1
|
Hao R, Li L, Zhang D, Tian Y, Long H, Li H, Zhu X, Huang Y, Li G, Zhu C. Characterization and functional analysis of pl-miR-2188 in melanin synthesis in leopard coral grouper (Plectropomus leopardus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111043. [PMID: 39491612 DOI: 10.1016/j.cbpb.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
MicroRNAs (miRNAs) are known to regulate gene expression and play a role in body color formation in fish. However, the molecular mechanisms underlying miRNA involvement in the body color of leopard coral grouper (Plectropomus leopardus) remain largely unexplored. In this study, we investigated the expression levels of miR-2188 in red and black P. leopardus (pl-miR-2188) and found significantly higher expression levels in red fish samples compared to those in black fish samples. Silencing pl-miR-2188 in vivo using a pl-miR-2188 antagomir resulted in increased melanin concentration. Following pl-miR-2188 silencing, the expression levels of melanin-related genes, such as tyrosinase (tyr), TYR-related protein 1 (tyrp1-1 and tyrp1-2) and TYR-related protein 2 (tyrp2), and microphthalmia-associated transcription factor (mitf), were elevated. RNAhybrid predictions and dual-luciferase reporter assays identified sox5 as a target mRNA of pl-miR-2188. Following pl-miR-2188 antagomir injection, sox5 expression was significantly upregulated in the injection group compared to that in control groups (P < 0.05). These results suggest that pl-miR-2188 may regulate melanin synthesis in P. leopardus by targeting sox5. This study provides new insights into the miRNA-mRNA interactions involved in melanin synthesis and body color formation in the leopard coral grouper.
Collapse
Affiliation(s)
- Ruijuan Hao
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Liancheng Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongying Zhang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongzhao Long
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaowen Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Yang Huang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Li X, Pak HS, Huber F, Michaux J, Taillandier-Coindard M, Altimiras ER, Bassani-Sternberg M. A microfluidics-enabled automated workflow of sample preparation for MS-based immunopeptidomics. CELL REPORTS METHODS 2023; 3:100479. [PMID: 37426762 PMCID: PMC10326370 DOI: 10.1016/j.crmeth.2023.100479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 07/11/2023]
Abstract
Mass spectrometry (MS)-based immunopeptidomics is an attractive antigen discovery method with growing clinical implications. However, the current experimental approach to extract HLA-restricted peptides requires a bulky sample source, which remains a challenge for obtaining clinical specimens. We present an innovative workflow that requires a low sample volume, which streamlines the immunoaffinity purification (IP) and C18 peptide cleanup on a single microfluidics platform with automated liquid handling and minimal sample transfers, resulting in higher assay sensitivity. We also demonstrate how the state-of-the-art data-independent acquisition (DIA) method further enhances the depth of tandem MS spectra-based peptide sequencing. Consequently, over 4,000 and 5,000 HLA-I-restricted peptides were identified from as few as 0.2 million RA957 cells and a melanoma tissue of merely 5 mg, respectively. We also identified multiple immunogenic tumor-associated antigens and hundreds of peptides derived from non-canonical protein sources. This workflow represents a powerful tool for identifying the immunopeptidome of sparse samples.
Collapse
Affiliation(s)
- Xiaokang Li
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Hui Song Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Emma Ricart Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| |
Collapse
|
3
|
Torgbo S, Rugthaworn P, Sukatta U, Sukyai P. Biological Characterization and Quantification of Rambutan ( Nephelium lappaceum L.) Peel Extract as a Potential Source of Valuable Minerals and Ellagitannins for Industrial Applications. ACS OMEGA 2022; 7:34647-34656. [PMID: 36188307 PMCID: PMC9521024 DOI: 10.1021/acsomega.2c04646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This study extracted ellagitannins from rambutan peel using the Soxhlet technique. The extract was further partitioned and fractionated to get extract rich in ellagitannin and geraniin, respectively. The partitioning of the extract significantly increased total phenolic content (TPC) by 36.3% and its biological properties. Mineral elements such as Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn were identified in both peel and extract. Ellagitannins such as geraniin and corilagin with metabolites (gallic acid and ellagic acid) were identified as the major compounds. Analysis of antioxidant activities shows that the ellagitannin rich extract is as powerful as vitamin C. Geraniin was the main contributor to the free radical scavenging activity. The study also revealed that extract with a fraction rich in geraniin has antioxidant activity equivalent to commercial geraniin (1.56 ± 0.11 Trolox equivalent g/g). It also showed low cytotoxicity on fibroblast L929 cells, moderate tyrosinase activity, and good efficacy against Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes strains. Successive fractionation of the extract is a promising technique to produce geraniin rich fractions with enhanced antioxidant property. Rambutan peel, as a natural product, is a good source of mineral elements and biologically active compounds for pharmaceutical, nutraceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Selorm Torgbo
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prapassorn Rugthaworn
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Udomlak Sukatta
- Kasetsart
Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, 50 Ngamwongwan
Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Shi X, Wu J, Lang X, Wang C, Bai Y, Riley DG, Liu L, Ma X. Comparative transcriptome and histological analyses provide insights into the skin pigmentation in Minxian black fur sheep (Ovis aries). PeerJ 2021; 9:e11122. [PMID: 33986980 PMCID: PMC8086576 DOI: 10.7717/peerj.11122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Minxian black fur (MBF) sheep are found in the northwestern parts of China. These sheep have developed several special traits. Skin color is a phenotype subject to strong natural selection and diverse skin colors are likely a consequence of differences in gene regulation. Methods Skin structure, color differences, and gene expression (determined by RNA sequencing) were evaluated the Minxian black fur and Small-tail Han sheep (n = 3 each group), which are both native Chinese sheep breeds. Results Small-tail Han sheep have a thicker skin and dermis than the Minxian black fur sheep (P < 0.01); however, the quantity of melanin granules is greater (P < 0.01) in Minxian black fur sheep with a more extensive distribution in skin tissue and hair follicles. One hundred thirty-three differentially expressed genes were significantly associated with 37 ontological terms and two critical KEGG pathways for pigmentation (“tyrosine metabolism” and “melanogenesis” pathways). Important genes from those pathways with known involvement in pigmentation included OCA2 melanosomal transmembrane protein (OCA2), dopachrome tautomerase (DCT), tyrosinase (TYR) and tyrosinase related protein (TYRP1), melanocortin 1 receptor (MC1R), and premelanosome protein (PMEL). The results from our histological and transcriptome analyses will form a foundation for additional investigation into the genetic basis and regulation of pigmentation in these sheep breeds.
Collapse
Affiliation(s)
- Xiaolei Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Cailian Wang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.,Key Laboratory for Sheep, Goat, and Cattle Germplasm and Straw Feed in Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Bai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - David Greg Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Lishan Liu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaoming Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
7
|
Tonella L, Pala V, Ponti R, Rubatto M, Gallo G, Mastorino L, Avallone G, Merli M, Agostini A, Fava P, Bertero L, Senetta R, Osella-Abate S, Ribero S, Fierro MT, Quaglino P. Prognostic and Predictive Biomarkers in Stage III Melanoma: Current Insights and Clinical Implications. Int J Mol Sci 2021; 22:4561. [PMID: 33925387 PMCID: PMC8123895 DOI: 10.3390/ijms22094561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Melanoma is one of the most aggressive skin cancers. The 5-year survival rate of stage III melanoma patients ranges from 93% (IIIA) to 32% (IIID) with a high risk of recurrence after complete surgery. The introduction of target and immune therapies has dramatically improved the overall survival, but the identification of patients with a high risk of relapse who will benefit from adjuvant therapy and the determination of the best treatment choice remain crucial. Currently, patient prognosis is based on clinico-pathological features, highlighting the urgent need of predictive and prognostic markers to improve patient management. In recent years, many groups have focused their attention on identifying molecular biomarkers with prognostic and predictive potential. In this review, we examined the main candidate biomarkers reported in the literature.
Collapse
Affiliation(s)
- Luca Tonella
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Valentina Pala
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Renata Ponti
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Giuseppe Gallo
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Luca Mastorino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Gianluca Avallone
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Martina Merli
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Andrea Agostini
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Paolo Fava
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Luca Bertero
- Department of Oncology, Pathology Unit, University of Turin, 10126 Turin, Italy; (L.B.); (R.S.); (S.O.-A.)
| | - Rebecca Senetta
- Department of Oncology, Pathology Unit, University of Turin, 10126 Turin, Italy; (L.B.); (R.S.); (S.O.-A.)
| | - Simona Osella-Abate
- Department of Oncology, Pathology Unit, University of Turin, 10126 Turin, Italy; (L.B.); (R.S.); (S.O.-A.)
| | - Simone Ribero
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Maria Teresa Fierro
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, 10126 Turin, Italy; (V.P.); (R.P.); (M.R.); (G.G.); (L.M.); (G.A.); (M.M.); (A.A.); (P.F.); (S.R.); (M.T.F.); (P.Q.)
| |
Collapse
|
8
|
Lin X, Tian C, Huang Y, Shi H, Li G. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Black-Spotted Pattern Formation in Spotted Scat ( Scatophagus argus). Animals (Basel) 2021; 11:ani11030765. [PMID: 33802016 PMCID: PMC8001731 DOI: 10.3390/ani11030765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Spotted scat (Scatophagus argus) is a commercially important marine aquaculture and ornamental fish species in China and East Asian countries. There are dozens of black spots on each side of the body, and the caudal fin, which is yellow and black, is appreciated in ornamental fish markets. To explore the genetic mechanisms of its pattern formation, we found 2357 differentially expressed genes (DEGs) by comparing the transcriptome in the black-spotted skin, non-spotted skin and caudal fin in S. argus. The results will expand our knowledge about the molecular mechanism of important genes and pathways associated with pigment pattern formation and provide a certain theoretical basis for the molecular breeding in S. argus. Abstract Spotted scat (Scatophagus argus) is an economically important marine aquaculture and ornamental fish species in Asia, especially in southeast China. In this study, skin transcriptomes of S. argus were obtained for three types of skin, including black-spotted skin (A), non-spotted skin (B) and caudal fin (C). A total of nine complementary DNA (cDNA) libraries were obtained by Illumina sequencing. Bioinformatics analysis revealed that 1358, 2086 and 487 genes were differentially expressed between A and B, A and C, and B and C, respectively. The results revealed that there were 134 common significantly differentially expressed genes (DEGs) and several key genes related to pigment synthesis and pigmentation, including tyrp1, mitf, pmel, slc7a2, tjp1, hsp70 and mart-1. Of these, some DEGs were associated with pigmentation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as tyrosine metabolism, melanogenesis, the Wnt signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in S. argus and provide valuable information for skin coloration, especially the formation of spotted patterns on other marine fish species.
Collapse
Affiliation(s)
- Xiaozhan Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: ; Tel.: +86-759-2383124; Fax: +86-759-2382459
| |
Collapse
|
9
|
Yin SJ, Lee JR, Hahn MJ, Yang JM, Qian GY, Park YD. Tyrosinase-mediated melanogenesis in melanoma cells: Array comparative genome hybridization integrating proteomics and bioinformatics studies. Int J Biol Macromol 2020; 170:150-163. [PMID: 33359255 DOI: 10.1016/j.ijbiomac.2020.12.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
We investigated the tyrosinase-associated melanogenesis in melanoma cells by using OMICS techniques. We characterized the chromosome copy numbers, including Chr 11q21 where the tyrosinase gene is located, from several melanoma cell lines (TXM13, G361, and SK-MEL-28) by using array CGH. We revealed that 11q21 is stable in TXM13 cells, which is directly related to a spontaneous high melanin pigment production. Meanwhile, significant loss of copy number of 11q21 was found in G361 and SK-MEL-28. We further profiled the proteome of TXM13 cells by LC-ESI-MSMS and detected more than 900 proteins, then predicted 11 hub proteins (YWHAZ; HSP90AA1; HSPA5; HSPA1L; HSPA9; HSP90B1; HSPA1A; HSPA8; FKSG30; ACTB; DKFZp686DQ972) by using an interactomic algorithm. YWHAZ (25% interaction in the network) is thought to be a most important protein as a linking factor between tyrosinase-triggered melanogenesis and melanoma growth. Bioinformatic tools were further applied for revealing various physiologic mechanisms and functional classification. The results revealed clues for the spontaneous pigmentation capability of TXM13 cells, contrary to G361 and SK-MEL-28 cells, which commonly have depigmentation properties during subculture. Our study comparatively conducted the genome-wide screening and proteomic profiling integrated interactomics prediction for TXM13 cells and suggests new insights for studying both melanogenesis and melanoma.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, South Korea
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China.
| |
Collapse
|
10
|
Sato S, Kato J, Sawada M, Horimoto K, Okura M, Hida T, Uhara H. Usefulness of neuron-specific enolase as a serum marker of metastatic melanoma. J Dermatol 2020; 47:1141-1148. [PMID: 32734632 DOI: 10.1111/1346-8138.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Treatment strategies for advanced melanoma are dramatically changing, due to immune-checkpoint inhibitors and BRAF/MEK inhibitors. Nevertheless, reliable serum markers for evaluation of treatment responses and the outcome are still limited. Some previous reports suggested that serum neuron-specific enolase (sNSE) may be a useful marker for melanoma; however, its usefulness is controversial. Moreover, NSE has not been examined in vitro by using melanoma cell lines. We retrospectively evaluated sNSE and serum lactate dehydrogenase (sLDH) levels at the initial diagnosis and during therapy in 33 melanoma patients of various stages. We analyzed the NSE concentrations in cell lysates and supernatants from melanoma cell lines by enzyme-linked immunosorbent assay. The median sNSE was significantly higher in stage IV patients compared with stages I/II and III (16.3, 12.7 and 12.1 ng/mL, respectively). sNSE was elevated in 20% (2/10) of stage III and 61.1% (11/18) of stage IV patients but not in stages I/II. sNSE and sLDH tended to correspond to the total tumor volume (P = 0.48 and 0.58; 95% confidence intervals, 0.005-0172 and 0.776-0.836, respectively). The coincidence rate of sNSE and sLDH in stage IV at the initial diagnosis was 11 of 18 (61.1%). Of the remaining patients, elevated sNSE but not sLDH was observed in five patients (27.8%) and elevated sLDH but not sNSE was observed in two (11.1%). Four of the five patients showing elevated sNSE and normal sLDH were of the mucosal type. NSE was detected in both supernatant and cell lysate of all four melanoma cell lines (0.30-237.32 ng/mL and 137-483.04 ng/mg, respectively). Two cell lines with a high supernatant NSE level contained many dead cells in the supernatant. The combination of sNSE and sLDH could contribute to the early detection of distant metastasis and disease condition evaluations for advanced melanoma patients.
Collapse
Affiliation(s)
- Sayuri Sato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahide Sawada
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Gong Y, Hu M, Xu S, Wang B, Wang C, Mu X, Xu P, Jiang Y. Comparative transcriptome analysis reveals expression signatures of albino Russian sturgeon, Acipenseriformes gueldenstaedtii. Mar Genomics 2019; 46:1-7. [PMID: 30852186 DOI: 10.1016/j.margen.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Albinism is a genetically inherited condition that is caused by a series of genetic abnormalities leading to a reduction in melanin production. Russian sturgeon is one of the most valuable freshwater fish species worldwide, and albino individuals have been found in fish farms. Due to its complicated genome and scarce genome-wide genetic resources, the underlying molecular basis of albinism in Russian sturgeon is unknown. In the present study, we first generated transcriptome profile of Acipenser gueldenstaedtii using pooled tissues, which provided reliable reference sequences for future molecular genetic studies. A total of 369,441 contigs were assembled, corresponding to 32,965 unique genes. A comparative analysis of the transcripts from the skin of albino and wildtype individuals was conducted afterwards. A total of 785 unique genes were differentially expressed, including the upregulation of 385 genes and the downregulation of 400 genes in albino individuals. The expression pattern of 16 selected differentially expressed genes was validated using qRT-PCR. Additional annotation, GO enrichment analysis and gene pathway analysis indicated that the melanogenesis pathway may be interrupted in albinism. Eight potential causative genes that were highly likely to be responsible for sturgeon albinism were identified, including Dct, Tyrp1b, Slc45a2, Ctns, Pmela, Pmelb, Cd63, and Bloc1s3, which were found to be significantly down-regulated in albino Russian sturgeon. Moreover, a sliding window analysis of the ratio of nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) ratios indicated that seven out of the eight genes underwent positive selection during evolution. Our results provide a valuable basis for understanding the molecular mechanism of albinism in fish species and will facilitate future genetic selection and breeding of sturgeon with market-favored traits in aquaculture.
Collapse
Affiliation(s)
- Yiwen Gong
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mou Hu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Shijian Xu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Bin Wang
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China
| | - Xidong Mu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Peng Xu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China; Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China.
| |
Collapse
|
12
|
Ethanolic extract of Melia azedarach L. induces melanogenesis through the cAMP-PKA-CREB signaling pathway. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mamat N, Lu XY, Kabas M, Aisa HA. Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med 2018; 42:2665-2675. [PMID: 30226537 PMCID: PMC6192770 DOI: 10.3892/ijmm.2018.3861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022] Open
Abstract
Vitiligo is a depigmentation disorder of the skin. It is primarily caused by the destruction of melanocytes or obstruction of the melanin synthesis pathway. Melanin is a type of skin pigment that determines skin color. The seeds of Vernonia anthelmintica (L.) Willd (Kaliziri) are used for treating skin diseases including vitiligo in traditional Uyghur medicine. 1,5‑Dicaffeoylquinic acid (1,5‑diCQA) is a natural polyphenolic compound widely distributed in plants and extracted from Kaliziri seeds. Therefore, in the present study, the effect of 1,5‑diCQA on melanin synthesis in B16 cell was evaluated, and its molecular mechanism was explored. The results indicated that 1,5‑diCQA treatment of B16 cells stimulated an increase of intracellular melanin level and tyrosinase (TYR) activity without cytotoxicity. Reverse transcription quantitative polymerase chain reaction results also indicated that 1,5‑diCQA may markedly improve the protein expression and RNA transcription of microphthalmia‑associated transcription factor (MITF), melanogenic enzyme Tyr, tyrosinase‑related protein 1 (TRP 1) and tyrosinase‑related protein 2 (TRP 2). Additional results identified that 1,5‑diCQA may promote the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK) and extracellular signal‑regulated kinase (ERK) MAPK. Notably, the increased levels of intracellular melanin synthesis and tyrosinase expression induced by 1,5‑diCQA treatment were significantly attenuated by the protein kinase A (PKA) inhibitor H‑89. Intracellular cyclic adenosine monophosphate (cAMP) concentration and phosphorylation of cAMP‑response element binding protein was increased following 1,5‑diCQA treatment. These results indicated that 1,5‑diCQA stimulated melanogenesis via the MAPK and cAMP/PKA signaling pathways in B16 cells, which has potential therapeutic implications for vitiligo.
Collapse
Affiliation(s)
- Nuramina Mamat
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Xue Ying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Maidina Kabas
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang 830011, P.R. China
| |
Collapse
|
14
|
FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Biochem Biophys Res Commun 2017. [PMID: 28623131 DOI: 10.1016/j.bbrc.2017.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is known as a metabolic regulator to regulate the metabolism of glucose and lipids. However, the underlying mechanism of FGF21 on melanin synthesis remains unknown. Therefore, the current study investigates the effect of FGF21 on melanogenesis in alpaca melanocytes. We transfected the FGF21 into alpaca melanocytes, then detected the melanin contents, protein and mRNA levels of pigmentation-related genes in order to determine the melanogenesis-regulating pathway of FGF21. The results showed that FGF21 overexpression suppressed melanogenesis and decreased the expression of the major target genes termed microphthalmia-associated transcription factor (MITF) and its downstream genes, including tyrosinase (TYR) and tyrosinase-related protein 2 (TRP2). However FGF21 increased the expression of phospho-extracellular signal-regulated kinase (p-Erk1/2). In contrast, FGF21-siRNA, a small interference RNA mediating FGF21 silencing, abolished the inhibition of melanogenesis. Altogether, FGF21 may decrease melanogenesis in alpaca melanocytes via ERK activation and subsequent MITF downregulation, which is then followed by the suppression of melanogenic enzymes and melanin production.
Collapse
|
15
|
Hagiwara K, Okura M, Sumikawa Y, Hida T, Kuno A, Horio Y, Yamashita T. Biochemical effects of the flavanol-rich lychee fruit extract on the melanin biosynthesis and reactive oxygen species. J Dermatol 2017; 43:1174-1183. [PMID: 26970333 DOI: 10.1111/1346-8138.13326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
An ingredient of fruit polyphenol, resveratrol, is known to have an inhibitory effect on melanogenesis. In order to examine the functional differences between resveratrol and other fruit polyphenols, we compared biochemical effects of a resveratrol-free polyphenol, flavanol-rich lychee fruit extract (FRLFE), with other phenolic compounds including resveratrol. FRLFE as well as hydroquinone and resveratrol suppressed growth of B16F1 melanoma cells more significantly than rhododendrol or arbutin. Resveratrol suppressed mushroom tyrosinase at the lowest concentration (23.0 μmol/L) among the compounds tested. FRLFE and hydroquinone suppressed tyrosinase at almost the same concentration (half maximal inhibitory concentration [IC50 ], 83.5 and 94.6 μmol/L, respectively), which was higher than rhododendrol, ascorbic acid and arbutin (IC50 , 245, 345 and 421 μmol/L, respectively). Western blot analysis revealed that although resveratrol decreased expressions of tyrosinase and tyrosinase-related protein 1, FRLFE did not affect their expressions. Both FRLFE and resveratrol suppressed antimycin A-mediated reactive oxygen species (ROS) production in melanocytic cells. Resveratrol-mediated ROS suppression was inhibited by nicotinamide, a SIRT1 inhibitor. However, FRLFE-mediated suppression was not affected by nicotinamide. Moreover, FRLFE directly decreased superoxide in vitro, as detected by superoxide dismutase-like scavenging activity assay. These results suggest that FRLFE can protect melanocytes from cytotoxicity caused by an excess amount of melanin and ROS in a different manner from resveratrol.
Collapse
Affiliation(s)
- Kazuya Hagiwara
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuyuki Sumikawa
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiharu Yamashita
- Department of Dermatology, and Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
16
|
Abstract
Persistent infection with high-risk human papillomavirus (HPV) genotype is a major factor leading to many human cancers. Mechanisms of HPV entry into host cells and genome trafficking towards the nucleus are incompletely understood. Dopachrome tautomerase (DCT) was identified as a cellular gene required for HPV infection in HeLa cells on a siRNA screen study. Here, we confirm that DCT knockdown significantly decreases HPV infection in the human keratinocyte HaCaT cells as was observed in HeLas. We investigated the effects of DCT knockdown and found that DCT depletion caused increased reactive oxygen species (ROS) levels, DNA damage and altered cell cycle in HaCaT cells. We observed increased viral DNA localization at the endoplasmic reticulum but an overall decrease in infection in DCT knockdown cells. This observation suggests that viral DNA might be retained in the ER due to altered cell cycle, and viral particles are incapable of further movement towards the nucleus in DCT knockdown cells.
Collapse
Affiliation(s)
- Pınar Aksoy
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| | - Patricio I. Meneses
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| |
Collapse
|
17
|
Identification of a small molecule that downregulates MITF expression and mediates antimelanoma activity in vitro. Melanoma Res 2017; 26:117-24. [PMID: 26684062 DOI: 10.1097/cmr.0000000000000229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a type of cancer arising from the melanocytes, which are the cells that make up the pigment melanin and are derived from the neural crest. There is no particularly effective therapy once the disease is metastatic, highlighting the need for discovery of novel potent agents. In this investigation, we adopted a zebrafish embryonic pigmentation model to identify antimelanoma agents by screening an in-house small molecule library. With this assay, we found that a small molecule compound, SKLB226, blocked zebrafish pigmentation and pigment cell migration. Mechanism of action studies showed that SKLB226 downregulated MITF mRNA level in both zebrafish embryos and mammalian melanoma cells. Further studies showed that it could efficiently suppress the viability and migration of mammalian melanoma cells. In summary, SKLB226 can be used as a chemical tool to study melanocyte development as well as an antimelanoma lead compound that should be subjected to further structural optimization.
Collapse
|
18
|
Promoter-Associated RNAs Regulate HSPC152 Gene Expression in Malignant Melanoma. Noncoding RNA 2016; 2:ncrna2030007. [PMID: 29657265 PMCID: PMC5831909 DOI: 10.3390/ncrna2030007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 01/02/2023] Open
Abstract
The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as "small" RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200-500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200-500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation.
Collapse
|
19
|
Shi Z, Ji K, Yang S, Zhang J, Yao J, Dong C, Fan R. Biological characteristics of mouse skin melanocytes. Tissue Cell 2016; 48:114-20. [DOI: 10.1016/j.tice.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/04/2016] [Indexed: 01/28/2023]
|
20
|
miR-196a-2 rs11614913 polymorphism is associated with vitiligo by affecting heterodimeric molecular complexes of Tyr and Tyrp1. Arch Dermatol Res 2015; 307:683-92. [PMID: 25896941 DOI: 10.1007/s00403-015-1563-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/30/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Tyrosinase and tyrosinase-related protein 1 (Tyr-Tyrp1) complex plays a critical role in the synthesis of melanin intermediates, which involves the production of reactive oxygen species (ROS) and contributes to the development of vitiligo. Based on our previous observation that rs11614913 single nucleotide polymorphism (SNP) in miR-196a-2 could affect the risk of vitiligo by influencing Tyrp1, we hypothesized that the same SNP could also regulate the level of Tyr in vitiligo. The aim of this study was to evaluate the potential association between rs11614913 SNP in miR-196a-2 and serum Tyr level in vitiligo and the regulatory role of miR-196a-2 in the expression of Tyr in melanocytes. The serum Tyr level was detected in 116 patients with vitiligo and 116 controls by ELISA plate assay. The expression level of Tyrp1 and Tyr in PIG1(normal melanocyte cell lines) cells was analyzed by western blotting. The ROS level and apoptosis rate in PIG1 cells transfected with si-Tyr or control siRNA were tested by flow cytometry. The results show that the individuals with TT+TC genotypes in miR-196a-2 and higher Tyr level in serum had an increased risk of vitiligo compared with those who had the CC genotype and lower Tyr level (P < 0.001). Furthermore, the rs11614913 C allele in miR-196a-2 enhanced its inhibitory regulation on the expression of Tyr, the down-regulation of which in melanocytes successfully reduced the intracellular ROS levels and the apoptosis rate. In conclusion, our findings suggest that miR-196a-2 polymorphisms can regulate the Tyr levels, which influences the susceptibility of vitiligo.
Collapse
|
21
|
Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp. PLoS One 2014; 9:e108200. [PMID: 25255374 PMCID: PMC4177847 DOI: 10.1371/journal.pone.0108200] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023] Open
Abstract
Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.
Collapse
|
22
|
Xu Y, Zhang XH, Pang YZ. Association of Tyrosinase (TYR) and Tyrosinase-related Protein 1 (TYRP1) with Melanic Plumage Color in Korean Quails (Coturnix coturnix). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1518-22. [PMID: 25049736 PMCID: PMC4093817 DOI: 10.5713/ajas.2013.13162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/01/2013] [Accepted: 05/30/2013] [Indexed: 11/27/2022]
Abstract
TYR (Tyrosinase) and TYRP1 (Tyrosinase-related protein 1) play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage). Two SNPs (367T→C and 1153C→T) were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.
Collapse
Affiliation(s)
- Ying Xu
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiao-Hui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| | - You-Zhi Pang
- College of Animal Science, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
23
|
Hirobe T, Ito S, Wakamatsu K, Kawa Y, Abe H. The mouse brown (b/Tyrp1(b) ) allele does not affect pheomelanin synthesis in mice. Zoolog Sci 2014; 31:53-63. [PMID: 24521313 DOI: 10.2108/zsj.31.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
B (Tyrp1 (+)), the wild type allele at the mouse brown locus, produces black eumelanin, while b (Tyrp1(b) ), the recessive allele, produces brown eumelanin and exhibits lower tyrosinase (Tyr)-related protein 1 (Tyrp1) activity. However, it is unknown whether melanocyte proliferation and differentiation are affected by the Tyrp1(b) mutation. The proliferation rate of brown (C57BL/10JHir (B10)-Tyrp1(b) / Tyrp1(b) ) melanocytes cultured in a serum-free melanocyte proliferation medium (MDMD) was similar to that of black (B10-Tyrp1(+)/Tyrp1(+) ) melanocytes. Although brown melanocytes exhibited normal morphology, their pigmentation was lower than that of black melanocytes. However, Tyr activity in brown melanocytes was increased both in vivo and in vitro. Melanosomes of cultured brown melanocytes were mostly spherical stage III melanosomes with granular depositions of pigments, whereas those of cultured black melanocytes were mostly stage IV ellipsoidal melanosomes with pigment depositions in intraluminal fibrils. Chemical analysis of melanin present in dorsal hairs of 5-week-old mice from the F2 generation between brown and recessive yellow (B10-Mc1r(e)/Mc1r(e) ) or agouti (B10-A/A) mice showed that eumelanin content was greatly decreased in brown and brown agouti (cinnamon) mice, whereas pheomelanin contents in brown recessive yellow and cinnamon mice did not differ from the corresponding Tyrp1(+)/- mice. These results suggest that the brown allele greatly inhibits eumelanin, but not pheomelanin synthesis.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- 1 Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Tyrosinase-related protein 1 mRNA expression in lymph node metastases predicts overall survival in high-risk melanoma patients. Br J Cancer 2013; 108:1641-7. [PMID: 23519055 PMCID: PMC3668475 DOI: 10.1038/bjc.2013.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Clinical outcome of high-risk melanoma patients is not reliably predicted from histopathological analyses of primary tumours and is often adjusted during disease progression. Our study aimed at extending our previous findings in skin metastases to evaluate the prognostic value of tyrosinase-related protein 1 (TYRP1) in lymph node metastases of stages III and IV melanoma patients. Methods: TYRP1 mRNA expression in 104 lymph node metastases was quantified by real-time PCR and normalised to S100 calcium-binding protein B (S100B) mRNA expression to correct for tumour load. TYRP1/S100B ratios were calculated and median was used as cutoff value. TYRP1/S100B mRNA values were correlated to clinical follow-up and histopathological characteristics of the primary lesion. Results: A high TYRP1/S100B mRNA ratio significantly correlated with reduced disease-free (DFS) and overall survival (OS; Cox regression analysis, P=0.005 and 0.01, respectively), increased Breslow thickness (Spearman's rho test, P<0.001) and the presence of ulceration (Mann–Whitney test, P=0.02) of the primaries. Moreover, high TYRP1/S100B was of better prognostic value (lower P-value) for OS than Breslow thickness and ulceration. Finally, it was well conserved during disease progression with respect to high/low TYRP1 groups. Conclusion: High TYRP1/S100B mRNA expression in lymph node metastases from melanoma patients is associated with unfavourable clinical outcome. Its evaluation in lymph node metastases may refine initial prognosis for metastatic patients, may define prognosis for those with unknown or non-evaluable primary lesions and may allow different management of the two groups of patients.
Collapse
|
26
|
Ishii-Osai Y, Yamashita T, Tamura Y, Sato N, Ito A, Honda H, Wakamatsu K, Ito S, Nakayama E, Okura M, Jimbow K. N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model. J Dermatol Sci 2012; 67:51-60. [DOI: 10.1016/j.jdermsci.2012.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/27/2022]
|
27
|
Evans RL, Marriott RE, Harker M. Axillary skin: biology and care. Int J Cosmet Sci 2012; 34:389-95. [DOI: 10.1111/j.1468-2494.2012.00729.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023]
Affiliation(s)
- R. L. Evans
- Port Sunlight Laboratory; Unilever Research and Development; Quarry Road East; Bebington; Wirral; CH63 3JW; U.K
| | - R. E. Marriott
- Port Sunlight Laboratory; Unilever Research and Development; Quarry Road East; Bebington; Wirral; CH63 3JW; U.K
| | - M. Harker
- Port Sunlight Laboratory; Unilever Research and Development; Quarry Road East; Bebington; Wirral; CH63 3JW; U.K
| |
Collapse
|
28
|
Magina S, Vieira-Coelho MA, Serrão MP, Kosmus C, Moura E, Moura D. Ultraviolet B radiation differentially modifies catechol-O-methyltransferase activity in keratinocytes and melanoma cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2012; 28:137-41. [DOI: 10.1111/j.1600-0781.2012.00653.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Maria Paula Serrão
- Institute of Pharmacology and Therapeutics; Faculty of Medicine; University of Porto; Porto; Portugal
| | - Carina Kosmus
- Institute of Pharmacology and Therapeutics; Faculty of Medicine; University of Porto; Porto; Portugal
| | | | - Daniel Moura
- Institute of Pharmacology and Therapeutics; Faculty of Medicine; University of Porto; Porto; Portugal
| |
Collapse
|
29
|
Journe F, Id Boufker H, Van Kempen L, Galibert MD, Wiedig M, Salès F, Theunis A, Nonclercq D, Frau A, Laurent G, Awada A, Ghanem G. TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br J Cancer 2011; 105:1726-32. [PMID: 22045183 PMCID: PMC3242608 DOI: 10.1038/bjc.2011.451] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Clinical outcome of patients with high-risk melanoma cannot be reliably predicted on the basis of classical histopathological examination. Our study aimed to determine in melanoma metastases a gene expression profile associated with patient survival, and to identify and validate marker(s) of poor clinical outcome. Methods: Skin and lymph node metastases from melanoma patients (training population) were used to identify candidate prognostic marker(s) based on DNA microarray analysis. Additional skin metastases (validation population) were used to assess the prognostic value of the first ranked gene by real-time PCR. Results: We performed microarray analysis in the training population and generated a list of 278 probe sets associated with a shorter survival. We used the first ranked gene, tyrosinase-related protein 1 (TYRP1), further measured its expression in the validation population by real-time PCR and found it to be significantly correlated with distant metastasis-free survival (DMFS), overall survival (OS) and Breslow thickness. We also found that it was fairly well conserved in the course of the disease regardless of the delay to metastasis occurrence. Finally, although Tyrp1 protein (immunohistochemistry (IHC)) was only detected in about half of the samples, we showed that its expression also correlated with Breslow thickness. Conclusion: Our data indicate that TYRP1 mRNA expression level, at least in skin metastases, is a prognostic marker for melanoma, and is particularly useful when prognostic pathology parameters at the primary lesion are lacking. Its conserved expression further supports its use as a target for therapy.
Collapse
Affiliation(s)
- F Journe
- Laboratoire d'Oncologie et de Chirurgie Expérimentale, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Heger-Bordet, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pinon A, Limami Y, Micallef L, Cook-Moreau J, Liagre B, Delage C, Duval RE, Simon A. A novel form of melanoma apoptosis resistance: melanogenesis up-regulation in apoptotic B16-F0 cells delays ursolic acid-triggered cell death. Exp Cell Res 2011; 317:1669-76. [PMID: 21565187 DOI: 10.1016/j.yexcr.2011.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022]
Abstract
Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. The resistance mechanisms are complex and melanoma cells may have diverse possibilities for regulating apoptosis to generate apoptotic deficiencies. In this study, we investigated the relationship between melanogenesis and resistance to apoptosis induced by ursolic acid, a natural chemopreventive agent, in B16-F0 melanoma cells. We demonstrated that cells undergoing apoptosis are able to delay their own death. It appeared that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were clearly implicated in an apoptosis resistance mechanism; while TRP-2, a well known mediator of melanoma resistance to cell death, was repressed. Our results confirm the difficulty of treating melanomas, since, even undergoing apoptosis, cells are nevertheless able to trigger a resistance mechanism to delay death.
Collapse
Affiliation(s)
- Aline Pinon
- Institut GEIST, EA 4021 "Biomolécules et thérapies anti-tumorales", Université de Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Magina S, Esteves-Pinto C, Moura E, Serrão MP, Moura D, Petrosino S, Di Marzo V, Vieira-Coelho MA. Inhibition of basal and ultraviolet B-induced melanogenesis by cannabinoid CB(1) receptors: a keratinocyte-dependent effect. Arch Dermatol Res 2011; 303:201-10. [PMID: 21298280 DOI: 10.1007/s00403-011-1126-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Ultraviolet radiation is the major environmental insult to the skin and stimulates the synthesis of melanin in melanocytes, which then distribute it to the neighboring keratinocytes where it confers photo-protection. Skin color results from the paracrine interaction between these two cell types. Recent studies suggest that endocannabinoids are potential mediators in the skin. Here, we investigated whether cannabinoid drugs play a role in melanogenesis and if ultraviolet radiation modifies the cutaneous endocannabinoid system. We used human melanotic melanoma cell line (SK-mel-1) in monoculture or co-culture with human keratinocytes (HaCat). Endocannabinoid levels, cannabinoid receptors expression, and melanin content were evaluated under basal conditions and after ultraviolet-B irradiation (311 nm). We provide evidence that human melanoma cells (SK-mel-1) express CB(1) receptors, and when in co-culture with keratinocytes (HaCat), the selective CB(1) receptor agonist arachidonyl-2-chloroethylamide (ACEA 1 and 10 μM) inhibited (by 33.4 and 37.3%, respectively) basal melanogenesis. In addition, ultraviolet-B-induced melanogenesis in co-cultures was abolished by ACEA 10 μM. Both ACEA inhibitory effects were reversed by AM251 (1 μM), a selective CB(1) antagonist. Furthermore, ultraviolet-B radiation increased endocannabinoids levels only in keratinocytes, whereas CB(1) cannabinoid receptor expression was up-regulated only in melanoma cells. Our results collectively suggest that ultraviolet radiation activates paracrine CB(1)-mediated endocannabinoid signaling to negatively regulate melanin synthesis. The endocannabinoid system in the skin may be a possible target for future therapies in pigmentary disorders.
Collapse
Affiliation(s)
- Sofia Magina
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 2009; 22:740-9. [PMID: 19725928 DOI: 10.1111/j.1755-148x.2009.00630.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more ATP-binding cassette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC-M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC-M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.
Collapse
Affiliation(s)
- Kevin G Chen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
33
|
Chen KG, Leapman RD, Zhang G, Lai B, Valencia JC, Cardarelli CO, Vieira WD, Hearing VJ, Gottesman MM. Influence of melanosome dynamics on melanoma drug sensitivity. J Natl Cancer Inst 2009; 101:1259-71. [PMID: 19704071 DOI: 10.1093/jnci/djp259] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics. METHODS The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays. Differences in pigmentation, melanosome stages, melanosome number, and cellular structures in different cell lines in response to various treatments were examined by electron microscopy. The relative numbers of melanosomes of different stages were compared after treatment with 1-phenyl-2-thiourea. The relationship between drug transporter function and endogenous melanogenic toxicity was assessed by treating cells with the cyclosporin analog PSC-833 and by assessing vacuole formation and cell growth inhibition. All statistical tests were two-sided. RESULTS Endogenous melanogenic cytotoxicity, produced by damaged melanosomes, resulted in pronounced cell growth inhibition in MNT-1 cells compared with amelanotic SK-MEL-28 cells. The sensitivity to CDDP of MNT-1 cells was 3.8-fold higher than that of SK-MEL-28 cells (mean IC(50) for SK-MEL-28 and MNT-1 = 2.13 microM and 0.56 microM, respectively; difference = 1.57 microM, 95% confidence interval = 1.45 to 1.69; P = .0017). After treatment with 6.7 microM CDDP for 72 hours, the number of stage II-III melanosomes in surviving MNT-1 cells was 6.8-fold that of untreated cells. Modulation of MNT-1 cells to earlier-stage (II, II-III, III) melanosomes by treatment with the tyrosinase inhibitor 1-phenyl-2-thiourea dramatically increased CDDP resistance. Furthermore, PSC-833 principally suppressed MNT-1 melanotic cell growth via an elevation of autophagosome-like vacuolar structures, possibly by inhibiting melanosome membrane transporters. CONCLUSIONS Melanosome dynamics (including their biogenesis, density, status, and structural integrity) regulate the drug resistance of melanoma cells. Manipulation of melanosome functions may be an effective way to enhance the therapeutic activity of anticancer drugs against melanoma.
Collapse
Affiliation(s)
- Kevin G Chen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bldg 37, Rm 2108, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Larson AR, Konat E, Alani RM. Melanoma biomarkers: current status and vision for the future. ACTA ACUST UNITED AC 2008; 6:105-17. [PMID: 19107110 DOI: 10.1038/ncponc1296] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 09/25/2008] [Indexed: 01/29/2023]
Abstract
Melanoma is the leading cause of death from skin cancer in industrialized countries. Clinical and histological variables such as primary tumor invasion, ulceration, and lymph node status might fail to identify early-stage disease that will eventually progress. Tumor biomarkers might help to identify patients with early-stage melanoma who are likely to develop advanced disease and would benefit from additional therapies. These biomarkers offer the possibility of improved tumor staging through the molecular detection of microscopic lymph node metastases that are not visible on routine histological examination. We focus on biomarkers localized to the tumor tissue and those of prognostic value. We give an overview of the melanoma biomarkers that are most helpful for prediction of patients' outcomes, and discuss the primary melanoma biomarkers that have been shown to be of prognostic significance independent of primary tumor thickness and other common clinical prognostic indicators. Although such tumor-associated biomarkers are thought to have the greatest potential, a lack of reliable data makes their true clinical utility difficult to determine. We conclude that several biomarkers show promise in early studies; however, additional large-scale studies are warranted. We suggest cautious optimism for the field of melanoma biomarkers, which we expect to be translated into clinical practice over the next few years.
Collapse
Affiliation(s)
- Allison R Larson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231-1000, USA
| | | | | |
Collapse
|
35
|
Michard Q, Commo S, Rocchetti J, El Houari F, Alleaume AM, Wakamatsu K, Ito S, Bernard BA. TRP-2 expression protects HEK cells from dopamine- and hydroquinone-induced toxicity. Free Radic Biol Med 2008; 45:1002-10. [PMID: 18674612 DOI: 10.1016/j.freeradbiomed.2008.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/06/2008] [Accepted: 06/23/2008] [Indexed: 01/17/2023]
Abstract
We previously reported that melanogenic enzyme TRP-2 (or DCT for DOPAchrome tautomerase) expression in WM35 melanoma cells resulted in increased intracellular GSH levels, reduction in DNA damage induced by free radicals, and decreased cell sensitivity to oxidative stress. These effects seemed to depend on a particular cellular context, because none of them were found to occur in HEK epithelial cells. We postulated that the TRP-2 beneficial effect observed in WM35 cells in the oxidative stress situation may relate to quinone metabolization and, more precisely, to the ability of TRP-2 to clear off related toxic metabolites, resulting in a global redox status modification. Here, a comparative protein expression profiling of catecholamine biosynthesis enzymes and detoxification enzymes was conducted in WM35 melanoma cells and in HEK epithelial cells, in comparison with normal human melanocytes. Results showed that WM35 cells, but not HEK cells, expressed enzymes involved in catecholamine biosynthesis, suggesting that their quinone-related toxic metabolites were present in WM35 cells but not in HEK cells. To address the issue of a possible TRP-2 beneficial effect toward quinone toxicity, cell survival experiments were then conducted in HEK cells using dopamine and hydroquinone at toxic concentrations. We showed that TRP-2 expression significantly reduced HEK cell sensitivity to both compounds. This beneficial property of TRP-2 was likely to depend on the integrity of its DOPAchrome tautomerase catalytic site, because both TRP-2(R194Q) and TRP-2(H189G), which have lost their DOPAchrome tautomerase activity, failed to modify the HEK cell response to dopamine and hydroquinone. These results suggest that TRP-2 acts on quinone metabolites other than DOPAchrome, e.g., in the catecholamine pathway, and limits their deleterious effects.
Collapse
Affiliation(s)
- Q Michard
- L'OREAL Recherche, 90 rue du Général Roguet, 92583 Clichy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gene expression signature for spontaneous cancer regression in melanoma pigs. Neoplasia 2008; 10:714-26, 1 p following 726. [PMID: 18592010 DOI: 10.1593/neo.08344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
Incomplete spontaneous regression of melanoma is common. However, complete melanoma regression is still a very rare phenomenon. Because melanoma is the most immunogenic human malignancy, the mechanisms leading to regression, based on accumulative evidence, are the host's immune responses. Unfortunately, therapies aiming to enhance the patient's natural immunity against melanoma have yet to meet their expectations. Reasons for failure include various immune escape mechanisms, induced by the tumor, that subsequently lead to tolerance. Here, we performed time-dependent gene expression profiling to unravel molecular changes involved in the transition of progressive melanoma to complete tumor regression using a porcine model. The melanoblastomabearing Libechov minipigs are highly suitable for this study because these animals exhibit naturally occurring and regressing melanomas. We were able to identify a molecular signature of the melanoma regression process. Genes regulated in this signature were associated with 1) cell cycle, 2) immune response, and 3) melanocyte differentiation. These genes may shed light on molecular mechanisms involved in complete melanoma regression and indicate what improvements are needed for successful antimelanoma therapy.
Collapse
|
37
|
Michard Q, Commo S, Belaidi JP, Alleaume AM, Michelet JF, Daronnat E, Eilstein J, Duche D, Marrot L, Bernard BA. TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress. Free Radic Biol Med 2008; 44:1023-31. [PMID: 18206123 DOI: 10.1016/j.freeradbiomed.2007.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/26/2007] [Accepted: 11/26/2007] [Indexed: 12/30/2022]
Abstract
TRP-2 (dopachrome tautomerase) is a melanogenic enzyme whose expression was recently reported to modulate melanocyte response to different cytotoxic events. Here we studied a possible role of TRP-2 in the oxidative stress response in the amelanotic WM35 melanoma cell line. Cell viability assays showed that TRP-2 overexpression in WM35 cells reduced their sensitivity to oxidative stress. Comet assays linked TRP-2 expression to DNA damage protection, and high-performance liquid chromotography-tandem mass spectrometry experiments showed an increase in intracellular glutathione in TRP-2-overexpressing cells. These effects were specifically reversed when TRP-2 was silenced by RNA interference. Nevertheless, these properties appeared to depend on a particular cell environment because expression of TRP-2 failed to rescue HEK epithelial cells exposed to similar treatments.
Collapse
Affiliation(s)
- Quentin Michard
- L'OREAL Recherche, 90 rue du Général Roguet, 92583 Clichy Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Itakura E, Huang RR, Wen DR, Paul E, Wünsch PH, Cochran AJ. RT in situ PCR detection of MART-1 and TRP-2 mRNA in formalin-fixed, paraffin-embedded tissues of melanoma and nevi. Mod Pathol 2008; 21:326-33. [PMID: 18204435 DOI: 10.1038/modpathol.3801008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma antigen recognized by T cells 1 (MART-1) and tyrosinase-related protein-2 (TRP-2) are two useful markers for immunohistochemical detection of melanocytic tumors. However, these markers may be passively acquired (phagocytosed) rather than actively synthesized. Reverse transcriptase in situ polymerase chain reaction (RT in situ PCR) can amplify even small amounts of specific mRNA in cells and therefore confirm the cellular source of a marker. We developed a one-step RT in situ PCR procedure in which Thermus thermophilus DNA polymerase synthesizes and amplifies cDNA from mRNA in a single reaction mixture. To examine its practicability and feasibility with formalin-fixed, paraffin-embedded (FFPE) tissue, we compared the results of one-step RT in situ PCR with those of immunohistochemistry (IHC). MART-1 mRNA was identified in the cytoplasm of lesional cells from 23/26 primary melanomas (92%), 9/9 metastatic melanomas (100%) and 5/6 nevi (83%). MART-1 epitope was detected by IHC in 23/24 primary melanomas (96%), 9/9 metastatic melanomas (100%) and 5/6 nevi (83%). TRP-2 mRNA was identified in the cytoplasm of lesional cells from 17/26 primary melanomas (65%), 6/9 metastatic melanomas (67%) and 4/6 nevi (67%). TRP-2 epitope was detected by IHC in 20/24 primary melanomas (83%), 9/9 metastatic melanomas (100%) and 4/6 nevi (67%). Both techniques detected MART-1 and TRP-2 in FFPE melanoma cell lines. Neither marker was detected in squamous cell carcinomas or basal cell carcinomas by RT in situ PCR or IHC. We conclude that the RT in situ PCR technique can be successfully applied to FFPE tissue to determine the cellular sources of gene expression observed by conventional PCR approaches.
Collapse
Affiliation(s)
- Eijun Itakura
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Ram M, Shoenfeld Y. Harnessing Autoimmunity (Vitiligo) to Treat Melanoma: A Myth or Reality? Ann N Y Acad Sci 2007; 1110:410-25. [PMID: 17911456 DOI: 10.1196/annals.1423.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melanoma is a highly malignant tumor derived from skin melanocytes (pigment-producing cells), which is associated with a significant rate of systemic metastases and death. Various therapeutic approaches for melanoma have been attempted in recent years, including the use of chemotherapy, immunotherapy, and ablative surgical and radiation treatments. However, in many cases these treatments fail as the tumor becomes resistant to the treatment and rapidly spreads and causes death. Reports in the medical literature have documented the unique immunogenic nature of melanoma where antigens, antibodies, and immune complexes seem to play a major role in the course of the disease. Anti-melanoma antibodies can cross-react with antigens on normal melanocytes, therefore causing the appearance of an associated hypopigmentation that resembles vitiligo. Vitiligo is a dermatological disorder characterized by local, dispersed, or diffuse white patches on the skin as a result of the destruction of melanocytes. This disease is believed to be an autoimmune disorder since autoantibodies against membrane components of melanocytes are found in the sera of patients with vitiligo. Melanoma triggers an anti-tumor response in many patients. Unfortunately, such anti-tumor response is insufficient to elicit tumor regression and the tumor continues to proliferate. Since the prognosis of melanoma in patients and animals with vitiligo is more favorable than in the general population, it was hypothesized that sera from patients with vitiligo may react against melanoma cells. Such studies have demonstrated that exposure of tumor cells to the sera resulted in inhibition of proliferation of the melanoma cells in vitro and in regression of melanoma metastases in mice presumably on account of the presence of the high titer of anti-melanoma antibodies in the sera used in these studies. In this review we discuss the known data and hypothetical assumptions related to the use of vitiligo-associated antibodies against melanoma, as well as characterize the immune mechanisms involved in this process.
Collapse
Affiliation(s)
- Maya Ram
- Center for Autoimmune Diseases, Department of Medicine B, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | |
Collapse
|
40
|
James AG, Pople JE, Parish WE, Moore AE, Dunbar N. Histological evaluation of hyperpigmentation on female Filipino axillary skin1. Int J Cosmet Sci 2006; 28:247-53. [DOI: 10.1111/j.1467-2494.2006.00328.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Izagirre N, García I, Junquera C, de la Rúa C, Alonso S. A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol Biol Evol 2006; 23:1697-706. [PMID: 16757656 DOI: 10.1093/molbev/msl030] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although the combination of pale skin and intense sun exposure results in an important health risk for the individual, it is less clear if at the population level this risk has possessed an evolutionary meaning. In this sense, a number of adaptive hypotheses have been put forward to explain the evolution of human skin pigmentation, such as photoprotection against sun-induced cancer, sexual selection, vitamin D synthesis or photoprotection of photolabile compounds, among others. It is expected that if skin pigmentation is adaptive, we might be able to see the signature of positive selection on some of the genes involved. In order to detect this signature, we analyze a battery of 81 candidate loci by means of phylogenetic and population genetic tests. Our results indicate that both light and dark skin may possess adaptive value. Of the main loci presenting this signature, TP53BP1 shows clear evidence of adaptive selection in Africans, whereas TYRP1 and SLC24A5 show evidence of adaptive selection in Caucasians. Although we cannot offer a mechanism that based on these genes explains the advantage of light skin, if TP53BP1, and perhaps RAD50, have truly conferred an adaptive value to the African population analyzed, photoprotection against sun-induced skin damage/cancer might be proposed as a mechanism that has driven the evolution of human skin pigmentation.
Collapse
Affiliation(s)
- Neskuts Izagirre
- Department Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
42
|
Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:443-459. [PMID: 15804578 DOI: 10.1016/j.ibmb.2005.01.014] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 05/24/2023]
Abstract
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
43
|
Yoneta A, Yamashita T, Jin HY, Kondo S, Jimbow K. Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma (FAMMM) patients. Melanoma Res 2004; 14:387-94. [PMID: 15457095 DOI: 10.1097/00008390-200410000-00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with familial atypical multiple mole and melanoma (FAMMM) [so-called familial dysplastic naevus syndrome (FDNS)] have a high risk for the development of malignant melanoma. The underlying gene defect has an autosomal dominant inheritance with variable expression and incomplete penetrance. Fibroblasts derived from FAMMM patients have high sensitivity to UVC and mutagens, e.g. 4-nitroquinoline-1-oxide. We were interested in identifying how the combination of inherent sensitivity to UV light and abnormal melanin synthesis interacts in the development of melanoma in FAMMM patients. Intermediates of melanin synthesis produce free radicals that are toxic to cells. Atypical moles (dysplastic naevi) are engaged in the biosynthesis of abnormal melanin pigments. This study examined whether there was any abnormal melanin pigmentation or cell damage after the ectopic expression of tyrosinase in fibroblasts from FAMMM patients when compared with fibroblasts from normal subjects. Fibroblasts from FAMMM patients (3012T and 3072T) were associated with a higher sensitivity than normal human fibroblasts to the toxicity of UVB. When cells were infected with tyrosinase-expressing adenovirus (Ad-HT) and irradiated with UVB, FAMMM fibroblasts showed higher tyrosinase activity, produced more melanin pigments and were degraded more significantly than normal human fibroblasts. Western blot analysis revealed that Ad-HT-infected 3072T produced a larger amount of tyrosinase protein than did Ad-HT-infected normal fibroblasts after UVB irradiation. Our findings suggest: (1) that FAMMM fibroblasts have an unknown machinery which enhances tyrosinase expression by UVB irradiation; and (2) that the resulting increase in melanin synthesis affects the cytotoxicity of UVB to FAMMM fibroblasts. All of these processes may be involved in the genomic instability and development of melanoma in FAMMM patients.
Collapse
Affiliation(s)
- Akihiro Yoneta
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | |
Collapse
|