1
|
Romano MF, Shih LC, Paschalidis IC, Au R, Kolachalama VB. Large Language Models in Neurology Research and Future Practice. Neurology 2023; 101:1058-1067. [PMID: 37816646 PMCID: PMC10752640 DOI: 10.1212/wnl.0000000000207967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Recent advancements in generative artificial intelligence, particularly using large language models (LLMs), are gaining increased public attention. We provide a perspective on the potential of LLMs to analyze enormous amounts of data from medical records and gain insights on specific topics in neurology. In addition, we explore use cases for LLMs, such as early diagnosis, supporting patient and caregivers, and acting as an assistant for clinicians. We point to the potential ethical and technical challenges raised by LLMs, such as concerns about privacy and data security, potential biases in the data for model training, and the need for careful validation of results. Researchers must consider these challenges and take steps to address them to ensure that their work is conducted in a safe and responsible manner. Despite these challenges, LLMs offer promising opportunities for improving care and treatment of various neurologic disorders.
Collapse
Affiliation(s)
- Michael F Romano
- From the Department of Medicine (M.F.R., R.A., V.B.K.), Boston University Chobanian & Avedisian School of Medicine, MA; Department of Radiology and Biomedical Imaging (M.F.R.), University of California, San Francisco; Department of Neurology (L.C.S., R.A.), Boston University Chobanian & Avedisian School of Medicine; Department of Electrical and Computer Engineering (I.C.P.), Division of Systems Engineering, and Department of Biomedical Engineering; Faculty of Computing and Data Sciences (I.C.P., V.B.K.), Boston University; Department of Anatomy and Neurobiology (R.A.); The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine; Department of Epidemiology, Boston University School of Public Health; Boston University Alzheimer's Disease Research Center (R.A.); and Department of Computer Science (V.B.K.), Boston University, MA
| | - Ludy C Shih
- From the Department of Medicine (M.F.R., R.A., V.B.K.), Boston University Chobanian & Avedisian School of Medicine, MA; Department of Radiology and Biomedical Imaging (M.F.R.), University of California, San Francisco; Department of Neurology (L.C.S., R.A.), Boston University Chobanian & Avedisian School of Medicine; Department of Electrical and Computer Engineering (I.C.P.), Division of Systems Engineering, and Department of Biomedical Engineering; Faculty of Computing and Data Sciences (I.C.P., V.B.K.), Boston University; Department of Anatomy and Neurobiology (R.A.); The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine; Department of Epidemiology, Boston University School of Public Health; Boston University Alzheimer's Disease Research Center (R.A.); and Department of Computer Science (V.B.K.), Boston University, MA
| | - Ioannis C Paschalidis
- From the Department of Medicine (M.F.R., R.A., V.B.K.), Boston University Chobanian & Avedisian School of Medicine, MA; Department of Radiology and Biomedical Imaging (M.F.R.), University of California, San Francisco; Department of Neurology (L.C.S., R.A.), Boston University Chobanian & Avedisian School of Medicine; Department of Electrical and Computer Engineering (I.C.P.), Division of Systems Engineering, and Department of Biomedical Engineering; Faculty of Computing and Data Sciences (I.C.P., V.B.K.), Boston University; Department of Anatomy and Neurobiology (R.A.); The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine; Department of Epidemiology, Boston University School of Public Health; Boston University Alzheimer's Disease Research Center (R.A.); and Department of Computer Science (V.B.K.), Boston University, MA
| | - Rhoda Au
- From the Department of Medicine (M.F.R., R.A., V.B.K.), Boston University Chobanian & Avedisian School of Medicine, MA; Department of Radiology and Biomedical Imaging (M.F.R.), University of California, San Francisco; Department of Neurology (L.C.S., R.A.), Boston University Chobanian & Avedisian School of Medicine; Department of Electrical and Computer Engineering (I.C.P.), Division of Systems Engineering, and Department of Biomedical Engineering; Faculty of Computing and Data Sciences (I.C.P., V.B.K.), Boston University; Department of Anatomy and Neurobiology (R.A.); The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine; Department of Epidemiology, Boston University School of Public Health; Boston University Alzheimer's Disease Research Center (R.A.); and Department of Computer Science (V.B.K.), Boston University, MA
| | - Vijaya B Kolachalama
- From the Department of Medicine (M.F.R., R.A., V.B.K.), Boston University Chobanian & Avedisian School of Medicine, MA; Department of Radiology and Biomedical Imaging (M.F.R.), University of California, San Francisco; Department of Neurology (L.C.S., R.A.), Boston University Chobanian & Avedisian School of Medicine; Department of Electrical and Computer Engineering (I.C.P.), Division of Systems Engineering, and Department of Biomedical Engineering; Faculty of Computing and Data Sciences (I.C.P., V.B.K.), Boston University; Department of Anatomy and Neurobiology (R.A.); The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine; Department of Epidemiology, Boston University School of Public Health; Boston University Alzheimer's Disease Research Center (R.A.); and Department of Computer Science (V.B.K.), Boston University, MA.
| |
Collapse
|
2
|
Vulpius SA, Werge S, Jørgensen IF, Siggaard T, Hernansanz Biel J, Knudsen GM, Brunak S, Pinborg LH. Text mining of electronic health records can validate a register-based diagnosis of epilepsy and subgroup into focal and generalized epilepsy. Epilepsia 2023; 64:2750-2760. [PMID: 37548470 DOI: 10.1111/epi.17734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Combining population-based health registries and electronic health records offers the opportunity to create large, phenotypically detailed patient cohorts of high quality. In this study, we used text mining of clinical notes to confirm International Classification of Diseases, 10th Revision (ICD-10)-registered epilepsy diagnoses and classify patients according to focal and generalized epilepsy types. METHODS Using the Danish National Patient Registry, we identified patients who between 2006 and 2016 received an ICD-10 diagnosis of epilepsy. To validate the epilepsy diagnosis and stratify patients into focal and generalized epilepsy types, we constructed dictionaries for text mining-based extraction of clinical notes. Two physicians manually reviewed the clinical notes for a total of 527 patients and assigned epilepsy diagnoses, which were compared with the text-mined diagnoses. RESULTS We identified 23 632 patients with an ICD-10 diagnosis of epilepsy, of whom 50% were registered with an unspecified epilepsy diagnosis. In total, 11 211 patients were considered likely to have epilepsy by text mining, with an F1 measure ranging from 82% to 90%. Manual review of the electronic health records for 310 patients revealed a false discovery rate of 29%. This rate was decreased to 4% by the text mining algorithm. The weighted average F1 measure for text mining-assigned epilepsy types was 79% (82% for focal and 76% for generalized epilepsy). Text mining successfully assigned a focal or generalized epilepsy type to 92% of the text mining-eligible patients registered with unspecified epilepsy. SIGNIFICANCE Text mining of electronic health records can be used to establish a patient cohort with much higher likelihood of having a diagnosis of epilepsy and a focal or generalized epilepsy type compared to the cohort created from ICD-10 epilepsy codes alone. We believe the concept will be essential for future genome-wide and phenome-wide association studies and subsequently the development of precision medicine for epilepsy patients.
Collapse
Affiliation(s)
- Siri A Vulpius
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Werge
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Isabella Friis Jørgensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Troels Siggaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jorge Hernansanz Biel
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Epilepsy Clinic and Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic and Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sedlakova J, Daniore P, Horn Wintsch A, Wolf M, Stanikic M, Haag C, Sieber C, Schneider G, Staub K, Alois Ettlin D, Grübner O, Rinaldi F, von Wyl V. Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review. PLOS DIGITAL HEALTH 2023; 2:e0000347. [PMID: 37819910 PMCID: PMC10566734 DOI: 10.1371/journal.pdig.0000347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/14/2023] [Indexed: 10/13/2023]
Abstract
Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
Collapse
Affiliation(s)
- Jana Sedlakova
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| | - Paola Daniore
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
| | - Andrea Horn Wintsch
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center for Gerontology, University of Zurich, Zurich, Switzerland
- CoupleSense: Health and Interpersonal Emotion Regulation Group, University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Markus Wolf
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Mina Stanikic
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Christina Haag
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Chloé Sieber
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Gerold Schneider
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Kaspar Staub
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Dominik Alois Ettlin
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Grübner
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Fabio Rinaldi
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Fondazione Bruno Kessler, Trento, Italy
- Swiss Institute of Bioinformatics, Switzerland
| | - Viktor von Wyl
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Fernandes M, Cardall A, Jing J, Ge W, Moura LMVR, Jacobs C, McGraw C, Zafar SF, Westover MB. Identification of patients with epilepsy using automated electronic health records phenotyping. Epilepsia 2023; 64:1472-1481. [PMID: 36934317 PMCID: PMC10239346 DOI: 10.1111/epi.17589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/20/2023]
Abstract
OBJECTIVE Unstructured data present in electronic health records (EHR) are a rich source of medical information; however, their abstraction is labor intensive. Automated EHR phenotyping (AEP) can reduce the need for manual chart review. We present an AEP model that is designed to automatically identify patients diagnosed with epilepsy. METHODS The ground truth for model training and evaluation was captured from a combination of structured questionnaires filled out by physicians for a subset of patients and manual chart review using customized software. Modeling features included indicators of the presence of keywords and phrases in unstructured clinical notes, prescriptions for antiseizure medications (ASMs), International Classification of Diseases (ICD) codes for seizures and epilepsy, number of ASMs and epilepsy-related ICD codes, age, and sex. Data were randomly divided into training (70%) and hold-out testing (30%) sets, with distinct patients in each set. We trained regularized logistic regression and an extreme gradient boosting models. Model performance was measured using area under the receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), with 95% confidence intervals (CI) estimated via bootstrapping. RESULTS Our study cohort included 3903 adults drawn from outpatient departments of nine hospitals between February 2015 and June 2022 (mean age = 47 ± 18 years, 57% women, 82% White, 84% non-Hispanic, 70% with epilepsy). The final models included 285 features, including 246 keywords and phrases captured from 8415 encounters. Both models achieved AUROC and AUPRC of 1 (95% CI = .99-1.00) in the hold-out testing set. SIGNIFICANCE A machine learning-based AEP approach accurately identifies patients with epilepsy from notes, ICD codes, and ASMs. This model can enable large-scale epilepsy research using EHR databases.
Collapse
Affiliation(s)
- Marta Fernandes
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aidan Cardall
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jin Jing
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wendong Ge
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lidia M. V. R. Moura
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Jacobs
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher McGraw
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sahar F. Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. Int J Mol Sci 2023; 24:ijms24032039. [PMID: 36768361 PMCID: PMC9917109 DOI: 10.3390/ijms24032039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Status epilepticus (SE), a condition with abnormally prolonged seizures, is a severe type of epilepsy. At present, SE is not well controlled by clinical treatments. Antiepileptic drugs (AEDs) are the main therapeutic approaches, but they are effective for SE only with a narrow intervening window, and they easily induce resistance. Thus, in this review, we provide an updated summary for an insight into drug-resistant SE, hoping to add to the understanding of the mechanism of refractory SE and the development of active compounds. Firstly, we briefly outline the limitations of current drug treatments for SE by summarizing the extensive experimental literature and clinical data through a search of the PubMed database, and then summarize the common animal models of refractory SE with their advantages and disadvantages. Notably, we also briefly review some of the hypotheses about drug resistance in SE that are well accepted in the field, and furthermore, put forward future perspectives for follow-up research on SE.
Collapse
|
6
|
Crema C, Attardi G, Sartiano D, Redolfi A. Natural language processing in clinical neuroscience and psychiatry: A review. Front Psychiatry 2022; 13:946387. [PMID: 36186874 PMCID: PMC9515453 DOI: 10.3389/fpsyt.2022.946387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Natural language processing (NLP) is rapidly becoming an important topic in the medical community. The ability to automatically analyze any type of medical document could be the key factor to fully exploit the data it contains. Cutting-edge artificial intelligence (AI) architectures, particularly machine learning and deep learning, have begun to be applied to this topic and have yielded promising results. We conducted a literature search for 1,024 papers that used NLP technology in neuroscience and psychiatry from 2010 to early 2022. After a selection process, 115 papers were evaluated. Each publication was classified into one of three categories: information extraction, classification, and data inference. Automated understanding of clinical reports in electronic health records has the potential to improve healthcare delivery. Overall, the performance of NLP applications is high, with an average F1-score and AUC above 85%. We also derived a composite measure in the form of Z-scores to better compare the performance of NLP models and their different classes as a whole. No statistical differences were found in the unbiased comparison. Strong asymmetry between English and non-English models, difficulty in obtaining high-quality annotated data, and train biases causing low generalizability are the main limitations. This review suggests that NLP could be an effective tool to help clinicians gain insights from medical reports, clinical research forms, and more, making NLP an effective tool to improve the quality of healthcare services.
Collapse
Affiliation(s)
- Claudio Crema
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Daniele Sartiano
- Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
7
|
A Full-Stack Application for Detecting Seizures and Reducing Data During Continuous Electroencephalogram Monitoring. Crit Care Explor 2021; 3:e0476. [PMID: 34278312 PMCID: PMC8280012 DOI: 10.1097/cce.0000000000000476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. BACKGROUND: Continuous electroencephalogram monitoring is associated with lower mortality in critically ill patients; however, it is underused due to the resource-intensive nature of manually interpreting prolonged streams of continuous electroencephalogram data. Here, we present a novel real-time, machine learning–based alerting and monitoring system for epilepsy and seizures that dramatically reduces the amount of manual electroencephalogram review. METHODS: We developed a custom data reduction algorithm using a random forest and deployed it within an online cloud-based platform, which streams data and communicates interactively with caregivers via a web interface to display algorithm results. We developed real-time, machine learning–based alerting and monitoring system for epilepsy and seizures on continuous electroencephalogram recordings from 77 patients undergoing routine scalp ICU electroencephalogram monitoring and tested it on an additional 20 patients. RESULTS We achieved a mean seizure sensitivity of 84% in cross-validation and 85% in testing, as well as a mean specificity of 83% in cross-validation and 86% in testing, corresponding to a high level of data reduction. This study validates a platform for machine learning–assisted continuous electroencephalogram analysis and represents a meaningful step toward improving utility and decreasing cost of continuous electroencephalogram monitoring. We also make our high-quality annotated dataset of 97 ICU continuous electroencephalogram recordings public for others to validate and improve upon our methods.
Collapse
|