1
|
Osman MF, Hadid F, ben Omran T, Aden M, Al-Maadid F, Altaraqji S, Mohamed K, Benini R. Neuropsychiatric profile in tuberous sclerosis complex patients with epilepsy. Front Pediatr 2025; 12:1436061. [PMID: 39882213 PMCID: PMC11774646 DOI: 10.3389/fped.2024.1436061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/28/2024] [Indexed: 01/31/2025] Open
Abstract
Background Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by mutations in the TSC1 or TSC2 genes, leading to dysregulation of the mTOR pathway and multisystemic manifestations. Epilepsy is a common neurologic feature of TSC, frequently accompanied by neuropsychiatric comorbidities. Understanding the relationship between epilepsy severity, TSC-associated neuropsychiatric disorders (TAND), and cognitive outcomes is crucial for optimizing patient care. Methods A retrospective study was conducted at a pediatric tertiary care hospital in Qatar, involving 38 TSC patients (20 female, 18 male) aged 1-18 years, diagnosed between October 2018 and March 2020. Epilepsy severity was assessed using the Early Childhood Epilepsy Severity Scale (E-Chess), and TAND was evaluated using the TAND checklist. Genetic analysis was performed for all patients, and statistical analyses were used to explore correlations between epilepsy severity, TAND, and cognitive outcomes. Results The majority (82%) of TSC patients had epilepsy, with a mean onset age of 9.2 months. Uncontrolled seizures were associated with higher rates of intellectual disability and more pronounced TAND manifestations compared to controlled seizures. Autism spectrum disorder (ASD) was reported in 42% of the cohort, with significant correlations found between epilepsy severity and ASD-related domains on the TAND checklist. Intellectual disability was prevalent (67.6%), with variability attributed to genetic background and early severe neurological presentations. Discussion This study reinforces the link between epilepsy severity and neuropsychiatric comorbidities in TSC, confirming earlier findings. Significant correlations were observed between epilepsy severity and ASD-related domains, and the high prevalence of intellectual disability in TSC patients was highlighted. However, the relationship between ASD, TSC, and epilepsy remains complex and requires further investigation. Despite advances in treatment options, including mTOR inhibitors and newer antiepileptic drugs, unmet needs remain in the comprehensive care of TSC patients. Optimizing seizure control is a clear priority, but equally important is the need for addressing the cognitive and behavioral components of TAND. Early intervention with tailored, multidisciplinary approaches including neurology, psychiatry, psychology, and educational specialists could mitigate the long-term impact of these comorbidities, particularly in children. These approaches must be individualized to each patient's unique set of challenges, emphasizing not only seizure control but also psychosocial support and educational adaptation to improve their overall quality of life. Conclusion This study sheds light on the intricate interactions between epilepsy severity, neuropsychiatric manifestations, and cognitive outcomes in TSC patients. The findings emphasize the need for tailored management approaches, focusing on early seizure control and comprehensive multidisciplinary care. Further research is required to clarify the mechanisms underlying these associations and to develop targeted interventions for improving the quality of life for individuals with TSC and epilepsy.
Collapse
Affiliation(s)
- Mahmoud Fawzi Osman
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
- Neurology Division, Pediatric Department, Weil-Cornell Medical College Qatar, Doha, Qatar
| | - Faisal Hadid
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | - Tawfeg ben Omran
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
- Neurology Division, Pediatric Department, Weil-Cornell Medical College Qatar, Doha, Qatar
- Hamad Medical Corporation, Sidra Medicine, Doha, Qatar
| | - Munira Aden
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | | | | | - Khalid Mohamed
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | - Ruba Benini
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
- Neurology Division, Pediatric Department, Weil-Cornell Medical College Qatar, Doha, Qatar
| |
Collapse
|
2
|
Ihnen SKZ, Alperin S, Capal JK, Cohen AL, Peters JM, Bebin EM, Northrup HA, Sahin M, Krueger DA. Accumulated seizure burden predicts neurodevelopmental outcome at 36 months of age in patients with tuberous sclerosis complex. Epilepsia 2025; 66:117-133. [PMID: 39470995 PMCID: PMC11742629 DOI: 10.1111/epi.18172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE Epilepsy and intellectual disability are common in tuberous sclerosis complex (TSC). Although early life seizures and intellectual disability are known to be correlated in TSC, the differential effects of age at seizure onset and accumulated seizure burden on development remain unclear. METHODS Daily seizure diaries, serial neurodevelopmental testing, and brain magnetic resonance imaging were analyzed for 129 TSC patients followed from 0 to 36 months. We used machine learning to identify subgroups of patients based on neurodevelopmental test scores at 36 months of age and assessed the stability of those subgroups at 12 months. We tested the ability of candidate biomarkers to predict 36-month neurodevelopmental subgroup using univariable and multivariable logistic regression. Candidate biomarkers included age at seizure onset, accumulated seizure burden, tuber volume, sex, and earlier neurodevelopmental test scores. RESULTS Patients clustered into two neurodevelopmental subgroups at 36 months of age, higher and lower scoring. Subgroup was mostly (75%) the same at 12 months. Significant univariable effects on subgroup were seen only for accumulated seizure burden (largest effect), earlier test scores, and tuber volume. Neither age at seizure onset nor sex significantly distinguished 36-month subgroups, although for girls but not boys there was a significant effect of age at seizure onset. In the multivariable model, accumulated seizure burden and earlier test scores together predicted 36-month neurodevelopmental group with 82% accuracy and an area under the curve of .86. SIGNIFICANCE These results untangle the contributions of age at seizure onset and accumulated seizure burden to neurodevelopmental outcomes in young children with TSC. Accumulated seizure burden, rather than the age at seizure onset, most accurately predicts neurodevelopmental outcome at 36 months of age. These results emphasize the need to manage seizures aggressively during the first 3 years of life for patients with TSC, not only to promote seizure control but to optimize cognitive function.
Collapse
Affiliation(s)
- S. Katie Z. Ihnen
- Division of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Samuel Alperin
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine at University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jamie K. Capal
- Department of NeurologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Alexander L. Cohen
- Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jurriaan M. Peters
- Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Localization Laboratory, Division of Epilepsy and Clinical NeurophysiologyBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - E. Martina Bebin
- University of Alabama at BirminghamDepartment of Neurology, Epilepsy DivisionBirminghamAlabamaUSA
| | - Hope A. Northrup
- Department of PediatricsMcGovern Medical School at University of Texas Health Science Center at Houston and Children's Memorial Hermann HospitalHoustonTexasUSA
| | - Mustafa Sahin
- Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Darcy A. Krueger
- Division of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | |
Collapse
|
3
|
Stevering C, Lequin M, Szczepaniak K, Sadowski K, Ishrat S, De Luca A, Leemans A, Otte W, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Feucht M, Krsek P, Nabbout R, Jansen A, Wojdan K, Sijko K, Glowacka-Walas J, Borkowska J, Domanska-Pakiela D, Moavero R, Hertzberg C, Hulshof H, Scholl T, Petrák B, Maminak M, Aronica E, De Ridder J, Lagae L, Jozwiak S, Kotulska K, Braun K, Jansen F. Vigabatrin-associated brain magnetic resonance imaging abnormalities and clinical symptoms in infants with tuberous sclerosis complex. Epilepsia 2024. [PMID: 39641935 DOI: 10.1111/epi.18190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Previous retrospective studies have reported vigabatrin-associated brain abnormalities on magnetic resonance imaging (VABAM), although clinical impact is unknown. We evaluated the association between vigabatrin and predefined brain magnetic resonance imaging (MRI) changes in a large homogenous tuberous sclerosis complex (TSC) cohort and assessed to what extent VABAM-related symptoms were reported in TSC infants. METHODS The Dutch TSC Registry and the EPISTOP cohort provided retrospective and prospective data from 80 TSC patients treated with vigabatrin (VGB) before the age of 2 years and 23 TSC patients without VGB. Twenty-nine age-matched non-TSC epilepsy patients not receiving VGB were included as controls. VABAM, specified as T2/fluid-attenuated inversion recovery hyperintensity or diffusion restriction in predefined brain areas, were examined on brain MRI before, during, and after VGB, and once in the controls (at approximately age 2 years). Additionally, the presence of VABAM accompanying symptoms was evaluated. RESULTS Prevalence of VABAM in VGB-treated TSC patients was 35.5%. VABAM-like abnormalities were observed in 13.5% of all patients without VGB. VGB was significantly associated with VABAM (risk ratio [RR] = 3.57, 95% confidence interval [CI] = 1.43-6.39), whereas TSC and refractory epilepsy were not. In all 13 VGB-treated patients with VABAM for whom posttreatment MRIs were available, VABAM entirely resolved after VGB discontinuation. The prevalence of symptoms was 11.7% in patients with VABAM or VABAM-like MRI abnormalities and 4.3% in those without, implicating no significant association (RR = 2.76, 95% CI = .68-8.77). SIGNIFICANCE VABAM are common in VGB-treated TSC infants; however, VABAM-like abnormalities also occurred in children without either VGB or TSC. The cause of these MRI changes is unknown. Possible contributing factors are abnormal myelination, underlying etiology, recurrent seizures, and other antiseizure medication. Furthermore, the presence of VABAM (or VABAM-like abnormalities) did not appear to be associated with clinical symptoms. This study confirms that the well-known antiseizure effects of VGB outweigh the risk of VABAM and related symptoms.
Collapse
Affiliation(s)
- Carmen Stevering
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Maarten Lequin
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Kinga Szczepaniak
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Sadowski
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Saba Ishrat
- Image Sciences Institute, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alberto De Luca
- Image Sciences Institute, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem Otte
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - David J Kwiatkowski
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Bernhard Weschke
- Department of Child Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Martha Feucht
- Epilepsy Center, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Pavel Krsek
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Necker-Enfants Malades Hospital, Paris Descartes University, Imagine Institute, Paris, France
| | - Anna Jansen
- Genetics Reproduction and Development Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Konrad Wojdan
- Transition Technologies Advanced Solutions, Children's Memorial Health Institute, Warsaw, Poland
| | - Kamil Sijko
- Transition Technologies Science, Children's Memorial Health Institute, Warsaw, Poland
| | - Jagoda Glowacka-Walas
- Transition Technologies Science, Children's Memorial Health Institute, Warsaw, Poland
| | - Julita Borkowska
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Domanska-Pakiela
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - Christoph Hertzberg
- Department of Child Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Hanna Hulshof
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Theresa Scholl
- Epilepsy Center, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bořivoj Petrák
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Miroslav Maminak
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessie De Ridder
- Department of Pediatric Neurology, Katholieke Universiteit, Leuven, Belgium
| | - Lieven Lagae
- Department of Pediatric Neurology, Katholieke Universiteit, Leuven, Belgium
| | - Sergiusz Jozwiak
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Kotulska
- Research Department, Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Kees Braun
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Floor Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| |
Collapse
|
4
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Krummeich J, Nardi L, Caliendo C, Aschauer D, Engelhardt V, Arlt A, Maier J, Bicker F, Kwiatkowski MD, Rolski K, Vincze K, Schneider R, Rumpel S, Gerber S, Schmeisser MJ, Schweiger S. Premature cognitive decline in a mouse model of tuberous sclerosis. Aging Cell 2024; 23:e14318. [PMID: 39192595 PMCID: PMC11634721 DOI: 10.1111/acel.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Collapse
Affiliation(s)
- J. Krummeich
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Bioscientia Institut für Medizinische Diagnostik GmbH HumangenetikIngelheimGermany
| | - L. Nardi
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - C. Caliendo
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - D. Aschauer
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - V. Engelhardt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - A. Arlt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Institute for Genomic Statistics and BioinformaticsUniversity of BonnBonnGermany
| | - J. Maier
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - F. Bicker
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - K. Rolski
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - K. Vincze
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - R. Schneider
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - S. Rumpel
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Gerber
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - M. J. Schmeisser
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Schweiger
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Leibniz Institute of Resilience ResearchMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
6
|
Farach LS, Richard MA, Wulsin AC, Bebin EM, Krueger DA, Sahin M, Porter BE, McPherson TO, Peters JM, O'Kelley S, Taub KS, Rajaraman R, Randle SC, McClintock WM, Koenig MK, Frost MD, Werner K, Nolan DA, Wong M, Cutter G, Northrup H, Au KS. Drug-Resistant Epilepsy in Tuberous Sclerosis Complex Is Associated With TSC2 Genotype: More Findings From the Preventing Epilepsy Using Vigatrin (PREVeNT) Trial. Pediatr Neurol 2024; 159:62-71. [PMID: 39142021 DOI: 10.1016/j.pediatrneurol.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Children with tuberous sclerosis complex (TSC) are at high risk for drug-resistant epilepsy (DRE). The ability to stratify those at highest risk for DRE is important for counseling and prompt, aggressive management, necessary to optimize neurocognitive outcomes. Using the extensively phenotyped PREVeNT cohort, we aimed to characterize whether the TSC genotype was associated with DRE. METHODS The study group (N = 70) comprised participants with TSC enrolled at age less than or equal to six months with detailed epilepsy and other phenotypic and genotypic data, prospectively collected as part of the PREVeNT trial. Genotype-phenotype correlations of DRE, time to first abnormal electroencephalography, and time to epilepsy onset were compared using Fisher exact test and regression models. RESULTS Presence of a TSC2 pathogenic variant was significantly associated with DRE, compared with TSC1 and participants with no pathogenic mutation identified. In fact, all participants with DRE had a TSC2 pathogenic variant. Furthermore, TSC2 variants expected to result in no protein product were associated with higher risk for DRE. Finally, TSC1 pathogenic variants were associated with later-onset epilepsy, on average 21.2 months later than those with other genotypes. CONCLUSIONS Using a comprehensively phenotyped cohort followed from infancy, this study is the first to delineate genotype-phenotype correlations for epilepsy severity and onset in children with TSC. Patients with TSC2 pathogenic variants, especially TSC2 pathogenic variants predicted to result in lack of TSC2 protein, are at highest risk for DRE, and are likely to have earlier epilepsy onset than those with TSC1. Clinically, these insights can inform counseling, surveillance, and management.
Collapse
Affiliation(s)
- Laura S Farach
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas.
| | - Melissa A Richard
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Aynara C Wulsin
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elizabeth M Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Darcy A Krueger
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brenda E Porter
- Department of Neurology, Stanford University, Stanford, California
| | - Tarrant O McPherson
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Jurriaan M Peters
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah O'Kelley
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katherine S Taub
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rajsekar Rajaraman
- Department of Pediatrics and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Stephanie C Randle
- Division Pediatric Neurology and Epilepsy, Department of Neurology, Seattle Children's Hospital, Seattle, Washington
| | - William M McClintock
- Division of Neurology, Department of Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Mary Kay Koenig
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas
| | | | - Klaus Werner
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Danielle A Nolan
- Beaumont Florence and Richard McBrien Pediatric Neuroscience Center, Beaumont Hospital, Royal Oak, Michigan
| | - Michael Wong
- Department of Neurology, Washington University in Saint Louis, Saint Louis, Missouri
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Alabama
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas
| |
Collapse
|
7
|
Arredondo KH, Jülich K, Roach ES. Tuberous sclerosis complex: Diagnostic features, surveillance, and therapeutic strategies. Semin Pediatr Neurol 2024; 51:101155. [PMID: 39389658 DOI: 10.1016/j.spen.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare neurocutaneous disorder of mTOR pathway dysregulation resulting from pathogenic variants in the TSC1 or TSC2 genes. Expression of this disorder may involve abnormal tissue growth and dysfunction within the brain, kidneys, heart, lungs, eyes, skin, bones, and teeth. Neurological manifestations can include subependymal giant cell astrocytomas (SEGAs), high rates of infantile spasms, drug-resistant epilepsy, developmental delay, cognitive impairment, autism spectrum disorder, and other neurobehavioral manifestations. Here we review the potential clinical manifestations of TSC by system, recommended diagnostic and surveillance testing, genetic testing, currently available therapeutic options, and considerations for education and social support resources given the unique challenges of this multi-system disorder.
Collapse
Affiliation(s)
- Kristen H Arredondo
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - Kristina Jülich
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - E Steve Roach
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| |
Collapse
|
8
|
Braun M, Riney K. Have epilepsy outcomes changed for children with tuberous sclerosis complex in Queensland, Australia? Epilepsia 2024; 65:2709-2717. [PMID: 39042419 DOI: 10.1111/epi.18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Historically, epilepsy has been the most frequently presenting feature of tuberous sclerosis complex (TSC). Advances in TSC health care have occurred over the past decade; thus, we studied whether TSC epilepsy outcomes have changed. METHOD A retrospective chart review was undertaken for all children with TSC in Queensland, Australia. Epilepsy outcome and TSC diagnosis data were extracted, and data were compared between children born before 2012 with those born in or after 2012. RESULTS In this retrospective cohort, TSC diagnosis in children born in or after 2012 is now predominantly antenatal (51%, p < .05). Most patients with epilepsy are now known to have TSC before they develop epilepsy. Despite earlier TSC diagnosis, the frequency of epilepsy (85%) has not changed (p = .92), but diagnosis trends toward an earlier age (median = 3 months for patients born in or after 2012 vs. 5.5 months for those born before 2012, p = .23). Most (95%) patients had focal seizures as their initial clinical seizure type; it was rare (5%) for epileptic spasms (ES) to be the initial seizure type. The frequency of ES was lower in patients born in or after 2012 (36% vs. 50%, p = .27). Infantile (<24 months) onset ES was not associated with worse epilepsy outcome. Late onset ES was seen in 14%, and these patients had a lower rate of epilepsy remission. Lennox-Gastaut syndrome was seen in 7%. Febrile/illness-related status epilepticus occurred in 12% of patients, between 1 and 4 years of age. Despite many (78%) patients having multiple daily seizures at maximal seizure frequency, and 74% meeting criteria for treatment-refractory epilepsy, most patients achieved epilepsy remission (66%), either with epilepsy surgery (47%) or with age (53%). At the time of inclusion in this study, only 21% of patients had uncontrolled frequent (daily to 3 monthly) seizures and 14% had uncontrolled infrequent (3 monthly to <2 yearly) seizures. SIGNIFICANCE This study provides updated information that informs the counseling of parents of newly diagnosed pediatric TSC patients.
Collapse
Affiliation(s)
- Melissa Braun
- Metro South Addiction and Mental Health Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
9
|
Pearsson K, Eklund EA, Rask O, Compagno-Strandberg M. Seizure freedom but not epilepsy surgery is associated with fewer neuropsychiatric difficulties in patients with tuberous sclerosis. Epilepsy Behav 2024; 157:109875. [PMID: 38824750 DOI: 10.1016/j.yebeh.2024.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) in selected individuals with the rare tuberous sclerosis complex (TSC) may benefit from resective epilepsy surgery. Furthermore, associated neuropsychiatric disorders (TAND) are common in patients with TSC; however, long-term data on how surgery affects neuropsychiatric comorbidities are sparse. MATERIALS AND METHODS Two retrospective approaches were used to identify children with TSC and DRE with onset at < 18 years of age. The study group (surgical) was identified through the Swedish National Epilepsy Surgery Registry (n = 17), a registry with complete national coverage since 1990 and prospective patient enrolment since 1995. The reference group (non-surgical) was identified by searching medical records retrieved from the tertiary hospital of Southern Sweden (n = 52). Eligible participants were invited to complete the validated TAND lifetime checklist. Those who did not complete the checklist, never had DRE, or were aged < 7 years old were excluded from the study. The reference group was balanced with the study group for putative confounders, in the following hierarchical order: DRE at the survey, age at seizure onset, age at follow-up, and sex. RESULTS After the balancing procedure, both groups comprised 13 participants. The median time from epilepsy onset to the survey was 18.5 (range: 7.75-40.25) and 16.0 (7.33-33.5) years in the study and reference groups, respectively. The median time from surgery to the survey was 13 years (range: 4-22). No significant differences were found in behavioural problems, autism spectrum disorder diagnosis or symptoms, or intellectual disability between the groups, regardless of surgery. Seizure-free individuals (n = 11) performed better in social skills (p = 0.016), intellectual skills (p = 0.029), and overall TAND scores (p = 0.005) than the non-seizure-free group (n = 15). CONCLUSION This is the first study to evaluate TAND comorbidities during the long-term follow-up after epilepsy surgery in patients with TSC. We found no evidence of the adverse effects of TAND comorbidities after tuberectomy. However, a larger study that allows for a better adjustment for confounders is needed. Following previous studies, seizure-free individuals had fewer symptoms within most TAND domains compared with the group with uncontrolled epilepsy, indicating less severe symptomatology.
Collapse
Affiliation(s)
- Kevin Pearsson
- Division of Clinical Sciences Helsingborg-Pediatrics, Department of Clinical Sciences Lund, Helsingborg General Hospital, Lund University, Helsingborg, Sweden.
| | - Erik A Eklund
- Pediatrics, Department of Clinical Sciences, Lund, Sweden.
| | - Olof Rask
- Department of Clinical Sciences Lund, Division of Child and Adolescent Psychiatry, Lund University, Lund, Sweden.
| | | |
Collapse
|
10
|
Burke C, Crossan C, Tyas E, Hemstock M, Lee D, Bowditch S. A Cost-Utility Analysis of Add-On Cannabidiol Versus Usual Care Alone for the Treatment of Seizures Associated with Tuberous Sclerosis Complex in England and Wales. PHARMACOECONOMICS - OPEN 2024; 8:611-626. [PMID: 38441854 PMCID: PMC11252107 DOI: 10.1007/s41669-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the cost effectiveness of plant-derived highly purified cannabidiol (Epidyolex® in the UK; 100 mg/mL oral solution) as an add-on treatment to usual care for the management of treatment-refractory seizures associated with tuberous sclerosis complex (TSC) in patients aged ≥ 2 years. METHODS A cohort-based model was developed using a National Health Service perspective and lifetime horizon. Health states were based on weekly seizure frequency and seizure-free days, utilizing patient-level data from the GWPCARE6 trial (ClinicalTrials.gov identifier: NCT02544763). Two independent regression models were applied to individual patient-level data to predict seizure-free days and seizure frequency. Healthcare resource utilization data were sourced from a Delphi panel, and patient and caregiver health-related quality of life values were elicited using vignettes valued by the general public. Outcomes relating to TSC-associated neuropsychiatric disorders were modeled with costs and quality-adjusted life-years sourced from published literature. RESULTS In the base case, compared with usual care alone, 12 mg/kg/day cannabidiol was associated with an incremental cost-effectiveness ratio (ICER) of £23,797. The National Institute for Health and Care Excellence disease severity modifier reduced the ICER to £19,831. Probabilities of cost effectiveness at willingness-to-pay thresholds of £20,000 and £30,000 were 30% and 52%, respectively, for the base case and 39% and 66%, respectively, for the disease severity modifier. Results were robust to sensitivity and scenario analyses. CONCLUSIONS At 12 mg/kg/day and an ICER threshold of £20,000-£30,000, we provide evidence for the cost effectiveness of add-on cannabidiol treatment for patients with TSC-associated seizures aged ≥ 2 years who are refractory to current treatment.
Collapse
Affiliation(s)
- Colin Burke
- Lumanity, Inc., Great Suffolk Yard, 121-131 Great Suffolk Street, London, SE1 1PP, UK.
| | - Catriona Crossan
- Lumanity, Inc., Great Suffolk Yard, 121-131 Great Suffolk Street, London, SE1 1PP, UK
| | - Emma Tyas
- Lumanity, Inc., Great Suffolk Yard, 121-131 Great Suffolk Street, London, SE1 1PP, UK
| | - Matthew Hemstock
- Lumanity, Inc., Great Suffolk Yard, 121-131 Great Suffolk Street, London, SE1 1PP, UK
| | - Dawn Lee
- Lumanity, Inc., Great Suffolk Yard, 121-131 Great Suffolk Street, London, SE1 1PP, UK
| | - Sally Bowditch
- Jazz Pharmaceuticals, Inc., 1 Cavendish Place, Marylebone, London, W1G 0QF, UK
| |
Collapse
|
11
|
Capal JK, Ritter DM, Franz DN, Griffith M, Currans K, Kent B, Bebin EM, Northrup H, Koenig MK, Mizuno T, Vinks AA, Galandi SL, Zhang W, Setchell KD, Kremer KM, Prada CM, Greiner HM, Holland-Bouley K, Horn PS, Krueger DA. Preventative treatment of tuberous sclerosis complex with sirolimus: Phase I safety and efficacy results. ANNALS OF THE CHILD NEUROLOGY SOCIETY 2024; 2:106-119. [PMID: 39726432 PMCID: PMC11670424 DOI: 10.1002/cns3.20070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 12/28/2024]
Abstract
Objective Tuberous sclerosis complex (TSC) results from overactivity of the mechanistic target of rapamycin (mTOR). Sirolimus and everolimus are mTOR inhibitors that treat most facets of TSC but are understudied in infants. We sought to understand the safety and potential efficacy of preventative sirolimus in infants with TSC. Methods We conducted a phase 1 clinical trial of sirolimus, treating five patients until 12 months of age. Enrolled infants had to be younger than 6 months of age with no history of seizures and no clinical indication for sirolimus treatment. Adverse events (AEs), tolerability, and blood concentrations of sirolimus measured by tandem mass spectrometry were tracked through 12 months of age, and clinical outcomes (seizure characteristics and developmental profiles) were tracked through 24 months of age. Results There were 92 AEs, with 34 possibly, probably, or definitely related to treatment. Of those, only two were grade 3 (both elevated lipids) and all AEs were resolved by the age of 24 months. During the trial, 94% of blood sirolimus trough levels were in the target range (5-15 ng/mL). Treatment was well tolerated, with less than 8% of doses held because of an AE (241 of 2941). Of the five patients, three developed seizures (but were well controlled on medications) at 24 months of age. Of the five patients, four had normal cognitive development for age. One was diagnosed with possible autism spectrum disorder. Interpretation These results suggest that sirolimus is both safe and well tolerated by infants with TSC in the first year of life. Additionally, the preliminary work suggests a favorable efficacy profile compared with previous TSC cohorts not exposed to early sirolimus treatment. Results support sirolimus being studied as preventive treatment in TSC, which is now underway in a prospective phase 2 clinical trial (TSC-STEPS).
Collapse
Affiliation(s)
- Jamie K. Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M. Ritter
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Neal Franz
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Griffith
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kristn Currans
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bridget Kent
- Division of Speech-Language Pathology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Mary Kay Koenig
- Division of Neurology, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Tomoyuki Mizuno
- Division of Translational and Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander A. Vinks
- Division of Translational and Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie L. Galandi
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelly M. Kremer
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos M. Prada
- Division of Genetics, Genomics, and Metabolism, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hansel M. Greiner
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine Holland-Bouley
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S. Horn
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Darcy A. Krueger
- Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Jóźwiak S. Early therapeutic intervention guided by electroencephalography surveillance in infants with tuberous sclerosis complex. Dev Med Child Neurol 2024; 66:556-557. [PMID: 37941131 DOI: 10.1111/dmcn.15802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
This commentary is on the original article by Lindsay et al. on pages 635–643 of this issue.
Collapse
|
13
|
Lindsay N, Runicles A, Johnson MH, Jones EJH, Bolton PF, Charman T, Tye C. Early development and epilepsy in tuberous sclerosis complex: A prospective longitudinal study. Dev Med Child Neurol 2024; 66:635-643. [PMID: 37885138 DOI: 10.1111/dmcn.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 10/28/2023]
Abstract
AIM To characterize early changes in developmental ability, language, and adaptive behaviour in infants diagnosed with tuberous sclerosis complex (TSC), and determine whether clinical features of epilepsy influence this pathway. METHOD Prospective, longitudinal data were collected within the Early Development in Tuberous Sclerosis (EDiTS) Study to track development of infants with TSC (n = 32) and typically developing infants (n = 33) between 3 and 24 months of age. Questionnaire and observational measures were used at up to seven timepoints to assess infants' adaptive behaviour, developmental ability, language, and epilepsy. RESULTS A significant group by age interaction effect showed that infants with TSC had lower adaptive functioning at 18 to 24 months old (intercept = 88.12, slope estimate = -0.82, p < 0.001) and lower developmental ability scores from 10 months old (intercept = 83.33, slope estimate = -1.44, p < 0.001) compared to typically developing infants. Early epilepsy severity was a significant predictor of these emerging developmental (R2 = 0.35, p = 0.004, 95% confidence interval [CI] -0.08 to -0.01) and adaptive behaviour delays (R2 = 0.34, p = 0.004, 95% CI -0.05 to -0.01]). Lower vocabulary production (intercept = -1.25, slope = -0.12, p < 0.001) and comprehension scores (intercept = 2.39, slope estimate = -0.05, p < 0.001) in infants with TSC at 24 months old were not associated with epilepsy severity. INTERPRETATION Divergence of developmental ability and adaptive functioning skills occur in infants with TSC from 10 and 18 months, respectively. Associations between early epilepsy severity and impaired development supports the importance of early intervention to reduce seizure severity.
Collapse
Affiliation(s)
- Natasha Lindsay
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abigail Runicles
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK
- Centre for Brain & Cognitive Development, Birkbeck, University of London, London, UK
| | - Emily J H Jones
- Centre for Brain & Cognitive Development, Birkbeck, University of London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Charlotte Tye
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Saini L, Mukherjee S, Gunasekaran PK, Saini AG, Ahuja C, Sharawat IK, Sharma R, Bhati A, Suthar R, Sahu JK, Sankhyan N. The profile of epilepsy and its characteristics in children with neurocutaneous syndromes. J Neurosci Rural Pract 2024; 15:233-237. [PMID: 38746526 PMCID: PMC11090591 DOI: 10.25259/jnrp_510_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVES The profile of seizures in neurocutaneous syndromes is variable. We aimed to define the characteristics of epilepsy in children with neurocutaneous syndromes. MATERIALS AND METHODS Cross-sectional study over 18 months at a tertiary care pediatric hospital, including children with neurocutaneous syndromes aged between 1 and 15 years, using the 2017-International League Against Epilepsy classification. RESULTS In 119 children with neurocutaneous syndromes, 94 (79%) had epilepsy. In eight children with neurofibromatosis one with epilepsy, 5 (62.5%) had generalized motor tonic-clonic seizures, 1 (12.5%) had generalized motor epileptic spasms, 1 (12.5%) had generalized motor automatism, and 1 (12.5%) had a focal seizure. In 69 children with tuberous sclerosis complex with epilepsy, 30 (43.5%) had generalized motor epileptic spasms, 23 (33.3%) had focal seizures, and nine (13.0%) had generalized motor tonic-clonic seizures. In 14 children with Sturge-Weber syndrome with epilepsy, 13 (92.8%) had focal seizures, and 1 (7.2%) had generalized motor tonic seizures. Statistically significant associations were found between epilepsy and intellectual disability (P = 0.02) and behavioral problems (P = 0.00). CONCLUSION Profiling seizures in children with neurocutaneous syndromes are paramount in devising target-specific treatments as the epileptogenesis in each syndrome differs in the molecular pathways leading to the hyperexcitability state. Further multicentric studies are required to unravel better insights into the epilepsy profile of neurocutaneous syndromes.
Collapse
Affiliation(s)
- Lokesh Saini
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Swetlana Mukherjee
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | | | - Arushi Gahlot Saini
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | - Chirag Ahuja
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | - Indar Kumar Sharawat
- Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rajni Sharma
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | - Ankita Bhati
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Renu Suthar
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | - Jitendra Kumar Sahu
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| | - Naveen Sankhyan
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, Uttarakhand, India
| |
Collapse
|
15
|
Capal JK, Jeste SS. Autism and Epilepsy. Pediatr Clin North Am 2024; 71:241-252. [PMID: 38423718 DOI: 10.1016/j.pcl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Epilepsy is one of the most common comorbidities in individuals with autism spectrum disorders (ASDs). Risk factors include the presence of developmental delay/intellectual disability, female sex, age, and an underlying genetic condition. Due to higher prevalence of epilepsy in ASD, it is important to have a high index of suspicion for seizures and refer to a neurologist if there are concerns. Genetic testing is recommended for all children with ASD but it becomes more high yield in children with epilepsy and ASD.
Collapse
Affiliation(s)
- Jamie K Capal
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Drive, CB 7025, Chapel Hill, NC 27599, USA.
| | - Shafali S Jeste
- Children's Hospital of Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| |
Collapse
|
16
|
Valery CB, Iannotti I, Kossoff EH, Zabel A, Cohen B, Ou Y, Pinto A, Comi AM. Retrospective Analysis of Presymptomatic Treatment In Sturge-Weber Syndrome. ANNALS OF THE CHILD NEUROLOGY SOCIETY 2024; 2:60-72. [PMID: 38745912 PMCID: PMC11090403 DOI: 10.1002/cns3.20058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 05/16/2024]
Abstract
Background Ninety percent of infants with Sturge-Weber syndrome (SWS) brain involvement have seizure onset before 2 years of age; this is associated with worse neurologic outcome. Presymptomatic treatment before seizure onset may delay seizure onset and improve outcome, as has been shown in other conditions with a high-risk of developing epilepsy such as tuberous sclerosis complex. Electroencephalogram (EEG) may be a biomarker to predict seizure onset. This retrospective clinical data analysis aims to assess impact of presymptomatic treatment in SWS. Methods This two-centered, IRB-approved, retrospective study analyzed records from patients with SWS brain involvement. Clinical data recorded included demographics, age of seizure onset (if present), brain involvement extent (unilateral versus bilateral), port-wine birthmark (PWB) extent, family history of seizure, presymptomatic treatment if received, neuroscore, and anti-seizure medication. EEG reports prior to seizure onset were analyzed. Results Ninety-two patients were included (48 females), and 32 received presymptomatic treatment outside of a formal protocol (5 aspirin, 16 aspirin and levetiracetam; 9 aspirin and oxcarbazepine, 2 valproic acid). Presymptomatically-treated patients were more likely to be seizure-free at 2 years (15 of 32; 47% versus 7 of 60; 12%; p<.001). A greater percentage of presymptomatically-treated patients had bilateral brain involvement (38% treated versus 17% untreated; p=.026). Median hemiparesis neuroscore at 2 years was better in presymptomatically-treated patients. In EEG reports prior to seizure onset, the presence of slowing, epileptiform discharges, or EEG-identified seizures was associated with seizure onset by 2 (p=.001). Conclusion Presymptomatic treatment is a promising approach to children diagnosed with SWS prior to seizure onset. Further study is needed, including prospective drug trials, long-term neuropsychological outcome, and prospective EEG analysis to assess this approach and determine biomarkers for presymptomatic treatment.
Collapse
Affiliation(s)
| | | | - Eric H. Kossoff
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine
| | - Andrew Zabel
- Department of Neuropsychology, Kennedy Krieger Institute
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Bernard Cohen
- Department if Dermatology and Pediatrics, Johns Hopkins School of Medicine
| | - Yangming Ou
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital
| | - Anne M. Comi
- Department of Neurology, Kennedy Krieger Institute
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine
| |
Collapse
|
17
|
Roberds SL, Fuchs Z, Cassidy EM, Metzger S, Abi A, Pounders AJ, Aguiar DJ. The role of the TSC Alliance in advancing therapy development: a patient organization perspective. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241265411. [PMID: 39070094 PMCID: PMC11273576 DOI: 10.1177/26330040241265411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease leading to malformations, or tubers, in the cerebral cortex and growth of tumors, most frequently in the brain, heart, kidneys, skin, and lungs. Changes in the brain caused by TSC usually have the biggest negative impact on quality of life. Approximately 85% of individuals with TSC have epilepsy, and TSC-associated neuropsychiatric disorders (TAND) affect nearly all individuals with TSC in some way. TSC Alliance's research strategy is built upon both funding and catalyzing research. Through grants, the organization provides funding directly to researchers through a competitive application process. The organization has also built a set of resources available to researchers worldwide, including a Natural History Database, Biosample Repository, and Preclinical Consortium. These resources catalyze research because they are available to qualified academic or industry researchers around the world, enabling an almost unlimited number of scientists to access data and resources to enable and accelerate research on TSC. This research strategy continues to be shaped by the needs and priorities of the TSC community, working toward a future where everyone affected by TSC can live their fullest lives.
Collapse
Affiliation(s)
| | - Zoë Fuchs
- TSC Alliance, Silver Spring, MD, USA
| | | | | | - Ayat Abi
- TSC Alliance, Silver Spring, MD, USA
| | | | | |
Collapse
|
18
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Jóźwiak S, Kotulska K, Bebin EM, Krueger DA. Commentary Regarding the Results of the PREVeNT and EPISTOP Trials. Ann Neurol 2023. [PMID: 37953635 DOI: 10.1002/ana.26829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Sergiusz Jóźwiak
- Research Department, The Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Mammadova D, Vecko J, Hofmann M, Schüssler SC, Deiters L, Canda A, Wieland AK, Gollwitzer S, Hamer H, Trollmann R. A single-center observational study on long-term neurodevelopmental outcomes in children with tuberous sclerosis complex. Orphanet J Rare Dis 2023; 18:349. [PMID: 37946245 PMCID: PMC10637019 DOI: 10.1186/s13023-023-02959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by mutations in the TSC1 or TSC2 gene. More than 90% of patients with TSC develop neurological and/or neuropsychiatric manifestations. The aim of the present study was to determine the developmental and cognitive long-term outcomes of pediatric TSC patients. METHODS This cross-sectional, monocenter study included pediatric TSC patients who received multidisciplinary long-term care with a last visit between 2005 and 2019. Neurological manifestations and cognitive development (BSID, K-ABC) were analyzed in relation to age and type of mutation. RESULTS Thirty-five patients aged 13.5 ± 7.8 years were included in the study. Diagnosis was confirmed genetically in 65.7% of patients (TSC1, 26.1%; TSC2, 65.2%; NMI, 8.7%). Mean age at diagnosis was 1.3 ± 3.5 years; 74.3% of the patients had been diagnosed within the first year of life due to seizures (62.9%) or/and cardiac rhabdomyomas (28.6%). The most common TSC manifestations included structural brain lesions (cortical tubers, 91.4%; subependymal nodules, 82.9%), epilepsy (85.7%), and cardiac rhabdomyomas (62.9%). Mean age at seizure onset was 1.5 ± 2.3 years, with onset in 80.0% of patients within the first two years of life. Infantile spasms, which were the first seizure type in 23.3% of the patients, developed earlier (0.6 ± 0.4 years) than focal seizures (1.8 ± 2.5 years). Refractory epilepsy was present in 21 (70.0%) patients, mild or severe intellectual impairment in 66.6%, and autism spectrum disorders in 11.4%. Severe cognitive impairment (33.3%) was significantly associated with epilepsy type and age at seizure onset (p < 0.05). CONCLUSIONS The results emphasized the phenotypic variability of pediatric-onset TSC and the high rate of neurological and neuropsychiatric morbidity. Early-onset refractory epilepsy was associated with impaired cognitive development. Children of all ages with TSC require multidisciplinary long-term care and individual early-intervention programs.
Collapse
Affiliation(s)
- D Mammadova
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - J Vecko
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - M Hofmann
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - S C Schüssler
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - L Deiters
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - A Canda
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
| | - A K Wieland
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - S Gollwitzer
- Department of Neurology, Epilepsy Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - H Hamer
- Department of Neurology, Epilepsy Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatric and Adolescent Medicine, Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestr. 15, 91054, Erlangen, Germany.
- Center of Rare Diseases Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
21
|
Schubert-Bast S, Kaur M, Joeres L, Foskett N, Roebling R, Strzelczyk A. Epidemiology of focal onset seizures in children aged >1 month to 4 years in Europe, United States, and Canada: A literature review. Seizure 2023; 112:88-97. [PMID: 37778299 DOI: 10.1016/j.seizure.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
The present study aims to report the currently available epidemiology of focal onset seizures in children aged >1 month to 4 years with the help of a literature review. The terms 'seizure*' OR 'epilepsy' combined with pediatric and epidemiology terms were used to search Embase, PubMed, and Web of Science up to November 16, 2021. Due to the scarcity of epidemiology data on focal onset seizures, the incidence and prevalence were estimated using the proportion of focal onset seizures in epilepsy patients from the most recently published articles. The estimated annual incidence per 100,000 children of focal onset seizures in children of 0-4 years of age ranged from 25.1 (95 % confidence interval [CI] 18.9-32.7) in the United Kingdom to 111.8 in the United States. The estimated period prevalence of focal onset seizures in children 0-4 years of age ranged from 0.15 % (99 % CI 0.13-0.18) in Canada to 0.61 % in the United States. Neurodevelopmental outcomes and psychiatric disorders were the most commonly reported comorbidities in children with epilepsy of age 0-4 years. Presence of focal onset seizures in children with different epilepsy syndromes needs to be thoroughly considered in the treatment planning of this population of interest.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Schleusenweg 2-16 (Haus 95), Frankfurt am Main 60528, Germany; Hospital for Children and Adolescents, Department of Neuropediatrics, Epilepsy Center Frankfurt Rhine-Main, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany.
| | - Moninder Kaur
- UCB Pharma, 216 Bath Road, Slough, SL1 3WE, United Kingdom
| | - Lars Joeres
- UCB Biosciences GmbH, Alfred-Nobel-Str. 10, Monheim 40789, Germany
| | - Nadia Foskett
- UCB Pharma, 216 Bath Road, Slough, SL1 3WE, United Kingdom
| | - Robert Roebling
- UCB Biosciences GmbH, Alfred-Nobel-Str. 10, Monheim 40789, Germany
| | - Adam Strzelczyk
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Schleusenweg 2-16 (Haus 95), Frankfurt am Main 60528, Germany
| |
Collapse
|
22
|
Specchio N, Nabbout R, Aronica E, Auvin S, Benvenuto A, de Palma L, Feucht M, Jansen F, Kotulska K, Sarnat H, Lagae L, Jozwiak S, Curatolo P. Updated clinical recommendations for the management of tuberous sclerosis complex associated epilepsy. Eur J Paediatr Neurol 2023; 47:25-34. [PMID: 37669572 DOI: 10.1016/j.ejpn.2023.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Children with tuberous sclerosis complex (TSC), may experience a variety of seizure types in the first year of life, most often focal seizure sand epileptic spasms. Drug resistance is seen early in many patients, and the management of TSC associated epilepsy remain a major challenge for clinicians. In 2018 clinical recommendations for the management of TSC associated epilepsy were published by a panel of European experts. In the last five years considerable progress has been made in understanding the neurobiology of epileptogenesis and three interventional randomized controlled trials have changed the therapeutic approach for the management of TSC associated epilepsy. Pre-symptomatic treatment with vigabatrin may delay seizure onset, may reduce seizure severity and reduce the risk of epileptic encephalopathy. The efficacy of mTOR inhibition with adjunctive everolimus was documented in patients with TSC associated refractory seizures and cannabidiol could be another therapeutic option. Epilepsy surgery has significantly improved seizure outcome in selected patients and should be considered early in all patients with drug resistant epilepsy. There is a need to identify patients who may have a higher risk of developing epilepsy and autism spectrum disorder (ASD). In the recent years significant progress has been made owing to the early identification of risk factors for the development of drug-resistant epilepsy. Better understanding of the mechanism underlying epileptogenesis may improve the management for TSC-related epilepsy. Developmental neurobiology and neuropathology give opportunities for the implementation of concepts related to clinical findings, and an early genetic diagnosis and use of EEG and MRI biomarkers may improve the development of pre-symptomatic and disease-modifying strategies.
Collapse
Affiliation(s)
- Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Rome, Italy.
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Université Paris Cité, Member of the European Reference Network on Rare and Complex Epilepsies EpiCARE, INSERM U1163, Institut Imagine, Paris, France
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stephane Auvin
- APHP, Service de Neurologie Pédiatrique, Centre Epilepsies Rares, Member of the European Reference Network on Rare and Complex Epilepsies EpiCARE, Hôpital Robert Debré, Paris, France; Université Paris-Cité, INSERM NeuroDiderot, Paris, France; Institut Universitaire de France (IUF), Paris, France
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Rome, Italy
| | - Martha Feucht
- Epilepsy Center, Department of Pediatrics, Medical University Vienna, Austria
| | - Floor Jansen
- Department of Pediatric Neurology, Brain Center UMC Utrecht, the Netherlands
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Harvey Sarnat
- Department of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - Lieven Lagae
- Department of Paediatric Neurology, University of Leuven, Leuven, Belgium
| | - Sergiusz Jozwiak
- Research Department, The Children's Memorial Health Institute, ERN EPICARE, Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
23
|
Previtali R, Prontera G, Alfei E, Nespoli L, Masnada S, Veggiotti P, Mannarino S. Paradigm shift in the treatment of tuberous sclerosis: Effectiveness of everolimus. Pharmacol Res 2023; 195:106884. [PMID: 37549757 DOI: 10.1016/j.phrs.2023.106884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.
Collapse
Affiliation(s)
- Roberto Previtali
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giorgia Prontera
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrico Alfei
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Luisa Nespoli
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Silvia Masnada
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Savina Mannarino
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
24
|
Bebin EM, Peters JM, Porter BE, McPherson TO, O’Kelley S, Sahin M, Taub KS, Rajaraman R, Randle SC, McClintock WM, Koenig MK, Frost MD, Northrup HA, Werner K, Nolan DA, Wong M, Krefting JL, Biasini F, Peri K, Cutter G, Krueger DA. Early Treatment with Vigabatrin Does Not Decrease Focal Seizures or Improve Cognition in Tuberous Sclerosis Complex: The PREVeNT Trial. Ann Neurol 2023; 95:10.1002/ana.26778. [PMID: 37638552 PMCID: PMC10899525 DOI: 10.1002/ana.26778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE This study was undertaken to test the hypothesis that early vigabatrin treatment in tuberous sclerosis complex (TSC) infants improves neurocognitive outcome at 24 months of age. METHODS A phase IIb multicenter randomized double-blind placebo-controlled trial was conducted of vigabatrin at first epileptiform electroencephalogram (EEG) versus vigabatrin at seizure onset in infants with TSC. Primary outcome was Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) cognitive assessment score at 24 months. Secondary outcomes were prevalence of drug-resistant epilepsy, additional developmental outcomes, and safety of vigabatrin. RESULTS Of 84 infants enrolled, 12 were screen failures, 4 went straight to open label vigabatrin, and 12 were not randomized (normal EEG throughout). Fifty-six were randomized to early vigabatrin (n = 29) or placebo (n = 27). Nineteen of 27 in the placebo arm transitioned to open label vigabatrin, with a median delay of 44 days after randomization. Bayley-III cognitive composite scores at 24 months were similar for participants randomized to vigabatrin or placebo. Additionally, no significant differences were found between groups in overall epilepsy incidence and drug-resistant epilepsy at 24 months, time to first seizure after randomization, and secondary developmental outcomes. Incidence of infantile spasms was lower and time to spasms after randomization was later in the vigabatrin group. Adverse events were similar across groups. INTERPRETATION Preventative treatment with vigabatrin based on EEG epileptiform activity prior to seizure onset does not improve neurocognitive outcome at 24 months in TSC children, nor does it delay onset or lower the incidence of focal seizures and drug-resistant epilepsy at 24 months. Preventative vigabatrin was associated with later time to onset and lower incidence of infantile spasms. ANN NEUROL 2023.
Collapse
Affiliation(s)
| | - Jurriaan M. Peters
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Sarah O’Kelley
- Department of Psychology University of Alabama at Birmingham AL
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | | | | | | | | | - Mary Kay Koenig
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX
| | | | - Hope A. Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX
| | | | | | - Michael Wong
- Department of Neuroscience Washington University in Saint Louis
| | | | - Fred Biasini
- Department of Psychology University of Alabama at Birmingham AL
| | - Kalyani Peri
- Department of Biostatistics, University of Alabama at Birmingham AL
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham AL
| | | |
Collapse
|
25
|
Müller AR, Luijten MAJ, Haverman L, de Ranitz-Greven WL, Janssens P, Rietman AB, Ten Hoopen LW, de Graaff LCG, de Wit MC, Jansen AC, Gipson T, Capal JK, de Vries PJ, van Eeghen AM. Understanding the impact of tuberous sclerosis complex: development and validation of the TSC-PROM. BMC Med 2023; 21:298. [PMID: 37553648 PMCID: PMC10408092 DOI: 10.1186/s12916-023-03012-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare and complex genetic disorder, associated with tumor growth in various organ systems, epilepsy, and a range of neuropsychiatric manifestations including intellectual disability. With improving patient-centered care and targeted therapies, patient-reported outcome measures (PROMs) are needed to measure the impact of TSC manifestations on daily functioning. The aim of this study was to develop a TSC-specific PROM for adults that captures the impact of TSC on physical functions, mental functions, activity and participation, and the social support individuals with TSC receive, called the TSC-PROM. METHODS COSMIN methodology was used to develop a self-reported and proxy-reported version. Development and validation consisted of the following studies: PROM development, content validity, structural validity, internal consistency, and construct validity. The International Classification of Functioning and Disability was used as a framework. Content validity was examined by a multidisciplinary expert group and cognitive interview study. Structural and construct validity, and internal consistency were examined in a large cohort, using confirmatory factor analysis, hypotheses testing, and Cronbach's alpha. RESULTS The study resulted in an 82-item self version and 75-item proxy version of the TSC-PROM with four subscales (physical functions 18 and 19 items, mental functions 37 and 28 items, activities and participation 13 and 14 items, social support 13 items, for self version and proxy version respectively). Sufficient results were found for structural validity with sufficient unidimensionality for each subscale. With regard to construct validity, 82% of the hypotheses were met for the self version and 59% for the proxy version. The PROM showed good internal consistency (Cronbach's alpha 0.78-0.97). CONCLUSIONS We developed a PROM for adults with TSC, named TSC-PROM, showing sufficient evidence for reliability and validity that can be used in clinical and research settings to systematically gain insight into their experiences. It is the first PROM in TSC that addresses the impact of specific TSC manifestations on functioning, providing a valuable, patient-centered addition to the current clinical outcomes.
Collapse
Affiliation(s)
- Annelieke R Müller
- 's Heeren Loo, Amersfoort, The Netherlands
- Emma Center for Personalized Medicine, Department of Pediatrics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology and Mental Health and Personalized Medicine, Amsterdam, The Netherlands
| | - Michiel A J Luijten
- Amsterdam Public Health Research Institute, Methodology and Mental Health and Personalized Medicine, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
| | - Lotte Haverman
- Amsterdam Public Health Research Institute, Methodology and Mental Health and Personalized Medicine, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
| | | | - Peter Janssens
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - André B Rietman
- Department of Child and Adolescent Psychiatry/Psychology and ENCORE Expertise Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Leontine W Ten Hoopen
- Department of Child and Adolescent Psychiatry/Psychology and ENCORE Expertise Center, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Laura C G de Graaff
- Center for Adults With Rare Genetic Syndromes, Division of Endocrinology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-Claire de Wit
- Department of Pediatric Neurology and ENCORE Expertise Center, Erasmus Medical Center Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Pediatric Neurology Unit, Department of Pediatrics, Antwerp University Hospital; Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Tanjala Gipson
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Le Bonheur Children's Hospital and Boling Center for Developmental Disabilities, Memphis, TN, USA
| | - Jamie K Capal
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Petrus J de Vries
- Centre for Autism Research in Africa (CARA), Division of Child & Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Agnies M van Eeghen
- 's Heeren Loo, Amersfoort, The Netherlands.
- Emma Center for Personalized Medicine, Department of Pediatrics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Methodology and Mental Health and Personalized Medicine, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Levine A, Davis P, Zhang B, Peters J, Filip-Dhima R, Warfield SK, Prohl A, Capal J, Krueger D, Bebin EM, Northrup H, Wu JY, Sahin M. Epilepsy Severity Is Associated With Head Circumference and Growth Rate in Infants With Tuberous Sclerosis Complex. Pediatr Neurol 2023; 144:26-32. [PMID: 37119787 PMCID: PMC10330061 DOI: 10.1016/j.pediatrneurol.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Abnormal brain growth in tuberous sclerosis complex (TSC) reflects abnormalities in cellular proliferation and differentiation and results in epilepsy and other neurological manifestations. Head circumference (HC) as a proxy for brain volume may provide an easily tracked clinical measure of brain overgrowth and neurological disease burden. This study investigated the relationship between HC and epilepsy severity in infants with TSC. METHODS Prospective multicenter observational study of children from birth to three years with TSC. Epilepsy data were collected from clinical history, and HC was collected at study visits at age three, six, nine, 12, 18, 24, and 36 months. Epilepsy severity was classified as no epilepsy, low epilepsy severity (one seizure type and one or two antiepileptic drugs [AEDs]), moderate epilepsy severity (either two to three seizure types and one to two AEDs or one seizure type and more than three AEDs), or high epilepsy severity (two to three seizure types and more than three AEDs). RESULTS As a group, children with TSC had HCs approximately 1 S.D. above the mean World Health Organization (WHO) reference by age one year and demonstrated more rapid growth than the normal population reference. Males with epilepsy had larger HCs than those without. Compared with the WHO reference population, infants with TSC and no epilepsy or low or moderate epilepsy had an increased early HC growth rate, whereas those with severe epilepsy had an early larger HC but did not have a faster growth rate. CONCLUSIONS Infants and young children with TSC have larger HCs than typical growth norms and have differing rates of head growth depending on the severity of epilepsy.
Collapse
Affiliation(s)
- Alexis Levine
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts.
| | - Peter Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jurriaan Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamie Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Darcy Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts.
| |
Collapse
|
27
|
Gipson TT, Oller DK, Messinger DS, Perry LK. Understanding speech and language in tuberous sclerosis complex. Front Hum Neurosci 2023; 17:1149071. [PMID: 37323931 PMCID: PMC10267356 DOI: 10.3389/fnhum.2023.1149071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC), is a neurocutaneous disorder, associated with a high prevalence of autism spectrum disorder (ASD; ∼50% of individuals). As TSC is a leading cause of syndromic ASD, understanding language development in this population would not only be important for individuals with TSC but may also have implications for those with other causes of syndromic and idiopathic ASD. In this mini review, we consider what is known about language development in this population and how speech and language in TSC are related to ASD. Although up to 70% of individuals with TSC report language difficulties, much of the limited research to date on language in TSC has been based on summary scores from standardized assessments. Missing is a detailed understanding of the mechanisms driving speech and language in TSC and how they relate to ASD. Here, we review recent work suggesting that canonical babbling and volubility-two precursors of language development that predict the emergence of speech and are delayed in infants with idiopathic ASD-are also delayed in infants with TSC. We then look to the broader literature on language development to identify other early precursors of language development that tend to be delayed in children with autism as a guide for future research on speech and language in TSC. We argue that vocal turn-taking, shared attention, and fast mapping are three such skills that can provide important information about how speech and language develop in TSC and where potential delays come from. The overall goal of this line of research is to not only illuminate the trajectory of language in TSC with and without ASD, but to ultimately find strategies for earlier recognition and treatment of the pervasive language difficulties in this population.
Collapse
Affiliation(s)
- Tanjala T Gipson
- Department of Pediatrics, Le Bonheur Children's Hospital, The Boling Center for Developmental Disabilities, University of Tennessee Health Science Center, Memphis, TN, United States
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| | - Daniel S Messinger
- Department of Psychology, University of Miami, Miami, FL, United States
- Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
- Department of Music Engineering, University of Miami, Miami, FL, United States
| | - Lynn K Perry
- Department of Psychology, University of Miami, Miami, FL, United States
| |
Collapse
|
28
|
Śmiałek D, Kotulska K, Duda A, Jóźwiak S. Effect of mTOR Inhibitors in Epilepsy Treatment in Children with Tuberous Sclerosis Complex Under 2 Years of Age. Neurol Ther 2023; 12:931-946. [PMID: 37085686 DOI: 10.1007/s40120-023-00476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Mechanistic target of rapamycin (mTOR) inhibitors sirolimus and everolimus are an effective therapy for subependymal giant cell astrocytomas, cardiac rhabdomyomas, renal angiomyolipomas, and lymphangioleiomyomatosis associated with tuberous sclerosis complex (TSC). Everolimus was recently approved in the EU and the USA for the treatment of refractory focal-onset seizures. Despite frequent use of mTOR inhibitors, there are only a few studies on their effect on epilepsy control in children under 2 years of age. This study aims to assess the effect of adjunctive mTOR inhibitor treatment on seizure frequency in this age group. METHODS We performed retrospective data analysis of medical records of patients with TSC who initiated sirolimus or everolimus under the age of 2 years. Participants' antiseizure medication was adjusted according to their epilepsy control independently from mTOR inhibitor administration. The data was assessed separately for patients treated with mTOR inhibitors before and after the onset of seizures. We also compared the treatment group with a matched control group. The follow-up duration was up to 24 months. RESULTS Twenty-one patients with TSC from two clinical centers were included in the study. Nine participants had no history of seizures before mTOR inhibitor initiation. Twelve reported active epilepsy in the month prior to treatment initiation. Most patients treated preventively with mTOR inhibitors did not report active epilepsy at the end of their follow-up. In the second group, the mean frequency of seizures decreased with time. According to the comparative analysis, seizure control was better in the groups treated with mTOR inhibitors. CONCLUSION Patients with TSC treated with mTOR inhibitors demonstrated better seizure control than individuals without this treatment. Adjunctive pharmacotherapy with mTOR inhibitors appears to have a beneficial effect on epilepsy outcome in young children. Further prospective clinical trials should be conducted to determine the efficacy of mTOR inhibitors on epilepsy in patients with TSC under the age of 2 years.
Collapse
Affiliation(s)
- Dominika Śmiałek
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland.
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Sergiusz Jóźwiak
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
- Research Department, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
29
|
D’Antona L, Amato R, Brescia C, Rocca V, Colao E, Iuliano R, Blazer-Yost BL, Perrotti N. Kinase Inhibitors in Genetic Diseases. Int J Mol Sci 2023; 24:ijms24065276. [PMID: 36982349 PMCID: PMC10048847 DOI: 10.3390/ijms24065276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.
Collapse
Affiliation(s)
- Lucia D’Antona
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Rocca
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
| | - Bonnie L. Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Nicola Perrotti
- Department of Health Sciences, University “Magna Graecia” at Catanzaro, 88100 Catanzaro, Italy
- Medical Genetics Unit, University Hospital “Mater Domini” at Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
30
|
Menezes CEG, Santos DLD, Nery ES, Serpa ED, Morais LAS, Dutra LS, Portela Filho MB, Goes JS. Everolimus as a therapeutic option in refractory epilepsy in children with tuberous sclerosis: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:392-398. [PMID: 36863402 PMCID: PMC10169230 DOI: 10.1055/s-0042-1758442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Tuberous sclerosis (TS) is a multisystem genetic disease in which epilepsy is a frequent manifestation and is often difficult to control. Everolimus is a drug with proven efficacy in the treatment of other conditions related to TS, and some evidence suggests that its use benefits the treatment of refractory epilepsy in these patients. OBJECTIVE To evaluate the efficacy of everolimus in controlling refractory epilepsy in children with TS. METHODS A literature review was conducted in the Pubmed, BVS, and Medline databases, using the descriptors Tuberous sclerosis, Children, Epilepsy, and Everolimus. Original clinical trials and prospective studies published in Portuguese or English in the last decade that evaluated the use of everolimus as an adjuvant therapy in the control of refractory epilepsy in pediatric patients with TS were included. RESULTS Our search screened 246 articles from electronic databases, 6 of which were chosen for review. Despite the methodological variations between the studies, most patients benefited from the use of everolimus to control refractory epilepsy, with response rates ranging from 28.6 to 100%. Adverse effects were present in all studies leading to dropouts of some patients; however, the majority were of low severity. CONCLUSION The selected studies suggest a beneficial effect of everolimus in the treatment of refractory epilepsy in children with TS, despite the adverse effects observed. Further studies involving a larger sample in double-blind controlled clinical trials should be performed to provide more information and statistical credibility.
Collapse
Affiliation(s)
| | | | - Erick Santos Nery
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | - Evelin Duarte Serpa
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | | | - Lucas Santana Dutra
- Escola Bahiana de Medicina e Saúde Pública, Departamento de Medicina, Salvador BA, Brazil
| | | | - Julieta Sobreira Goes
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| |
Collapse
|
31
|
Fan K, Guo Y, Song Z, Yuan L, Zheng W, Hu X, Gong L, Deng H. The TSC2 c.2742+5G>A variant causes variable splicing changes and clinical manifestations in a family with tuberous sclerosis complex. Front Mol Neurosci 2023; 16:1091323. [PMID: 37152430 PMCID: PMC10157042 DOI: 10.3389/fnmol.2023.1091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic, variably expressed, multisystem disease characterized by benign tumors. It is caused by pathogenic variants of the TSC complex subunit 1 gene (TSC1) and the TSC complex subunit 2 gene (TSC2). Genetic testing allows for early diagnosis, genetic counseling, and improved outcomes, but it did not identify a pathogenic variant in up to 25% of all TSC patients. This study aimed to identify the disease-causing variant in a Han-Chinese family with TSC. Methods A six-member, three-generation Han-Chinese family with TSC and three unrelated healthy women were recruited. A comprehensive medical examination, a 3-year follow-up, whole exome sequencing, Sanger sequencing, and segregation analysis were performed in the family. The splicing analysis results obtained from six in silico tools, minigene assay, and patients' lymphocyte messenger RNA were compared, and quantitative reverse transcription PCR was used to confirm the pathogenicity of the variant. Results Two affected family members had variable clinical manifestations including a rare bilateral cerebellar ataxia symptom. The 3-year follow-up results suggest the effects of a combined treatment of anti-epilepsy drugs and sirolimus for TSC-related epilepsy and cognitive deficits. Whole exome sequencing, Sanger sequencing, segregation analysis, splicing analysis, and quantitative reverse transcription PCR identified the TSC2 gene c.2742+5G>A variant as the genetic cause. This variant inactivated the donor splice site, a cryptic non-canonical splice site was used for different splicing changes in two affected subjects, and the resulting mutant messenger RNA may be degraded by nonsense-mediated decay. The defects of in silico tools and minigene assay in predicting cryptic splice sites were suggested. Conclusions This study identified a TSC2 c.2742+5G>A variant as the genetic cause of a Han-Chinese family with TSC and first confirmed its pathogenicity. These findings expand the phenotypic and genetic spectrum of TSC and may contribute to its diagnosis and treatment, as well as a better understanding of the splicing mechanism.
Collapse
Affiliation(s)
- Kuan Fan
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lina Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Deng
| |
Collapse
|
32
|
Singh A, Hadjinicolaou A, Peters JM, Salussolia CL. Treatment-Resistant Epilepsy and Tuberous Sclerosis Complex: Treatment, Maintenance, and Future Directions. Neuropsychiatr Dis Treat 2023; 19:733-748. [PMID: 37041855 PMCID: PMC10083014 DOI: 10.2147/ndt.s347327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that affects multiple organ systems, including the heart, kidneys, eyes, skin, and central nervous system. The neurologic manifestations have the highest morbidity and mortality, in particular in children. Clinically, patients with TSC often present with new-onset seizures within the first year of life. TSC-associated epilepsy is often difficult to treat and refractory to multiple antiseizure medications. Refractory TSC-associated epilepsy is associated with increased risk of neurodevelopmental comorbidities, including developmental delay, intellectual disability, autism spectrum disorder, and attention hyperactivity disorder. An increasing body of research suggests that early, effective treatment of TSC-associated epilepsy during critical neurodevelopmental periods can potentially improve cognitive outcomes. Therefore, it is important to treat TSC-associated epilepsy aggressively, whether it be with pharmacological therapy, surgical intervention, and/or neuromodulation. This review discusses current and future pharmacological treatments for TSC-associated epilepsy, as well as the importance of early surgical evaluation for refractory epilepsy in children with TSC and consideration of neuromodulatory interventions in young adults.
Collapse
Affiliation(s)
- Avantika Singh
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aristides Hadjinicolaou
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Catherine L Salussolia, 3 Blackfan Circle, Center for Life Sciences 14060, Boston, MA, 02115, USA, Tel +617-355-7970, Email
| |
Collapse
|
33
|
Pereira CCDS, Dantas FDG, Manreza MLGD. Clinical profile of tuberous sclerosis complex patients with and without epilepsy: a need for awareness for early diagnosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1004-1010. [PMID: 36535284 PMCID: PMC9770081 DOI: 10.1055/s-0042-1758456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystemic disorder. Its clinical features manifest differently in several organs, prompting the need for better knowledge. OBJECTIVE The goal of the present study is to evaluate the neurological findings of TSC, such as cerebral lesions and epilepsy, and to raise awareness of non-neurological findings that could contribute to an earlier diagnosis and treatment. METHODS This was a natural history study of patients with a definitive diagnosis of TSC who were referred to a specialized outpatient clinic and followed-up for 2 years with clinical and radiological exams. RESULTS A total of 130 TSC patients (59 males [45.4%], mean age 20.4 years old [1 to 56 years old]); 107 patients (82.3%) were diagnosed with epilepsy. Seizures predominantly began at < 1 year old (72.8%); focal seizures predominated (86.9%); epileptic spasms occurred in 34.5% of patients, and refractory epilepsy was present in 55.1%. Neuropsychiatric disorders, cortical tubers and cerebellar tubers were significantly more frequent in the epilepsy group. Moreover, rhabdomyomas were significantly more frequent in the epilepsy group (p = 0.044), while lymphangioleiomyomatosis was significantly less frequent in the epilepsy group (p = 0.009). Other non-neurological findings did not differ significantly between the groups with and without epilepsy. CONCLUSIONS The present study of TSC patients demonstrated the predominantly neurological involvement and significantly higher proportion of TSC-associated neuropsychiatric disorders in the epilepsy group. Higher proportions of cortical and cerebellar tubers may be a risk factor for epilepsy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Conceição Campanario da Silva Pereira
- Universidade de São Paulo, Hospital das Clinicas de São Paulo, Departamento de Neurologia Infantil, São Paulo SP, Brazil.,Address for correspondence Conceição Campanario da Silva Pereira
| | - Felipe Diego Gomes Dantas
- Universidade de São Paulo, Hospital das Clínicas de São Paulo, Departamento de Neurorradiologia, São Paulo SP, Brazil.
| | | |
Collapse
|
34
|
Dedeoğlu Ö, Çetinkaya M, Emine Derinkuyu B, Aksoy E, Öztoprak Ü, Genç Sel Ç, Nursun Özcan H, Aksoy A, Yüksel D. Aspects of autism spectrum disorder and correlation with neuroimaging findings in tuberous sclerosis complex. Clin Neurol Neurosurg 2022; 224:107550. [PMID: 36502649 DOI: 10.1016/j.clineuro.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) patients may have different specific neuropsychological deficits related to the location of the tubers. Autism spectrum disorders (ASD) are common in TSC patients but the relationship between these diagnoses has not been formally explored. In this study we sought to examine brain Magnetic Resonance Imaging (MRI) findings in TSC patients with ASD. METHODS We evaluated 34 TSC patients on the basis of DSM-V diagnostic criteria for ASD, Wechsler Intelligence Scale for Children (WISC-R), psychiatrist's examination and also structured parent interviews. The number and localization of the tubers, postcontrast signal characteristics of the tubers, SWI findings, DWI findings on brain MRI were recorded. Demographic features, epilepsy histories, number of antiseizure medications, cognitive status were eveluated also. Patients were divided into two groups: ASD group, which represented group 1 and group 2 consisting of patients without any ASD symptoms. RESULTS In our study, the mean number of tuber count was 21.8 in patients with ASD patients (Group 1, n = 13) and 12.4 in other TSC patients without ASD (Group 2, n = 21). Rate of tubers in prefrontal cortex/whole tubers (0.51) in patients with ASD was determined to be higher in group 1 (p = 0.003). Also a significant difference was detected between generalize epileptiform activities on EEG and the rate of DRE (p = 0.002; p = 0.001) between groups. Cognitive disturbances and infantile spasm history were similar between groups. TSC2 mutations have been identified in 29 (86%) patients. CONCLUSION The mean of total tuber count and the rate of the location in the prefrontal cortex were determined to be higher in TSC patients with ASD. Specific areas on brain MRI may help understanding the development of ASD in TSC patients.
Collapse
Affiliation(s)
- Özge Dedeoğlu
- Pediatric Neurology, Department of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey.
| | - Miray Çetinkaya
- Child and adolescent Physciatry, Department of Child and Adolescent Physciatry, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Betül Emine Derinkuyu
- Pediatric Radiology, Department of Pediatric Radiology, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Erhan Aksoy
- Pediatric Neurology, Department of Pediatric Neurology, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ülkühan Öztoprak
- Pediatric Neurology, Department of Pediatric Neurology, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Çiğdem Genç Sel
- Pediatric Neurology, Department of Pediatric Neurology, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Hatice Nursun Özcan
- Pediatric Radiology, Department of Pediatric Radiology, Hacettepe University, Ankara, Turkey
| | - Ayşe Aksoy
- Pediatric Neurology, Department of Pediatric Neurology, 19 May University Hospital, Samsun, Turkey
| | - Deniz Yüksel
- Pediatric Neurology, Department of Pediatric Neurology, University of Health Sciences, Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Larrew T, Skoch J, Ihnen SKZ, Arya R, Holland KD, Tenney JR, Horn PS, Leach JL, Krueger DA, Greiner HM, Mangano FT. Comparison of outcomes after stereoelectroencephalography and subdural grid monitoring in pediatric tuberous sclerosis complex. Neurosurg Focus 2022; 53:E5. [PMID: 36183179 DOI: 10.3171/2022.7.focus22335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE
Patients with tuberous sclerosis complex (TSC) epilepsy present with unique clinical challenges such as early seizure onset and high rates of intractability and multifocality. Although there are numerous studies about the safety and efficacy of stereoelectroencephalography (SEEG), this topic has not been studied in TSC patients who have distinct epilepsy profiles. The authors investigated subdural grid (SDG) and SEEG monitoring to determine whether these procedures lead to similar seizure and safety outcomes and to identify features unique to this pediatric population.
METHODS
TSC patients who underwent SDG or SEEG placement and a second epilepsy surgery during the period from 2007 to 2021 were included in this single-center retrospective cohort analysis. Various patient, hospitalization, and epilepsy characteristics were collected.
RESULTS
A total of 50 TSC patients were included in this study: 30 were included in the SDG cohort and 20 in the SEEG cohort. Baseline weekly seizure count did not significantly differ between the 2 groups (p = 0.412). The SEEG group had a greater mean baseline number of antiepileptic drugs (AEDs) (3.0 vs 2.0, p = 0.003), higher rate of previous surgical interventions (25% vs 0%, p = 0.007), and larger proportion of patients who underwent bilateral monitoring (50% vs 13.3%, p = 0.005). Despite this, there was no significant difference in seizure freedom between the SDG and SEEG cohorts. The mean reduction in seizure count was 84.9% and 47.8% of patients were seizure free at last follow-up (mean 79.4 months). SEEG trended toward being a safer procedure than SDG monitoring, with a shorter mean ICU stay (0.7 days vs 3.9 days, p < 0.001), lower blood transfusion rate (0% vs 13.3%, p = 0.140), and lower surgical complication rate (0% vs 10%, p = 0.265).
CONCLUSIONS
In the comparison of the SDG and SEEG cohorts, the SEEG group included patients who appeared to receive more aggressive management and have a higher rate of multifocality, more prior surgical interventions, more AEDs at baseline, and a higher rate of bilateral invasive monitoring. Despite this, the SEEG cohort had similar seizure outcomes and a trend toward increased safety. Based on these findings, SEEG appears to allow for monitoring of a wider breadth of TSC patients given its minimally invasive nature and its relative simplicity for monitoring numerous regions of the brain.
Collapse
Affiliation(s)
- Thomas Larrew
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Jesse Skoch
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - S. Katie Z. Ihnen
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Ravindra Arya
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Katherine D. Holland
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Jeffrey R. Tenney
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Paul S. Horn
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - James L. Leach
- Division of Pediatric Neuroradiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Darcy A. Krueger
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Hansel M. Greiner
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati; and
| | - Francesco T. Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati
| |
Collapse
|
36
|
Strzelczyk A, Schubert-Bast S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022; 36:1079-1111. [PMID: 36194365 PMCID: PMC9531646 DOI: 10.1007/s40263-022-00955-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples of developmental and epileptic encephalopathies include Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encephalopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam (BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosamide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dulling/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cognition; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impairments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); and treatment regimes are complex involving multiple ASMs as well as other drugs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Capal JK. Describing autism spectrum disorder in tuberous sclerosis complex: Challenges and future opportunities. Dev Med Child Neurol 2022; 64:1183. [PMID: 35633302 DOI: 10.1111/dmcn.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jamie K Capal
- University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
38
|
Franz DN. Changing the outcome in genetic brain disorders. Dev Med Child Neurol 2022; 64:1184-1185. [PMID: 35866540 PMCID: PMC9543475 DOI: 10.1111/dmcn.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
This commentary is on the original articles by Wang et al. and Zhang et al. on pages 1230–1236 and 1237–1245 of this issue.
Collapse
Affiliation(s)
- David Neal Franz
- Cincinnati Children's HospitalUniversity of Cincinnati College of Medicine – NeurologyCincinnatiOHUSA
| |
Collapse
|
39
|
Li L, Lin S, Tan Z, Chen L, Zeng Q, Sun Y, Li C, Liu Z, Lin C, Ren X, Zhang T, Li Y, Su Q, Li Y, Cao D, Liao J, Zhu F, Chen Y. Resective epilepsy surgery for West syndrome: The Hypsarrhythmic Asymmetric Scoring Scheme is a determining predictor of seizure outcome. Seizure 2022; 101:205-210. [PMID: 36084526 DOI: 10.1016/j.seizure.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE It has been suggested that asymmetric hypsarrhythmia is associated with structural etiology. We devised the Hypsarrhythmic Asymmetric Scoring Scheme (HASS) to quantify the degree of hypsarrhythmic asymmetry in a retrospective series of patients who underwent surgical treatment at our center. The present study aimed to investigate the role of HASS in predicting the postsurgical seizure outcomes. METHODS We retrospectively analyzed the records of 46 children with hypsarrhythmia who underwent resective epilepsy surgery between 2018 and 2020 and were followed up for at least 1 year after surgery. Hypsarrhythmia severity in each hemisphere was quantified and scored. The HASS score was calculated as the difference between the two hemispheres. Univariate results were submitted to logistic regression models to identify independent predictors for favorable surgical outcomes. RESULTS Of the 46 patients who underwent resective surgery, Engel's class I-Ⅱ outcomes were achieved in 34 (73.9%). The Engel I-Ⅱ group had a significantly higher HASS score than the Engel Ⅲ-Ⅳ group (p<0.001). Multivariate analysis showed that the HASS score was the only significant predictor of good outcomes (p = 0.011). Further receiver operating characteristic analysis showed that a threshold of 7 yielded a better seizure outcome with a sensitivity of 97.06% and specificity of 83.33%. SIGNIFICANCE As the first hypsarrhythmia scoring system specially designed for presurgical evaluation, the HASS score may contribute to predicting the postsurgical seizure outcome from the electroencephalography perspective.
Collapse
Affiliation(s)
- Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Sufang Lin
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Zeshi Tan
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Yang Sun
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Cong Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Zhenzhen Liu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Chun Lin
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Xiaofan Ren
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Tian Zhang
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Ying Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Qiru Su
- Department of Clinical Research, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Yilian Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Dezhi Cao
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China; Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Jianxiang Liao
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China; Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China
| | - Fengjun Zhu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China.
| | - Yan Chen
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518038, China.
| |
Collapse
|
40
|
Nijman M, Yang E, Jaimes C, Prohl AK, Sahin M, Krueger DA, Wu JY, Northrup H, Stone SS, Madsen JR, Fallah A, Blount JP, Weiner HL, Grayson L, Bebin EM, Porter BE, Warfield SK, Prabhu SP, Peters JM. Limited utility of structural MRI to identify the epileptogenic zone in young children with tuberous sclerosis. J Neuroimaging 2022; 32:991-1000. [PMID: 35729081 PMCID: PMC11267633 DOI: 10.1111/jon.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The success of epilepsy surgery in children with tuberous sclerosis complex (TSC) hinges on identification of the epileptogenic zone (EZ). We studied structural MRI markers of epileptogenic lesions in young children with TSC. METHODS We included 26 children with TSC who underwent epilepsy surgery before the age of 3 years at five sites, with 12 months or more follow-up. Two neuroradiologists, blinded to surgical outcome data, reviewed 10 candidate lesions on preoperative MRI for characteristics of the tuber (large affected area, calcification, cyst-like properties) and of focal cortical dysplasia (FCD) features (cortical malformation, gray-white matter junction blurring, transmantle sign). They selected lesions suspect for the EZ based on structural MRI, and reselected after unblinding to seizure onset location on electroencephalography (EEG). RESULTS None of the tuber characteristics and FCD features were distinctive for the EZ, indicated by resected lesions in seizure-free children. With structural MRI alone, the EZ was identified out of 10 lesions in 31%, and with addition of EEG data, this increased to 48%. However, rates of identification of resected lesions in non-seizure-free children were similar. Across 251 lesions, interrater agreement was moderate for large size (κ = .60), and fair (κ = .24) for all other features. CONCLUSIONS In young children with TSC, the utility of structural MRI features is limited in the identification of the epileptogenic tuber, but improves when combined with EEG data.
Collapse
Affiliation(s)
- Maaike Nijman
- Localization Laboratory, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna K. Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darcy A. Krueger
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joyce Y. Wu
- Division of Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, at University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Scellig S.D. Stone
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph R. Madsen
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aria Fallah
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of California Los Angeles Mattel Children’s Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Jeffrey P. Blount
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Children’s of Alabama, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Howard L. Weiner
- Department of Surgery, Division of Pediatric Neurosurgery, Texas Children’s Hospital, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Leslie Grayson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brenda E. Porter
- Department of Neurology, Stanford University Medical Center, Stanford, California, USA
| | - Simon K. Warfield
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjay P. Prabhu
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jurriaan M. Peters
- Localization Laboratory, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
41
|
Neal A, Bouet R, Lagarde S, Ostrowsky‐Coste K, Maillard L, Kahane P, Touraine R, Catenoix H, Montavont A, Isnard J, Arzimanoglou A, Hermier M, Guenot M, Bartolomei F, Rheims S, Jung J. Epileptic spasms are associated with increased stereo-electroencephalography derived functional connectivity in tuberous sclerosis complex. Epilepsia 2022; 63:2359-2370. [PMID: 35775943 PMCID: PMC9796462 DOI: 10.1111/epi.17353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Epileptic spasms (ES) are common in tuberous sclerosis complex (TSC). However, the underlying network alterations and relationship with epileptogenic tubers are poorly understood. We examined interictal functional connectivity (FC) using stereo-electroencephalography (SEEG) in patients with TSC to investigate the relationship between tubers, epileptogenicity, and ES. METHODS We analyzed 18 patients with TSC who underwent SEEG (mean age = 11.5 years). The dominant tuber (DT) was defined as the most epileptogenic tuber using the epileptogenicity index. Epileptogenic zone (EZ) organization was quantitatively separated into focal (isolated DT) and complex (all other patterns). Using a 20-min interictal recording, FC was estimated with nonlinear regression, h2 . We calculated (1) intrazone FC within all sampled tubers and normal-appearing cortical zones, respectively; and (2) interzone FC involving connections between DT, other tubers, and normal cortex. The relationship between FC and (1) presence of ES as a current seizure type at the time of SEEG, (2) EZ organization, and (3) epileptogenicity was analyzed using a mixed generalized linear model. Spike rate and distance between zones were considered in the model as covariates. RESULTS Six patients had ES as a current seizure type at time of SEEG. ES patients had a greater number of tubers with a fluid-attenuated inversion recovery hypointense center (p < .001), and none had TSC1 mutations. The presence of ES was independently associated with increased FC within both intrazone (p = .033) and interzone (p = .011) networks. Post hoc analyses identified that increased FC was associated with ES across tuber and nontuber networks. EZ organization and epileptogenicity biomarkers were not associated with FC. SIGNIFICANCE Increased cortical synchrony among both tuber and nontuber networks is characteristic of patients with ES and independent of both EZ organization and tuber epileptogenicity. This further supports the prospect of FC biomarkers aiding treatment paradigms in TSC.
Collapse
Affiliation(s)
- Andrew Neal
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance,Department of Neuroscience, Faculty of Medicine, Nursing, and Health SciencesCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Romain Bouet
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance
| | - Stanislas Lagarde
- Epileptology Department, Timone HospitalPublic Assistance Hospitals of Marseille, member of the ERN EpiCAREMarseilleFrance,Institute of Systems Neurosciences, National Institute of Health and Medical ResearchAix‐Marseille UniversityMarseilleFrance
| | - Karine Ostrowsky‐Coste
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyLyon Civil Hospices, member of the ERN EpiCARELyonFrance
| | - Louis Maillard
- Neurology DepartmentUniversity Hospital of Nancy, member of the ERN EpiCARENancyFrance
| | - Philippe Kahane
- Grenoble‐Alpes University Hospital Center, collaborating partner of the ERN EpiCAREGrenoble‐Alpes University, Grenoble Institute of Neuroscience, National Institute of Health and Medical ResearchGrenobleFrance
| | - Renaud Touraine
- Department of GeneticsSaint Etienne University Hospital Center–North HospitalSaint‐Priest‐en‐JarezFrance
| | - Helene Catenoix
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Alexandra Montavont
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Jean Isnard
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Alexis Arzimanoglou
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional NeurologyLyon Civil Hospices, member of the ERN EpiCARELyonFrance
| | - Marc Hermier
- Department of NeuroradiologyLyon Civil HospicesLyonFrance
| | - Marc Guenot
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional NeurosurgeryLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| | - Fabrice Bartolomei
- Epileptology Department, Timone HospitalPublic Assistance Hospitals of Marseille, member of the ERN EpiCAREMarseilleFrance,Institute of Systems Neurosciences, National Institute of Health and Medical ResearchAix‐Marseille UniversityMarseilleFrance
| | - Sylvain Rheims
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance,Epilepsy InstituteLyonFrance
| | - Julien Jung
- Eduwell team, Inserm U1028, CNRS UMR5292, UCBL1, UJMLyon Neuroscience Research CenterLyonFrance,Department of Functional Neurology and EpileptologyLyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 UniversityLyonFrance
| |
Collapse
|
42
|
Foryś-Basiejko M, Kotulska K, Maryniak A, Siłuszyk A, Szkop M, Borkowska J, Sugalska M, Głowacka-Walas J, Jóźwiak S. Epilepsy and Language Development in 8–36-Month-Old Toddlers with Tuberous Sclerosis Complex. J Clin Med 2022; 11:jcm11154564. [PMID: 35956179 PMCID: PMC9369686 DOI: 10.3390/jcm11154564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
This paper aimed to assess language development in infants and toddlers with tuberous sclerosis complex (TSC) and epilepsy, which increase the risk of autism spectrum disorder. We assessed language development in 61 patients with TSC at 8–36 months using a standardized Speech Development and Communication Inventory tool. The results showed differences in outcomes due to the duration of the seizures and the number of drugs (pFDR = 0.007 **—pFDR = 0.037 *). Children with TSC with longer epilepsy duration and receiving more antiepileptic drugs have a greater risk of language development delay.
Collapse
Affiliation(s)
- Małgorzata Foryś-Basiejko
- Department of Child Clinical Psychology and Family, Faculty of Psychology, University of Warsaw, 00-183 Warszawa, Poland
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-736 Warszawa, Poland
- Department of Pediatric Neurology, Medical University of Warsaw, 02-091 Warszawa, Poland
- Correspondence:
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-736 Warszawa, Poland
| | - Agnieszka Maryniak
- Department of Child Clinical Psychology and Family, Faculty of Psychology, University of Warsaw, 00-183 Warszawa, Poland
| | - Agata Siłuszyk
- Department of Pediatric Neurology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Monika Szkop
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-736 Warszawa, Poland
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-736 Warszawa, Poland
| | - Monika Sugalska
- Department of Pediatric Neurology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Jagoda Głowacka-Walas
- Institute of Computer Science, Warsaw University of Technology, 00-665 Warszawa, Poland
- Transition Technologies Science, 01-030 Warsaw, Poland
| | - Sergiusz Jóźwiak
- Department of Pediatric Neurology, Medical University of Warsaw, 02-091 Warszawa, Poland
| |
Collapse
|
43
|
Sadowski K, Sijko K, Domańska-Pakieła D, Borkowska J, Chmielewski D, Ulatowska A, Józwiak S, Kotulska K. Antiepileptic Effect and Safety Profile of Rapamycin in Pediatric Patients With Tuberous Sclerosis Complex. Front Neurol 2022; 13:704978. [PMID: 35572924 PMCID: PMC9100395 DOI: 10.3389/fneur.2022.704978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Epilepsy develops in 70–90% of children with Tuberous Sclerosis Complex (TSC) and is often resistant to medication. Treatment with mTOR pathway inhibitors is an important therapeutic option in drug-resistant epilepsy associated with TSC. Our study evaluated the antiepileptic effect of rapamycin in the pediatric population of patients diagnosed with TSC. Methods This single center, open-label study evaluated safety and anti-epileptic efficacy of 12 months of rapamycin treatment in 32 patients aged from 11 months to 14 years with drug-resistant TSC- associated epilepsy. Results After the first 6 months of treatment, the improvement in seizure frequency, defined as at least a 50% reduction in the number of seizures per week compared to baseline, was seen in 18 individuals (56.25%). We observed no change in 12 individuals (37.5%) and worsening, defined as increase in the number of seizures—in 2 patients (6.25%). The overall improvement defined as at least a 50% reduction in seizure frequency was found in 65.6% of all patients after 12 months with 28% of patients obtaining complete remission. Another five patients experienced at least an 80% reduction in the frequency of seizures. Concomitant treatment with vigabatrin, and to a much lesser extent topiramate and levetiracetam, was an additional favorable prognostic factor for the success of the therapy. A linear relationship between the cumulative dose of rapamycin and its therapeutic effect was observed. The safety profile of the drug was satisfactory. In none of the observed cases did the adverse events reach the level that required withdrawal of the rapamycin treatment. The reason for dropouts was insufficient drug efficacy in 3 cases. Conclusions Long-term use of rapamycin, especially in combination with vigabatrin, might be a beneficial therapeutic option in the treatment of drug-resistant epilepsy in children with TSC.
Collapse
Affiliation(s)
- Krzysztof Sadowski
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- *Correspondence: Krzysztof Sadowski
| | - Kamil Sijko
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- Transition Technologies, Warsaw, Poland
| | - Dorota Domańska-Pakieła
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Julita Borkowska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Dariusz Chmielewski
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Agata Ulatowska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Józwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
44
|
Specchio N, Pavia GC, de Palma L, De Benedictis A, Pepi C, Conti M, Marras CE, Vigevano F, Curatolo P. Current role of surgery for tuberous sclerosis complex-associated epilepsy. Pediatr Investig 2022; 6:16-22. [PMID: 35382422 PMCID: PMC8960933 DOI: 10.1002/ped4.12312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem, autosomal dominant neurocutaneous syndrome in which epilepsy is the most common of several neurological and psychiatric manifestations. Around two thirds of patients develop drug-resistant epilepsy for whom surgical resection of epileptogenic foci is indicated when seizures remain inadequately controlled following trial of two antiseizure medications. The challenge with presurgical and surgical approaches with patients with TSC is overcoming the complexity from the number of tubers and the multiplex epileptogenic network forming the epileptogenic zone. Data suggest that seizure freedom is achieved by 55%-60% of patients, but predictive factors for success have remained elusive, which makes for unconfident selection of surgical candidates. This article presents three different cases as illustrations of the potential challenges faced when assessing the suitability of TSC patients for epilepsy surgery.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Giusy Carfi Pavia
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Luca de Palma
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | | | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Marta Conti
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Federico Vigevano
- Department of NeurosciencesBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine DepartmentTor Vergata UniversityRomeItaly
| |
Collapse
|
45
|
Wu JY, Cock HR, Devinsky O, Joshi C, Miller I, Roberts CM, Sanchez-Carpintero R, Checketts D, Sahebkar F. Time to Onset of Cannabidiol (CBD) Treatment Effect and Resolution of Adverse Events in Tuberous Sclerosis Complex: Post Hoc Analysis of Randomized Controlled Phase 3 Trial GWPCARE6. Epilepsia 2022; 63:1189-1199. [PMID: 35175622 PMCID: PMC9314914 DOI: 10.1111/epi.17199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Objective To estimate the timing of cannabidiol (CBD) treatment effect (seizure reduction and adverse events [AEs]) onset, we conducted a post hoc analysis of GWPCARE6 (NCT02544763), a randomized, placebo‐controlled, phase 3 trial in patients with drug‐resistant epilepsy associated with tuberous sclerosis complex (TSC). Methods Patients received plant‐derived pharmaceutical formulation of highly purified CBD (Epidiolex; 100 mg/ml oral solution) at 25 mg/kg/day (CBD25) or 50 mg/kg/day (CBD50) or placebo for 16 weeks (4‐week titration, 12‐week maintenance). Treatment started at 5 mg/kg/day for all groups and reached 25 mg/kg/day on Day 9 and 50 mg/kg/day on Day 29. Percentage change from baseline in TSC‐associated seizure (countable focal or generalized) count was calculated by cumulative day (i.e., including all previous days). Time to onset and resolution of AEs were evaluated. Results Of 224 patients, 75 were randomized to CBD25, 73 to CBD50, and 76 to placebo. Median (range) age was 11.3 (1.1–56.8) years. Patients had discontinued a median (range) of 4 (0–15) antiseizure medications and were currently taking 3 (0–5). Difference in seizure reduction between CBD and placebo emerged on Day 6 (titrated dose, 15 mg/kg/day) and became nominally significant (p < .049) by Day 10. Separation between placebo and CBD in ≥50% responder rate also emerged by Day 10. Onset of AEs occurred during the first 2 weeks of the titration period in 61% of patients (CBD25, 61%; CBD50, 67%; placebo, 54%). In patients with an AE, resolution occurred within 4 weeks of onset in 42% of placebo and 27% of CBD patients and by end of trial in 78% of placebo and 51% of CBD patients. Significance Onset of treatment effect occurred within 6–10 days. AEs lasted longer for CBD than placebo, but the most common (diarrhea, decreased appetite, and somnolence) resolved during the 16‐week trial in most patients.
Collapse
Affiliation(s)
- Joyce Y Wu
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Hannah R Cock
- St. George's, University of London, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, USA
| | | | - Ian Miller
- Nicklaus Children's Hospital, Miami, FL, USA.,Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | |
Collapse
|
46
|
Vanclooster S, Bissell S, van Eeghen AM, Chambers N, De Waele L, Byars AW, Capal JK, Cukier S, Davis P, Flinn J, Gardner-Lubbe S, Gipson T, Heunis TM, Hook D, Kingswood JC, Krueger DA, Kumm AJ, Sahin M, Schoeters E, Smith C, Srivastava S, Takei M, Waltereit R, Jansen AC, de Vries PJ. The research landscape of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND)-a comprehensive scoping review. J Neurodev Disord 2022; 14:13. [PMID: 35151277 PMCID: PMC8853020 DOI: 10.1186/s11689-022-09423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) is an umbrella term for the behavioural, psychiatric, intellectual, academic, neuropsychological and psychosocial manifestations of TSC. Although TAND affects 90% of individuals with TSC during their lifetime, these manifestations are relatively under-assessed, under-treated and under-researched. We performed a comprehensive scoping review of all TAND research to date (a) to describe the existing TAND research landscape and (b) to identify knowledge gaps to guide future TAND research. METHODS The study was conducted in accordance with stages outlined within the Arksey and O'Malley scoping review framework. Ten research questions relating to study characteristics, research design and research content of TAND levels and clusters were examined. RESULTS Of the 2841 returned searches, 230 articles published between 1987 and 2020 were included (animal studies = 30, case studies = 47, cohort studies = 153), with more than half published since the term TAND was coined in 2012 (118/230; 51%). Cohort studies largely involved children and/or adolescents (63%) as opposed to older adults (16%). Studies were represented across 341 individual research sites from 45 countries, the majority from the USA (89/341; 26%) and the UK (50/341; 15%). Only 48 research sites (14%) were within low-middle income countries (LMICs). Animal studies and case studies were of relatively high/high quality, but cohort studies showed significant variability. Of the 153 cohort studies, only 16 (10%) included interventions. None of these were non-pharmacological, and only 13 employed remote methodologies (e.g. telephone interviews, online surveys). Of all TAND clusters, the autism spectrum disorder-like cluster was the most widely researched (138/230; 60%) and the scholastic cluster the least (53/200; 27%). CONCLUSIONS Despite the recent increase in TAND research, studies that represent participants across the lifespan, LMIC research sites and non-pharmacological interventions were identified as future priorities. The quality of cohort studies requires improvement, to which the use of standardised direct behavioural assessments may contribute. In human studies, the academic level in particular warrants further investigation. Remote technologies could help to address many of the TAND knowledge gaps identified.
Collapse
Affiliation(s)
- Stephanie Vanclooster
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stacey Bissell
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
| | - Agnies M. van Eeghen
- Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
- TAND Expert Centre, ‘s Heeren Loo, Hoofddorp, The Netherlands
| | - Nola Chambers
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Liesbeth De Waele
- Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anna W. Byars
- Department of Pediatrics, Division of Neurology, Cincinnati Children’s Hospital Medical Center/University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Jamie K. Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Sebastián Cukier
- Argentine Program for Children, Adolescents and Adults with Autism Spectrum Disorders (PANAACEA), Buenos Aires, Argentina
| | - Peter Davis
- Department of Neurology, Harvard Medical School & Boston Children’s Hospital, Boston, MA USA
| | | | | | - Tanjala Gipson
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN USA
- Le Bonheur Children’s Hospital and Boling Center for Developmental Disabilities, Memphis, TN USA
| | - Tosca-Marie Heunis
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Darcy A. Krueger
- TSC Clinic Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Clinical Pediatrics and Neurology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Aubrey J. Kumm
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Mustafa Sahin
- Department of Neurology, Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | | | | | - Shoba Srivastava
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
- Tuberous Sclerosis Alliance India, Mumbai, India
| | - Megumi Takei
- Japanese Society of Tuberous Sclerosis Complex, Tokyo, Japan
| | - Robert Waltereit
- Child and Adolescent Psychiatry, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Anna C. Jansen
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pediatrics, Pediatric Neurology Unit, Antwerp University Hospital, Edegem, Belgium
| | - Petrus J. de Vries
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Nabavi Nouri M, Zak M, Jain P, Whitney R. Epilepsy Management in Tuberous Sclerosis Complex: Existing and Evolving Therapies and Future Considerations. Pediatr Neurol 2022; 126:11-19. [PMID: 34740132 DOI: 10.1016/j.pediatrneurol.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition that affects multiple body systems. Disruption of the mammalian target of rapamycin (mTOR) pathway results in abnormal cell growth, proliferation, protein synthesis, and cell differentiation and migration in TSC. In the central nervous system, mTOR disruption is also believed to influence neuronal excitability and promote epileptogenesis. Epilepsy is the most common neurological manifestation of TSC and affects 80% to 90% of individuals with high rates of treatment resistance (up to 75%). The onset of epilepsy in the majority of individuals with TSC occurs before the age of two years, which is a critical time in neurodevelopment. Both medically refractory epilepsy and early-onset epilepsy are associated with intellectual disability in TSC, while seizure control and remission are associated with lower rates of cognitive impairment. Our current knowledge of the treatment of epilepsy in TSC has expanded immensely over the last decade. Several new therapies such as preemptive vigabatrin therapy in infants, cannabidiol, and mTOR inhibitors have emerged in recent years for the treatment of epilepsy in TSC. This review will provide clinicians with a comprehensive overview of the pharmacological and nonpharmacological therapies available for the treatment of epilepsy related to TSC.
Collapse
Affiliation(s)
- Maryam Nabavi Nouri
- Division of Neurology, Department of Pediatrics, Western University, London, Ontario, Canada
| | - Maria Zak
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
48
|
Pounders AJ, Rushing GV, Mahida S, Nonyane BAS, Thomas EA, Tameez RS, Gipson TT. Racial differences in the dermatological manifestations of tuberous sclerosis complex and the potential effects on diagnosis and care. THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221140125. [PMID: 37180419 PMCID: PMC10032467 DOI: 10.1177/26330040221140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
Background Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder of non-malignant tumor growths throughout major organ systems and neurological, neuropsychiatric, renal, and pulmonary co-morbidities. Skin manifestations are readily visible, often develop early in life, and are major features that contribute to TSC diagnosis. Medical photographs of such manifestations are commonly shown as examples from White individuals creating a potential barrier to accurately identifying these features in darker skinned individuals. Objectives The aim of this report is to raise awareness of dermatological manifestations associated with TSC, compare their appearance by race, and consider how recognition of these features could impact diagnosis and treatment of TSC. Design and Methods We conducted a retrospective chart review at the TSC Center of Excellence (TSCOE) at the Kennedy Krieger Institute, which included all patients in the center from 2009 (inception) through the end of the calendar year 2015 and analyzed data from the TSC Alliance Natural History Database (NHD). Results Among TSCOE patients, 50% of Black patients were diagnosed before the age of 1 year, compared with 70% of White patients. NHD data corroborated this trend showing a significant difference with only 38% of Blacks as compared with 50% of Whites were diagnosed at age ⩽1 year. A significant difference was observed where White participants had higher odds of having received genetic testing in both data sets. While no differences in the total number of TSC features was observed in either data set, shagreen patches and cephalic fibrous plaques were more frequently recorded in the NHD for Black individuals. Conclusion We highlight a disparity in the representation of Black participants within the NHD, TSCOE, and TSC trials, in addition to differences in utilization of molecular testing and topical mechanistic target of rapamycin (mTOR) inhibitor therapy between Black and White individuals. We show a trend toward later diagnosis age in Black individuals. These differences between races warrant further study across additional clinical sites and other minority groups.
Collapse
Affiliation(s)
| | | | - Sonal Mahida
- Department of Neurology, Boston Children’s
Hospital, Boston, MA, USA
| | | | - Emily A. Thomas
- Department of International Health, Johns
Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Tanjala T. Gipson
- TSC Center of Excellence, Le Bonheur Children’s
Hospital, 50 N. Dunlap Street, Memphis, TN 38105, USA
| |
Collapse
|
49
|
Tong X, Wang X, Qin L, Zhou J, Guan Y, Teng P, Wang J, Yang Y, Li T, Luan G. Vagus nerve stimulation for drug-resistant epilepsy induced by tuberous sclerosis complex. Epilepsy Behav 2022; 126:108431. [PMID: 34883463 DOI: 10.1016/j.yebeh.2021.108431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study investigated the dynamic and long-term efficacy of vagus nerve stimulation (VNS) in patients with drug-resistant epilepsy (DRE) induced by tuberous sclerosis complex (TSC). In addition, the impact of VNS on cognition and emotion after a one-year follow-up was evaluated. METHODS A total of 17 patients diagnosed with DRE induced by TSC were retrospectively recruited between 2008 and 2019. Dynamic changes in seizure frequency were observed in the responders (≥50% reduction of seizure frequency at last follow-up) and non-responders. Clinical characteristics and seizure outcomes were comprehensively analyzed to determine factors associated with seizure outcomes. The Wechsler intelligence scale was applied in a subgroup of six pediatric patients, whereas the Self-rating Anxiety Scale (SAS) and Self-rating Depression Scale (SDS) were assessed in a subgroup of nine patients to determine the impact of VNS therapy on cognitive performance and emotional state. RESULTS The follow-up duration for the 17 patients who underwent VNS treatment ranged from 0.5 to 10 years (mean ± SD: 4.1 ± 3.2 years). Monthly seizures decreased significantly from three months to four years post-treatment (p < 0.05). At the last follow-up, 70.6% of the patients achieved at least a 50% reduction in seizure frequency, and three patients were completely seizure free. Comparatively, non-responder patients experienced deterioration of seizure frequency after the first year. Notably, after one-year follow-up the mean standard score of full-scale intelligence quotient increased from 67.33 to 69.5 (p = 0.078) while the mean, standard score of SDS decreased from 49.22 to 45.67 (p = 0.003) compared to preoperative neuropsychological evaluation results. CONCLUSION VNS is a safe and effective treatment for patients with DRE caused by TSC. Although early outcomes were encouraging, a follow-up of at least one-year was required to predict long-term outcomes in patients receiving VNS treatment. Moreover, VNS may improve depressive mood in patients with DRE caused by TSC. Further investigations are needed to validate the present results.
Collapse
Affiliation(s)
- Xuezhi Tong
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Lang Qin
- McGovern Institute for Brain Research, Peking University, Beijing 100093, China; Center for MRI Research, Peking University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pengfei Teng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yujiao Yang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China; Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China.
| |
Collapse
|
50
|
Hertzberg C, Franz DN. Anti-convulsant Agents: Everolimus. NEUROPSYCHOPHARMACOTHERAPY 2022:3721-3751. [DOI: 10.1007/978-3-030-62059-2_306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|