1
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Shrestha KR, Yoo SY. Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells Int 2019; 2019:4038560. [PMID: 31073312 PMCID: PMC6470417 DOI: 10.1155/2019/4038560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and they occur when these cells reside in a special microenvironment, called the "stem cell niche." Thus, the niche is crucial for the effective performance of the stem cells in both in vivo and in vitro since the niche provides its functional cues by interacting with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Peters S, Zitzelsperger E, Kuespert S, Iberl S, Heydn R, Johannesen S, Petri S, Aigner L, Thal DR, Hermann A, Weishaupt JH, Bruun TH, Bogdahn U. The TGF-β System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis. Front Neurol 2017; 8:669. [PMID: 29326641 PMCID: PMC5736544 DOI: 10.3389/fneur.2017.00669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a fatal orphan disease with high unmet medical need, and a life time risk of approx. 1/400 persons per population. Based on increasing knowledge on pathophysiology including genetic and molecular changes, epigenetics, and immune dysfunction, inflammatory as well as fibrotic processes may contribute to the heterogeneity and dynamics of ALS. Animal and human studies indicate dysregulations of the TGF-β system as a common feature of neurodegenerative disorders in general and ALS in particular. The TGF-β system is involved in different essential developmental and physiological processes and regulates immunity and fibrosis, both affecting neurogenesis and neurodegeneration. Therefore, it has emerged as a potential therapeutic target for ALS: a persistent altered TGF-β system might promote disease progression by inducing an imbalance of neurogenesis and neurodegeneration. The current study assessed the activation state of the TGF-β system within the periphery/in life disease stage (serum samples) and a late stage of disease (central nervous system tissue samples), and a potential influence upon neuronal stem cell (NSC) activity, immune activation, and fibrosis. An upregulated TGF-β system was suggested with significantly increased TGF-β1 protein serum levels, enhanced TGF-β2 mRNA and protein levels, and a strong trend toward an increased TGF-β1 protein expression within the spinal cord (SC). Stem cell activity appeared diminished, reflected by reduced mRNA expression of NSC markers Musashi-1 and Nestin within SC—paralleled by enhanced protein contents of Musashi-1. Doublecortin mRNA and protein expression was reduced, suggesting an arrested neurogenesis at late stage ALS. Chemokine/cytokine analyses suggest a shift from a neuroprotective toward a more neurotoxic immune response: anti-inflammatory chemokines/cytokines were unchanged or reduced, expression of proinflammatory chemokines/cytokines were enhanced in ALS sera and SC postmortem tissue. Finally, we observed upregulated mRNA and protein expression for fibronectin in motor cortex of ALS patients which might suggest increased fibrotic changes. These data suggest that there is an upregulated TGF-β system in specific tissues in ALS that might lead to a “neurotoxic” immune response, promoting disease progression and neurodegeneration. The TGF-β system therefore may represent a promising target in treatment of ALS patients.
Collapse
Affiliation(s)
- Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Zitzelsperger
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Kuespert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Hematology, University Hospital Regensburg, Regensburg, Germany
| | - Rosmarie Heydn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Petri
- Department of Neurology, University Hospital MHH, Hannover, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dietmar R Thal
- Department for Neuroscience, Laboratory for Neuropathology, University of Leuven, Leuven, Belgium
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, Dresden, Germany
| | | | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Kim YK, Na KS. Neuroprotection in Schizophrenia and Its Therapeutic Implications. Psychiatry Investig 2017; 14:383-391. [PMID: 28845163 PMCID: PMC5561394 DOI: 10.4306/pi.2017.14.4.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental disorder. The persisting negative and cognitive symptoms that are unresponsive to pharmacotherapy reveal the impairment of neuroprotective aspects of schizophrenia. In this review, of the several neuroprotective factors, we mainly focused on neuroinflammation, neurogenesis, and oxidative stress. We conducted a narrative and selective review. Neuroinflammation is mainly mediated by pro-inflammatory cytokines and microglia. Unlike peripheral inflammatory responses, neuroinflammation has a role in various neuronal activities such as neurotransmission neurogenesis. The cross-talk between neuroinflammation and neurogenesis usually has beneficial effects in the CNS under physiological conditions. However, uncontrolled and chronic neuroinflammation exert detrimental effects such as neuronal loss, inhibited neurogenesis, and excessive oxidative stress. Neurogenesis is also a major component of neuroprotection. Adult neurogenesis mainly occurs in the hippocampal region, which has an important role in memory formation and processing. Impaired neurogenesis and an ineffective response to antipsychotics may be thought to indicate a deteriorating course of schizophrenia. Oxidative stress and excessive dopaminergic neurotransmission may create a vicious cycle and consequently disturb NMDA receptor-mediated glutamatergic neurotransmission. Based on the current evidences, several neuroprotective therapeutic approaches have been reported to be efficacious for improving psychopathology, but further longitudinal and large-sample based studies are needed.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
5
|
Papy-Garcia D, Albanese P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj J 2017; 34:377-391. [PMID: 28577070 DOI: 10.1007/s10719-017-9773-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.
Collapse
Affiliation(s)
- Dulce Papy-Garcia
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France
| | - Patricia Albanese
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France.
| |
Collapse
|
6
|
Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:277-84. [PMID: 26111720 DOI: 10.1016/j.pnpbp.2015.06.008] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Brian E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
7
|
Choi JS, Mahadik BP, Harley BAC. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 2015; 10:1529-45. [PMID: 26356030 PMCID: PMC4724421 DOI: 10.1002/biot.201400758] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body's blood and immune cells. This process takes place primarily in the bone marrow in specialized 'niche' microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders.
Collapse
Affiliation(s)
- Ji Sun Choi
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
9
|
Insertion of an NPVY sequence into the cytosolic domain of the erythropoietin receptor selectively affects erythropoietin-mediated signalling and function. Biochem J 2010; 427:305-12. [DOI: 10.1042/bj20091951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EPO (erythropoietin), the major hormone regulating erythropoiesis, functions via activation of its cell-surface receptor (EPO-R) present on erythroid progenitor cells. One of the most striking properties of EPO-R is its low expression on the cell surface, as opposed to its high intracellular levels. The low cell-surface expression of EPO-R may thus limit the efficacy of EPO that is routinely used to treat primary and secondary anaemia. In a recent study [Nahari, Barzilay, Hirschberg and Neumann (2008) Biochem. J. 410, 409–416] we have shown that insertion of an NPVY sequence into the intracellular domain of EPO-R increases its cell-surface expression. In the present study we demonstrate that this NPVY EPO-R insert has a selective effect on EPO-mediated downstream signalling in Ba/F3 cells expressing this receptor (NPVY-EPO-R). This is monitored by increased phosphorylation of the NPVY-EPO-R (on Tyr479), Akt, JAK2 (Janus kinase 2) and ERK1/2 (extracellular-signal-regulated kinase 1/2), but not STAT5 (signal transducer and activator of transcription 5), as compared with cells expressing wild-type EPO-R. This enhanced signalling is reflected in augmented proliferation at low EPO levels (0.05 units/ml) and protection against etoposide-induced apoptosis. Increased cell-surface levels of NPVY-EPO-R are most probably not sufficient to mediate these effects as the A234E-EPO-R mutant that is expressed at high cell-surface levels does not confer an augmented response to EPO. Taken together, we demonstrate that insertion of an NPVY sequence into the cytosolic domain of the EPO-R confers not only improved maturation, but also selectively affects EPO-mediated signalling resulting in an improved responsiveness to EPO reflected in cell proliferation and protection against apoptosis.
Collapse
|
10
|
Lo Nigro C, Maffi M, Fischel JL, Monteverde M, Catarsi P, Tonissi F, Lattanzio L, Riba M, Etienne-Grimaldi MC, Formento P, Milano G, Merlano M. Impact of erythropoietin on the effects of irradiation under hypoxia. J Cancer Res Clin Oncol 2009; 135:1615-23. [DOI: 10.1007/s00432-009-0609-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/19/2009] [Indexed: 11/29/2022]
|
11
|
Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen SEW, Lindvall O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006; 26:9703-12. [PMID: 16988041 PMCID: PMC6674454 DOI: 10.1523/jneurosci.2723-06.2006] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-alpha effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-alpha and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-alpha levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice, whereas no significant changes were detected in TNF-R2(-/-) mice. Also after SE, the TNF-R1(-/-) and TNF-R1/R2(-/-) mice produced more new neurons. In contrast, the TNF-R2(-/-) mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1(-/-) and TNF-R1/R2(-/-) mice both under basal conditions and after SE. The TNF-R2(-/-) mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Hippocampus/cytology
- Hippocampus/pathology
- Hippocampus/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/metabolism
- Neurons/pathology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Stem Cells/cytology
- Stem Cells/physiology
Collapse
Affiliation(s)
- Robert E. Iosif
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Christine T. Ekdahl
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Henrik Ahlenius
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Cornelis J. H. Pronk
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sara Bonde
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, SE 221 84 Lund, Sweden, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Sten-Eirik W. Jacobsen
- Hematopoietic Stem Cell Laboratory, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE 221 84 Lund, Sweden
| |
Collapse
|
12
|
Gewirtz DA, Di X, Walker TD, Sawyer ST. Erythropoietin fails to interfere with the antiproliferative and cytotoxic effects of antitumor drugs. Clin Cancer Res 2006; 12:2232-8. [PMID: 16609039 DOI: 10.1158/1078-0432.ccr-05-2287] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Erythropoietin (EPO) therapy is widely used for the prevention and treatment of anemia resulting from cancer chemotherapy. Native EPO regulates erythropoiesis, at least in part, by protecting erythroid progenitor cells from apoptotic cell death. The recent discovery of the EPO receptor (EPOR) on cancer cells raises the concern that EPO therapy might stimulate tumor growth and/or protect cancer cells from drug-induced apoptosis. Therefore, the capacity of EPO to interfere with the effects of conventional chemotherapeutic drugs on proliferation, apoptosis, and the induction of senescence was investigated in MCF-7 and MDA-MB231 breast tumor cells, which express the EPOR as well as in F-MEL erythroleukemia cells. EXPERIMENTAL DESIGN Breast cancer cells and F-MEL leukemic cells were cultured in the presence or absence of EPO and then exposed to antitumor drugs. Cell proliferation was assessed by a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye reduction assay 72 hours after drug exposure. Cytotoxicity was monitored by clonogenic survival. Apoptosis was evaluated either by the terminal deoxyribonucleotide transferase-mediated nick-end labeling assay or fluorescence-activated cell sorting analysis, and senescence was monitored by beta-galactosidase staining. EPO signaling was assessed by monitoring the phosphorylation/activation of specific signaling proteins. RESULTS EPO failed to stimulate the proliferation of MCF-7 or MDA-MB231 breast tumor cells or F-MEL leukemic cells. EPO treatment also failed to interfere with the antiproliferative and/or cytotoxic effects of Adriamycin, Taxol, and tamoxifen in breast tumor cells (or of cytarabine and daunorubicin in F-MEL cells). EPO failed to prevent apoptosis induced by Taxol or senescence induced by Adriamycin in MCF-7 cells. EPO stimulated the activation of extracellular signal-regulated kinase, p38, and c-Jun-NH(2)-kinase in MCF-7 cells but did not activate Akt or signal transducers and activators of transcription 5 (STAT5). EPO failed to activate any of these signaling pathways in MDA-MB231 cells. Cytarabine and daunorubicin interfered with EPO signaling in F-MEL cells. CONCLUSIONS These findings suggest that EPO is unlikely to directly counteract the effectiveness of cancer chemotherapeutic drugs. This may be a consequence of either ineffective signaling through the EPOR or drug-mediated suppression of EPO signaling.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Antagonism
- Drug Screening Assays, Antitumor
- Erythropoietin/pharmacology
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Paclitaxel/pharmacology
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Tamoxifen/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|