenous herbs towards meticulous identification of clinically relevant DPCs against various diseases and disorders.
Collapse
Affiliation(s)
- Neha Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
42
|
Aourz N, Serruys ASK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, van Leuven F, de Witte PAM, Smolders I, Crawford AD. Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem Neurosci 2019; 10:1992-2003. [PMID: 30351911 DOI: 10.1021/acschemneuro.8b00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action.
Collapse
Affiliation(s)
- Najat Aourz
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Joëlle N. Chabwine
- Salama Neuroscience Center, Bukavu, South Kivu BP 54, Democratic Republic of the Congo
| | | | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Alexander I. Grey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Appolinary R. Kamuhabwa
- Department of Pharmacognosy, Muhimbili University of Health & Allied Sciences, Dar es Salaam 11000, Tanzania
| | - Laura Walrave
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Fred van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilse Smolders
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
43
|
Liu M, Copmans D, Lu JG, Yang MR, Sourbron J, Ny A, Jiang ZH, de Witte PAM, Luyten W. Bioassay-guided isolation of anti-seizure principles from Semen Pharbitidis using a zebrafish pentylenetetrazol seizure model. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:130-134. [PMID: 30572093 DOI: 10.1016/j.jep.2018.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/15/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae) is a well-known traditional Chinese medicinal plant used for treating helminthiasis and epilepsy in China. AIM OF THE STUDY This study aims to identify the anti-seizure components from Semen Pharbitidis. METHODS A bioassay-guided isolation of anti-seizure compounds from Semen Pharbitidis was performed using a zebrafish pentylenetetrazol seizure model. The structures of active compounds were elucidated by high resolution mass spectrometry. The fragments of active compounds were tested for anti-seizure activity as well. RESULTS The bioassay-guided isolation of ethanol extract of Semen Pharbitidis led to a group of resin glucosides, namely pharbitin. One of the fragments of pharbitin, 2-methylbutyric acid, also showed anti-seizure activity. CONCLUSIONS We provided further experimental scientific evidence to support the traditional use of Semen Pharbitidis for the treatment of epilepsy. Pharbitin was identified to be the main anti-seizure component in Semen Pharbitidis.
Collapse
Affiliation(s)
- Maoxuan Liu
- Department of Biology, Animal Physiology and Neurobiology section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Ming-Rong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jo Sourbron
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology section, KU Leuven, Naamsestraat 59, box 2465, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Kozioł E, Deniz FSS, Orhan IE, Marcourt L, Budzyńska B, Wolfender JL, Crawford AD, Skalicka-Woźniak K. High-performance counter-current chromatography isolation and initial neuroactivity characterization of furanocoumarin derivatives from Peucedanum alsaticum L (Apiaceae). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:259-264. [PMID: 30668376 DOI: 10.1016/j.phymed.2018.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Medicinal plants are a proven source of drug-like small molecules with activity towards targets relevant for diseases of the central nervous system (CNS). Plant species of the Apiaceae family have to date yielded a number of neuroactive metabolites, such as coumarin derivatives with acetylcholinesterase inhibitory activity or anti-seizure activity. PURPOSE To accelerate the discovery of neuroactive phytochemicals with potential as CNS drug leads, we sought to rapidly isolate furanocoumarins, primary constituents of the dichloromethane (DCM) extract of the fruits of Peucedanum alsaticum L. (Apiaceae), using high-performance counter-current chromatography (HPCCC) and to evaluate their neuroactivity using both in vitro and in vivo microscale bioassays based on cholinesterase ELISAs and zebrafish epilepsy models. RESEARCH METHODS AND PROCEDURE In this study the DCM extract was subjected to HPCCC for the efficient separation (60 min) and isolation of furanocoumarins. Isolated compounds were identified with TOF-ESI-MS and NMR techniques and examined as inhibitors of AChE and BChE using ELISA microtiter assays. Anti-seizure properties of the extract and of the isolated compounds were evaluated using a zebrafish epilepsy model based on the GABAA antagonist pentylenetetrazol (PTZ), which induces increased locomotor activity and seizure-like behavior. RESULTS The solvent system, composed of n-heptane, ethyl acetate, methanol and water (3:1:3:1, v/v/v/v), enabled the isolation of 2.63 mg lucidafuranocoumarin A (purity 98%) and 8.82 mg bergamottin (purity 96%) from 1.6 g crude DCM extract. The crude extract, at a concentration of 100 µg/ml, exhibited a weak inhibitory activity against acetylcholinesterase (AChE) (9.63 ± 1.59%) and a moderate inhibitory activity against butyrylcholinestrase (BChE) (49.41 ± 2.19%). Lucidafuranocoumarin A (100 µg/ml) was inactive against AChE but showed moderate inhibition towards BChE (40.66 ± 1.25%). The DCM extract of P. alsaticum fruits (0.62-1.75 µg/ml) and bergamottin (2-10 µm) exhibited weak anti-seizure activity, while lucidafuranocoumarin A (10-16 µm) was found to significantly inhibit PTZ-induced seizures. The percentage of seizure inhibition for the isolated compounds, at their most bioactive concentration, was 26% for bergamottin and 69% for lucidafuranocoumarin A. CONCLUSION Our findings underscore the utility of HPCCC for the rapid isolation of rare coumarin derivatives, and the potential of microscale in vivo bioassays based on zebrafish disease models for the rapid assessment of neuroactivity of these drug-like natural products.
Collapse
Affiliation(s)
- Ewelina Kozioł
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Barbara Budzyńska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Alexander D Crawford
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland.
| |
Collapse
|
45
|
Nieoczym D, Socała K, Gawel K, Esguerra CV, Wyska E, Wlaź P. Anticonvulsant Activity of Pterostilbene in Zebrafish and Mouse Acute Seizure Tests. Neurochem Res 2019; 44:1043-1055. [PMID: 30689162 PMCID: PMC6482291 DOI: 10.1007/s11064-019-02735-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/19/2019] [Indexed: 12/29/2022]
Abstract
Pterostilbene (PTE), a natural dimethylated analog of resveratrol, possesses numerous health-beneficial properties. The ability of PTE to cross the blood–brain barrier raised the possibility that this compound may modulate central nervous system functions, including seizure activity. The aim of our study was to investigate the activity of PTE in the larval zebrafish pentylenetetrazole (PTZ) seizure assay and three acute seizure tests in mice, i.e., in the maximal electroshock seizure threshold (MEST), 6 Hz-induced psychomotor seizure threshold and intravenous (iv) PTZ tests. Additionally, potential antidepressant activity of PTE was estimated in the forced swim test in mice. The chimney test was used to determine the influence of PTE on motor coordination in mice, while its influence on neuromuscular strength was assessed in the grip strength test in mice. Locomotor activity was determined to verify the results from the forced swim test. PTE revealed an evident anticonvulsant effect both in zebrafish larvae (10 µM; 2 h-incubation) and mice (at doses of 100 and 200 mg/kg, intraperitoneally) but it did not exhibit antidepressant potential in the forced swim test. Furthermore, it did not cause any statistically significant changes in motor coordination, neuromuscular strength and locomotor activity in mice. In conclusion, our present findings demonstrate for the first time the anticonvulsant potential of PTE. The aforementioned results suggest that it might be employed in epilepsy treatment, however, further precise studies are required to verify its activity in other experimental seizure and epilepsy models and its precise mechanism of action should be determined.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
46
|
Serra I, Scheldeman C, Bazelot M, Whalley BJ, Dallas ML, de Witte PAM, Williams CM. Cannabidiol modulates phosphorylated rpS6 signalling in a zebrafish model of Tuberous Sclerosis Complex. Behav Brain Res 2019; 363:135-144. [PMID: 30684511 DOI: 10.1016/j.bbr.2019.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain. Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC.
Collapse
Affiliation(s)
- Ines Serra
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK; School of Pharmacy, University of Reading, Reading, UK.
| | - Chloë Scheldeman
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
| | - Michael Bazelot
- GW Research Ltd. Sovereign House, Vision Park, Histon, Cambridge, UK.
| | | | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, UK.
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
| | - Claire M Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| |
Collapse
|
47
|
Pitchai A, Nagarajan N, Vincent SGP, Rajaretinam RK. Zebrafish bio-assay guided isolation of human acetylcholinesterase inhibitory trans-tephrostachin from Tephrosia purpurea (L.) Pers. Neurosci Lett 2018; 687:268-275. [DOI: 10.1016/j.neulet.2018.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/15/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
|
48
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
49
|
Elbali W, Djouahri A, Djerrad Z, Saka B, Aberrane S, Sabaou N, Baaliouamer A, Boudarene L. Chemical variability and biological activities of Marrubium vulgare L. essential oil, depending on geographic variation and environmental factors. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1493405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Wahiba Elbali
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
| | - Abderrahmane Djouahri
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
| | - Zineb Djerrad
- Department of Ecology and Environment, Faculty of Biological Sciences, Laboratory of Vegetal Ecology and Environment, Houari Boumediene University of Sciences and Technology (USTHB), Algiers, Algeria
| | - Boualem Saka
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
| | - Sihem Aberrane
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
| | - Nasserdine Sabaou
- Department of Biology, Laboratory of Biology of the Microbial Systems, Ecole Normale Supérieure de Kouba, Kouba-Alger Algeria
| | - Aoumeur Baaliouamer
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC), Algiers, Algeria
| | - Lynda Boudarene
- Department of Chemistry, Faculty of Chemistry, Laboratory of Functional Organic Analysis, Houari Boumediene University of Sciences and Technology (U.S.T.H.B), Algiers, Algeria
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC), Algiers, Algeria
| |
Collapse
|
50
|
Copmans D, Rateb M, Tabudravu JN, Pérez-Bonilla M, Dirkx N, Vallorani R, Diaz C, Pérez del Palacio J, Smith AJ, Ebel R, Reyes F, Jaspars M, de Witte PAM. Zebrafish-Based Discovery of Antiseizure Compounds from the Red Sea: Pseurotin A 2 and Azaspirofuran A. ACS Chem Neurosci 2018; 9:1652-1662. [PMID: 29672015 DOI: 10.1021/acschemneuro.8b00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In search for novel antiseizure drugs (ASDs), the European FP7-funded PharmaSea project used zebrafish embryos and larvae as a drug discovery platform to screen marine natural products to identify promising antiseizure hits in vivo for further development. Within the framework of this project, seven known heterospirocyclic γ-lactams, namely, pseurotin A, pseurotin A2, pseurotin F1, 11- O-methylpseurotin A, pseurotin D, azaspirofuran A, and azaspirofuran B, were isolated from the bioactive marine fungus Aspergillus fumigatus, and their antiseizure activity was evaluated in the larval zebrafish pentylenetetrazole (PTZ) seizure model. Pseurotin A2 and azaspirofuran A were identified as antiseizure hits, while their close chemical analogues were inactive. Besides, electrophysiological analysis from the zebrafish midbrain demonstrated that pseurotin A2 and azaspirofuran A also ameliorate PTZ-induced epileptiform discharges. Next, to determine whether these findings translate to mammalians, both compounds were analyzed in the mouse 6 Hz (44 mA) psychomotor seizure model. They lowered the seizure duration dose-dependently, thereby confirming their antiseizure properties and suggesting activity against drug-resistant seizures. Finally, in a thorough ADMET assessment, pseurotin A2 and azaspirofuran A were found to be drug-like. Based on the prominent antiseizure activity in both species and the drug-likeness, we propose pseurotin A2 and azaspirofuran A as lead compounds that are worth further investigation for the treatment of epileptic seizures. This study not only provides the first evidence of antiseizure activity of pseurotins and azaspirofurans, but also demonstrates the value of the zebrafish model in (marine) natural product drug discovery in general, and for ASD discovery in particular.
Collapse
Affiliation(s)
- Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Mostafa Rateb
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
- Faculty of Pharmacy, Pharmacognosy Department, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Jioji N. Tabudravu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - Mercedes Pérez-Bonilla
- Fundación
MEDINA, Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Parque Tecnológico de Ciencias
de la Salud, E-18016 Granada, Spain
| | - Nina Dirkx
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Riccardo Vallorani
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Caridad Diaz
- Fundación
MEDINA, Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Parque Tecnológico de Ciencias
de la Salud, E-18016 Granada, Spain
| | - José Pérez del Palacio
- Fundación
MEDINA, Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Parque Tecnológico de Ciencias
de la Salud, E-18016 Granada, Spain
| | - Alan J. Smith
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - Fernando Reyes
- Fundación
MEDINA, Centro de Excelencia en Investigación de Medicamentos
Innovadores en Andalucía, Parque Tecnológico de Ciencias
de la Salud, E-18016 Granada, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|