1
|
Wu Z, Wang Z, Hua Z, Ji Y, Ye Q, Zhang H, Yan W. Prognostic signature and immunotherapeutic relevance of Focal adhesion signaling pathway-related genes in osteosarcoma. Heliyon 2024; 10:e38523. [PMID: 39524888 PMCID: PMC11550747 DOI: 10.1016/j.heliyon.2024.e38523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background As the most common primary malignant bone tumor in children and adolescents, osteosarcoma currently lacks an effective clinical cure. Focal adhesion plays a crucial role in tumor invasion, migration, and drug resistance by mediating communication between the extracellular matrix and tumor cells. This study investigated the prognostic features and immunotherapeutic relevance of focal adhesion pathway-related genes in osteosarcoma to aid in the development of new therapeutic options. Methods We obtained mutational, transcriptomic, gene expression, and clinical data of osteosarcoma patients from the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective (TARGET) databases. Differentially expressed genes were screened, followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Kaplan-Meier survival analysis was performed for genes related to the focal adhesion pathway, and multivariate Cox regression analysis was employed to construct a prognostic signature model. Genes such as SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, and LAG3 were extracted from the TARGET and CCLE databases for osteosarcoma patients and osteosarcoma cell lines, respectively,to observe the expression of immune checkpoint-related genes. Finally, qRT-PCR was used to verify the expression of these immune checkpoint-related genes in osteosarcoma cell lines. Results In our study, 376 samples were analyzed, including 369 osteosarcoma samples and 7 normal tissue samples. We identified 50 up-regulated and 28 down-regulated differentially expressed genes. Among these, 10 Candidate genes relative to focal Adhesion were selected, and CAV1, ZYX, and ITGA5 were found to have a significant prognostic role based on survival analysis of osteosarcoma samples from the TARGET database. A predictive signature model related to the focal adhesion signaling pathway was constructed using these genes, and the AUCs of the 1-year, 3-year, and 5-year ROC curves were 0. 647, 0. 712, and 0. 717, respectively. The overall survival (OS) rate of osteosarcoma patients with high-risk scores was poorer than those with low-risk scores. Then, samples were divided into two subgroups based on the expression of the three genes, revealing significant differences in the expression of certain immune checkpoint-related genes between the subgroups. Additionally, above three genes and immune checkpoint-related genes in osteosarcoma cell lines were extracted from the CCLE database, showing high expression levels in eight osteosarcoma cell lines. We observed that CD274 and PDCD1LG2 were highly expressed in some osteosarcoma cell lines. Finally, the expression of CAV1, ZYX, ITGA5, CD80, CD274, and PDCD1LG2 in osteosarcoma cell lines was verified by qRT-PCR. Conclusions Our study validated the prognostic role of three focal adhesion pathway-related genes (ZYX, CAV1, and ITGA5) in patients with osteosarcoma and constructed a prognostic signature model associated with the focal adhesion signaling pathway. We identified significant differences in the expression of multiple immune checkpoint-related genes among subgroups defined by the three genes. Additionally, CD274 and PDCD1LG2 showed higher expression in osteosarcoma cell lines characterized by these genes. These findings may aid in the selection of effective immunotherapy for specific osteosarcoma patients.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiqing Wang
- Zhabei Central Hospital, No. 619, Zhonghuaxin Road, Jing'an District, Shanghai, 200070, China
| | - Zhanqiang Hua
- Department of Orthopedics, Shanghai Electric Power Hospital, Shanghai, 200050, China
| | - Yingzheng Ji
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Qingrong Ye
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Rostampour R, Bahremand K, Mohammadi H, Roghani SA, Shakiba E, Goodarzi MT, Asadi S. Decreased expression of p53 is associated with down expression of zyxin in breast cancer. Health Sci Rep 2024; 7:e2288. [PMID: 39100715 PMCID: PMC11294437 DOI: 10.1002/hsr2.2288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Background and Aims Breast cancer (BC) is considered one of the most common malignant tumors leading to death in women, and genetic factors have a crucial role in BC pathogenesis. Zyxin (ZYX) is one of these factors that may be important in p53 level and function. Thus, the present work aimed to investigate the ZYX gene and protein expression in tumor tissue and matched margin tissue and its correlation with the p53 expression. Methods In a present case-control study, 30 tumors and 30 matched margin tissues were obtained from Iran Tumor Bank/Tehran University of Medical Sciences. Real-time polymerase chain reaction and western blot analysis techniques were applied to evaluate the genes and protein expression, respectively. Results The data showed that expression of the ZYX gene in tumor tissues significantly decreased (p = 0.0274) compared to matched margin tissues. In contrast, the p53 gene expression in tumor tissues had no significant difference with matched margin tissues. Additionally, we observed that ZYX and p53 genes expression in tumor tissues of estrogen receptor-positive patients had significant elevation than estrogen receptor-negative patients (p < 0.001, p < 0.001, respectively). The data of the western blot analysis technique showed that protein expression of ZYX (p = 0.0024) and P53 protein (p = 0.0218) in tumor tissues was significantly reduced compared to matched margin tissues. Additionally, our analysis showed a direct and significant correlation between the expression of ZYX and p53 proteins (r = 0.7797, p = 0.0126) and expression of ZYX and p53 genes (r = 0.3079, p = 0.0187). Conclusion Based on our observation, ZYX might have a tumor suppressor role and is associated with p53.
Collapse
Affiliation(s)
- Rezvan Rostampour
- Department of Clinical BiochemistryKermanshah University of Medical SciencesKermanshahIran
| | - Kiana Bahremand
- Nano Drug Delivery Research Center, Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Hossein Mohammadi
- Department of Clinical BiochemistryKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Askar Roghani
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical ScienceKermanshahIran
| | - Ebrahim Shakiba
- Department of Clinical BiochemistryKermanshah University of Medical SciencesKermanshahIran
| | | | - Soheila Asadi
- Department of Clinical BiochemistryKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
3
|
Butt E, Günder T, Stürzebecher P, Kowalski I, Schneider P, Buschmann N, Schäfer S, Bender A, Hermanns HM, Zernecke A. Cholesterol uptake in the intestine is regulated by the LASP1-AKT-NPC1L1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G25-G35. [PMID: 38713618 DOI: 10.1152/ajpgi.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Günder
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Paulina Stürzebecher
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabel Kowalski
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Pia Schneider
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Nils Buschmann
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alicia Bender
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike M Hermanns
- Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Zhang M, Zhou K, Wang Z, Liu T, Stevens LE, Lynce F, Chen WY, Peng S, Xie Y, Zhai D, Chen Q, Shi Y, Shi H, Yuan Z, Li X, Xu J, Cai Z, Guo J, Shao N, Lin Y. A Subpopulation of Luminal Progenitors Secretes Pleiotrophin to Promote Angiogenesis and Metastasis in Inflammatory Breast Cancer. Cancer Res 2024; 84:1781-1798. [PMID: 38507720 PMCID: PMC11148543 DOI: 10.1158/0008-5472.can-23-2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy Y Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Grossi I, Schiavone M, Cannone E, Grejdan OA, Tobia C, Bonomini F, Rezzani R, Salvi A, De Petro G. Lasp1 Expression Is Implicated in Embryonic Development of Zebrafish. Genes (Basel) 2022; 14:genes14010035. [PMID: 36672776 PMCID: PMC9858601 DOI: 10.3390/genes14010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The LIM and SH3 domain protein 1 (LASP1) was originally identified in metastatic breast cancer and mainly characterized as a cytoskeleton protein overexpressed in various cancer types. At present, little is known about LASP1 expression in physiological conditions, and its function during embryonic development has not been elucidated. Here, we focused on Lasp1 and embryonic development, choosing zebrafish as a vertebrate model. For the first time, we identified and determined the expression of Lasp1 protein at various stages of development, at 48 and 72 h post-fertilization (hpf), at 6 days pf and in different organs of zebrafish adults by Western blotting, 3D light-sheet microscopy and fluorescent immunohistochemistry. Further, we showed that specific lasp1 morpholino (MO) led to (i) abnormal morphants with alterations in several organs, (ii) effective knockdown of endogenous Lasp1 protein and (iii) an increase in lasp1 mRNA, as detected by ddPCR. The co-injection of lasp1 mRNA with lasp1 MO partially rescued morphant phenotypes, thus confirming the specificity of the MO oligonucleotide-induced defects. We also detected an increase in apoptosis following lasp1 MO treatment. Our results suggest a significant role for Lasp1 in embryonic development, highlighting zebrafish as a vertebrate model suitable for studying Lasp1 function in developmental biology and organogenesis.
Collapse
Affiliation(s)
- Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Elena Cannone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Oana Andreea Grejdan
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, Division of Experimental Oncology and Immunology, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
6
|
Partynska A, Gomulkiewicz A, Piotrowska A, Grzegrzolka J, Rzechonek A, Ratajczak-Wielgomas K, Podhorska-Okolow M, Dziegiel P. Expression of Zyxin in Non-Small Cell Lung Cancer-A Preliminary Study. Biomolecules 2022; 12:biom12060827. [PMID: 35740950 PMCID: PMC9221212 DOI: 10.3390/biom12060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background: The potential involvement of zyxin (ZYX) in carcinogenesis has been investigated in many cancer types. However, there are a limited number of studies on the role of ZYX in the progression of non-small cell lung cancer (NSCLC). Since lung cancer is one of the most frequently diagnosed carcinomas, the aim of our study was to determine the localization and expression levels of ZYX in NSCLC and to correlate the results with the clinicopathological data. Materials and Methods: The expression of ZYX was assessed in NSCLC cases and in cell lines representing this tumor type. Levels of ZYX were determined in the clinical material using immunohistochemistry (IHC) and Western Blot. Real-time PCR was used to assess ZYX mRNA levels. The expression of ZYX was also checked in NSCLC cell lines using real-time PCR, Western Blot, and immunofluorescence/immunocytochemistry. Results: The results showed lower levels of ZYX in NSCLC cells compared with control tissues. This trend was observed at the protein and mRNA levels. The assays on the NSCLC model also demonstrated lower levels of ZYX in cancer cells compared with control cells. Conclusions: The decreased expression of ZYX in NSCLC may indicate a suppressor role of this protein in NSCLC.
Collapse
Affiliation(s)
- Aleksandra Partynska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
- Correspondence:
| | - Agnieszka Gomulkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, 53-439 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Marzenna Podhorska-Okolow
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
- Division of Human Biology, Faculty of Physiotherapy, University School of Physical Education in Wroclaw, 51-612 Wroclaw, Poland
| |
Collapse
|
7
|
Ke S, Fang M, Li R, Wang J, Lu J. Downregulation of long noncoding RNA breast cancer anti-estrogen resistance 4 inhibits cell proliferation, invasion, and migration in esophageal squamous cell carcinoma by regulating the microRNA-181c-5p/LIM and SH3 protein 1 axis. Bioengineered 2022; 13:12998-13010. [PMID: 35611706 PMCID: PMC9275979 DOI: 10.1080/21655979.2022.2060720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recently, abnormal expression of long non-coding RNAs (lncRNAs) has been observed in esophageal squamous cell carcinoma (ESCC). In various human cancers, breast cancer anti‑estrogen resistance 4 (BCAR4) was reported to be highly expressed, while the biological roles of BCAR4 in ESCC remain unclear. In ESCC cells and tissues, BCAR4 and microRNA −181c-5p (miR-181c-5p) expression, and phosphorylated signal transducer and activator of transcription (p-STAT3) and COX2 expression were evaluated by real-time reverse transcription PCR (qRT-PCR) and Western blot analysis. Cell function was evaluated by colony formation, CCK-8 assay, transwell and flow cytometer assays. Interactions between BCAR4 and miR-181c-5p, as well as miR-181c-5p and LIM and SH3 protein 1 (LASP1) were evaluated by RIP and luciferase reporter assay. ESCC cell malignancy with inhibition of BCAR4 was confirmed by a tumor xenograft model in vivo. In both ESCC tissues and cell lines, BCAR4 was upregulated. Downregulation of BCAR4 effectively induced cell apoptosis and inhibited invasion and migration in vitro, and reduced tumorigenesis in nude mice. BCAR4 was a sponge of miR-181c-5p to upregulate LASP1. Moreover, knockdown of BCAR4 and overexpression of miR-181c-5p inhibited the activation of the STAT3/COX2 signaling, which was reversed by overexpression of LASP1. In conclusion, BCAR4 promotes ESCC tumorigenesis by targeting the miR-181c-5p/LASP1 axis, which may act as a treatment and diagnosis biomarker for ESCC.
Collapse
Affiliation(s)
- Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Ruichao Li
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Jing Wang
- Department of Clinical Oncology, Remin Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
8
|
Vanderheijden C, Vaessen T, Yakkioui Y, Riedl R, Temel Y, Hovinga K, Hoogland G. LIM and SH3 protein 1 (LASP1) differentiates malignant chordomas from less malignant chondrosarcomas. J Neurooncol 2022; 158:81-88. [PMID: 35507100 PMCID: PMC9166821 DOI: 10.1007/s11060-022-04012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Chordomas are malignant tumors that develop along the neuraxis between skull-base and sacrum. Chondrosarcomas show similarities with chordomas, yet show less malignant behavior. LIM and SH3 protein 1 (LASP1) is a cytoskeletal protein known to promote the malignant behavior of tumors. LASP1 was previously identified as a possibly overexpressed protein in a chordoma proteomics experiment. In this study we compare LASP1 expression in chordoma and chondrosarcoma tissue. METHODS Biopsies of primary tumors were collected from surgically treated chordoma (n = 6) and chondrosarcoma (n = 6) patients, flash-frozen upon collection and collectively analyzed for LASP1 RNA (real-time PCR) and protein expression (western blotting). Additionally, tissue micro array (TMA)-based immunohistochemistry was applied to an archive of 31 chordoma and 1 chondrosarcoma specimen. RESULTS In chordoma samples, LASP1 mRNA was detected in 4/6 cases and a strong 36 kDa immunoreactive protein band was observed in 4/5 cases. In contrast, 0/6 chondrosarcoma samples showed detectable levels of LASP1 mRNA and only a weak 36 kDa band was observed in 4/5 cases. Immunohistochemical analysis showed LASP1 expression in all chordoma samples, whereas chondrosarcoma specimen did not show immunoreactivity. CONCLUSION LASP1 is strongly expressed in the majority of chordoma cases and shows low expression in chondrosarcoma tissue. Since LASP1 is known to function as oncogene and regulate cell proliferation in other tumor types, this study implicates a role for LASP1 in chordoma biology. Further studies are warranted to improve understanding of LASP1's expression and functioning within chordoma, both in vitro and in vivo.
Collapse
Affiliation(s)
- Cas Vanderheijden
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Thomas Vaessen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Youssef Yakkioui
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Noordwest Hospital, Alkmaar, The Netherlands
| | - Robert Riedl
- Department of Pathology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Özdaş S, Canatar İ. Targeting of nucleo‑cytoplasmic transport factor exportin 1 in malignancy (Review). MEDICINE INTERNATIONAL 2022; 2:2. [PMID: 38938904 PMCID: PMC11208992 DOI: 10.3892/mi.2021.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 06/29/2024]
Abstract
Nuclear pore complexes (NPCs) regulate the entry and exit of molecules from the cell nucleus. Small molecules pass through NPCs by diffusion while large molecules enter and exit the nucleus by karyopherins, which serve as transport factors. Exportin-1 (XPO1) is a protein that is an important member of the karyopherin family and carries macromolecules from the nucleus to the cytoplasm. XPO1 is responsible for nuclear-cytoplasmic transport of protein, ribosomal RNA and certain required mRNAs for ribosomal biogenesis. Furthermore, XPO1-mediated nuclear export is associated with various types of disease, such as cancer, inflammation and viral infection. The key role of XPO1 in carcinogenesis and its potential as a therapeutic target has been demonstrated by previous studies. Clinical use of novel developed generation-specific XPO1 inhibitors and their combination with other agents to block XPO1-mediated nuclear export are a promising new treatment strategy. The aim of the present study was to explain the working mechanism of XPO1 and inhibitors that block XPO1-mediated nuclear export.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| | - İpek Canatar
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
10
|
Krasovec G, Karaiskou A, Quéinnec É, Chambon JP. Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Mol Cell Biol 2021; 22:51. [PMID: 34615460 PMCID: PMC8495957 DOI: 10.1186/s12860-021-00388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France. .,Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Anthi Karaiskou
- INSERM UMRS_938, Centre de recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France
| | - Jean-Philippe Chambon
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000, Montpellier, France
| |
Collapse
|
11
|
Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, Xu L, Liu Z, Zhao L. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis 2021; 12:911. [PMID: 34615856 PMCID: PMC8494735 DOI: 10.1038/s41419-021-04213-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/30/2023]
Abstract
Sphingolipid metabolic dysregulation has increasingly been considered to be a drug-resistance mechanism for a variety of tumors. In this study, through an LC-MS assay, LIM and SH3 protein 1 (LASP1) was identified as a sphingolipid-metabolism-involved protein, and short-chain enoyl-CoA hydratase (ECHS1) was identified as a new LASP1-interacting protein through a protein assay in colorectal cancer (CRC). Gain- and loss-of-function analyses demonstrated the stimulatory role played by ECHS1 in CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies of the underlying tumor-supportive oncometabolism indicate that ECHS1 enables altering ceramide (Cer) metabolism that increases glycosphingolipid synthesis (HexCer) by promoting UDP-glucose ceramide glycosyltransferase (UGCG). Further analysis showed that ECHS1 promotes CRC progression and drug resistance by releasing reactive oxygen species (ROS) and interfering mitochondrial membrane potential via the PI3K/Akt/mTOR-dependent signaling pathway. Meanwhile, the phenomenon of promoting the survival and drug resistance of CRC cells caused by ECHS1 could be reversed by Eliglustat, a specific inhibitor of UCCG, in vitro and in vivo. IHC assay showed that ECHS1 was overexpressed in CRC tissues, which was related to the differentiation and poor prognosis of CRC patients. This study provides new insight into the mechanism by which phospholipids promote drug resistance in CRC and identifies potential targets for future therapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanyu Hao
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiuhan Wang
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Meng
- Department of Pathology, The Second People's Hospital of Longgang District, Shenzhen, China
| | - Kunhe Wu
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Chaoqun Liu
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lijun Xu
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziguang Liu
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Song D, Guo M, Xu S, Song X, Bai B, Li Z, Chen J, An Y, Nie Y, Wu K, Wang S, Zhao Q. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:170. [PMID: 33990203 PMCID: PMC8120699 DOI: 10.1186/s13046-021-01951-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. METHODS We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. RESULTS Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. CONCLUSIONS The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.
Collapse
Affiliation(s)
- Dan Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ming Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shuai Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Xiaotian Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Bin Bai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Zhengyan Li
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gao Tan Yan Road, Chongqing, 400038, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yanxin An
- Department of General Surgery, the First Affiliated Hospital of Xi 'an Medical University, No. 48 Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Shiqi Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qingchuan Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
13
|
Huang H, Xue Q, Du X, Cui J, Wang J, Cheng D, Li J, Zheng Y, Huang G, Zhang K, Liu K, Lu J, Zhao J, Chen X, Dong Z, Li X. p21-activated kinase 4 promotes the progression of esophageal squamous cell carcinoma by targeting LASP1. Mol Carcinog 2020; 60:38-50. [PMID: 33289209 PMCID: PMC7756368 DOI: 10.1002/mc.23269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors of the digestive tract in humans. Several studies have indicated that PAK4 is associated with the risk of ESCC and may be a potential druggable kinase for ESCC treatment. However, the underlying mechanism remains largely unknown. The aim of our study is to identify the functional role of PAK4 in ESCC. To determine the expression of PAK4 in ESCC, Western blot analysis and immunohistochemistry were performed, and the results showed that PAK4 is significantly upregulated in ESCC tissues and cell lines compared with normal controls and normal esophageal epithelial cell line. To further investigate the role of PAK4 in ESCC, cell viability assays, anchorage-independent cell growth assays, wound healing assays, cellular invasion assays, in vivo xenograft mouse models, and metastasis assays were conducted, and the results showed that PAK4 can significantly facilitate ESCC proliferation and metastasis in vitro and in vivo. To determine the potential target of PAK4 in ESCC progression, a pull-down assay was performed, and the results showed that LASP1 may be a potential target of PAK4. An immunoprecipitation assay and confocal microscopy analysis confirmed that PAK4 can bind to and colocalize with LASP1 in vitro and in cells. Notably, rescue experiments further illustrated the mechanistic network of PAK4/LASP1. Our research reveals the oncogenic roles of PAK4 in ESCC and preliminarily elucidates the mechanistic network of PAK4/LASP1 in ESCC.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianqian Xue
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Department of Public HealthNanshi Hospital of NanyangNanyangHenanChina
| | - Xiaoge Du
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- Department of NursingHenan Health School of Medicine and PharmacyPingdingshanHenanChina
| | - Jie Cui
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Jing Wang
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Dan Cheng
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Jiaqiong Li
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Yaqiu Zheng
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Guojing Huang
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Keke Zhang
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
14
|
Pollitt SL, Myers KR, Yoo J, Zheng JQ. LIM and SH3 protein 1 localizes to the leading edge of protruding lamellipodia and regulates axon development. Mol Biol Cell 2020; 31:2718-2732. [PMID: 32997597 PMCID: PMC7927181 DOI: 10.1091/mbc.e20-06-0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton drives cell motility and is essential for neuronal development and function. LIM and SH3 protein 1 (LASP1) is a unique actin-binding protein that is expressed in a wide range of cells including neurons, but its roles in cellular motility and neuronal development are not well understood. We report that LASP1 is expressed in rat hippocampus early in development, and this expression is maintained through adulthood. High-resolution imaging reveals that LASP1 is selectively concentrated at the leading edge of lamellipodia in migrating cells and axonal growth cones. This local enrichment of LASP1 is dynamically associated with the protrusive activity of lamellipodia, depends on the barbed ends of actin filaments, and requires both the LIM domain and the nebulin repeats of LASP1. Knockdown of LASP1 in cultured rat hippocampal neurons results in a substantial reduction in axonal outgrowth and arborization. Finally, loss of the Drosophila homologue Lasp from a subset of commissural neurons in the developing ventral nerve cord produces defasciculated axon bundles that do not reach their targets. Together, our data support a novel role for LASP1 in actin-based lamellipodial protrusion and establish LASP1 as a positive regulator of both in vitro and in vivo axon development.
Collapse
Affiliation(s)
| | | | - Jin Yoo
- Emory College, Emory University, Atlanta, GA 30322
| | - James Q Zheng
- Department of Cell Biology and.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, and
| |
Collapse
|
15
|
The CXCR4-Dependent LASP1-Ago2 Interaction in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092455. [PMID: 32872485 PMCID: PMC7564666 DOI: 10.3390/cancers12092455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CXCR4-LASP1 axis is an emerging target in the field of breast cancer metastasis. C-X-C chemokine receptor type 4 (CXCR4) mediates directed cell migration when activated by its cognate ligand CXCL12. LIM and SH3 Protein 1 (LASP1) is a critical node in the CXCR4 signaling pathway, as its deficiency blocks CXCR4-dependent Matrigel invasion. The mechanism by which LASP1 facilitates this invasive ability of tumor cells when CXCR4 is activated is unknown. Our previous proteomics work had revealed several components of the RNA interference (RNAi) machinery as being potential LASP1 interacting proteins. Here we report that argonaute 2 (Ago2), a protein with central involvement in RNAi, associates with LASP1 in triple-negative breast cancer (TNBC) cells. We demonstrate that LASP1 co-immunoprecipitates with Ago2 endogenously in a CXCL12-dependent manner, with further confirmation of this interaction by proximity ligation assay. Furthermore, this association is specific to CXCR4 as it can be abrogated by the CXCR4 antagonist, AMD3465. By GST-pulldown approach, we identify that LASP1 directly binds to Ago2 through its LIM and SH3 domains, and that this binding is dictated by the S146 and Y171 phosphorylation sites of LASP1. Additionally, the phosphorylation status of LASP1 affected tumor suppressor microRNA (miRNA) Let-7a-guided Ago2 activity. Levels of several endogenous targets of Let-7a were found to be altered including C-C chemokine receptor type 7 (CCR7), which is another critical chemokine receptor involved in metastasis to lymph nodes. Our results suggest a novel role for the LASP1-Ago2 module in shaping the RNAi landscape, functionally impacting the invasive ability of cancer cells.
Collapse
|
16
|
LASP1 interacts with N-WASP to activate the Arp2/3 complex and facilitate colorectal cancer metastasis by increasing tumour budding and worsening the pattern of invasion. Oncogene 2020; 39:5743-5755. [PMID: 32704133 DOI: 10.1038/s41388-020-01397-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
LIM and SH3 protein 1 (LASP1) is a metastasis-related protein reported to enhance tumour progression in colorectal cancer (CRC). However, the underlying mechanism is still elusive. As the major biological and pathological functions of LASP1 are accomplished by its LIM and SH3 domains via protein-protein interactions, a yeast two-hybrid system was employed to screen novel LASP1-interacting proteins. N-WASP, a member of the Wiskott-Aldrich syndrome protein (WASP) family, was screened and identified as a LASP1-interacting protein overexpressed in CRC tissues. N-WASP could stimulate the migration and invasion of CRC cells in vitro and increase the formation of subcutaneous tumours, mesenteric implanted tumours and hepatic metastatic tumours. N-WASP could interact with and activate the Arp2/3 complex to stimulate actin polymerization, thus changing the migratory and invasive capabilities of CRC cells. The interaction of LASP1 with N-WASP did not influence the expression of N-WASP but recovered the reduced actin polymerization induced by N-WASP silencing. High N-WASP expression was detected in most clinical colorectal samples, and it was positively correlated with the expression of LASP1 and ARP3, as well as the tumour budding and pattern of invasion, but negatively correlated with host lymphocytic response. Our study suggests a new mechanism for LASP1-mediated CRC metastasis determined by exploring LASP1-interacting proteins and identifies N-WASP as a potential therapeutic target for CRC.
Collapse
|
17
|
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. J Transl Med 2020; 100:812-823. [PMID: 31949244 DOI: 10.1038/s41374-019-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.
Collapse
|
18
|
Li J, Hu S, Zhang Z, Qian L, Xue Q, Qu X. LASP2 is downregulated in human liver cancer and contributes to hepatoblastoma cell malignant phenotypes through MAPK/ERK pathway. Biomed Pharmacother 2020; 127:110154. [PMID: 32325347 DOI: 10.1016/j.biopha.2020.110154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
LASP2 was recently demonstrated to serve as multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human liver cancer has not been explored. The aims of the current study were to detect LASP2 expression in a liver tissue microarray, and to determine whether LASP2 contributes to malignant phenotypes of HepG2 human hepatoblastoma cells. Our results revealed that LASP2 expression was downregulated in liver cancer tissues relative to normal non-cancerous tissues, and its downregulated expression was closely correlated with malignant process of liver cancer. In vitro, upregulation of LASP2 expression by transfection with LASP2 vector significantly suppressed HepG2 cells viability, colony formation and migration activities. Conversely, the viability, colony formation and migration abilities of HepG2 cells were increased when downregulating LASP2 expression by transfection with small interfering RNA targeting LASP2. Interaction study showed that silencing of LASP2 in HepG2 cells triggered high expression of Cyclin D1, ERK and p-ERK, and low expression of Bax, respectively. In addition, LASP2 silencing-induced malignant phenotypes were further attenuated after HepG2 cells treatment with ERK1/2 blocker PD98059. Collectively, our data suggest a link between LASP2 and MAPK/ERK axis in the development of hepatoblastoma and LASP2 may be a potential marker for assessment of liver cancer prognosis and staging.
Collapse
Affiliation(s)
- Jing Li
- The Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Shaojun Hu
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Zhiyong Zhang
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lei Qian
- The University Hospital, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Qing Xue
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Xiusheng Qu
- The First Affiliated Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
19
|
Zhong C, Yu J, Li D, Jiang K, Tang Y, Yang M, Shen H, Fang X, Ding K, Zheng S, Yuan Y. Zyxin as a potential cancer prognostic marker promotes the proliferation and metastasis of colorectal cancer cells. J Cell Physiol 2019; 234:15775-15789. [PMID: 30697742 DOI: 10.1002/jcp.28236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death. This study was conducted to investigate the functions and mechanisms of Zyxin (ZYX) in CRC. Multiomics analysis associated ZYX with CRC metastasis. ZYX expression levels were increased in human CRC tissues and related to shorter recurrence-free survival. Knockdown of ZYX expression resulted in inhibition of cell growth, invasion, and migration in vitro and in vivo. Comprehensive analysis of gene microarray analysis showed that ZYX may activate the pathway of NUPR1 and JNK, inhibit CST5, regulate focal adhesion (FA), and affect epithelial-mesenchymal transition in CRC cells. Results of gene microarray and membrane protein isobaric tags with relative and absolute quantitation labeling mass spectrometry found ten differentially expressed genes, which were associated with ZYX activity. Furthermore, real-time polymerase chain reaction was used to validate the expression patterns of selected genes in the integrative analysis. Taken together, our findings provide the first evidence that decreased expression level of ZYX impairs CRC cell proliferation and metastasis probably via the FA pathway.
Collapse
Affiliation(s)
- Chenhan Zhong
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiekai Yu
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Li
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Tang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyuan Yang
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Shen
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuefeng Fang
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Howard CM, Bearss N, Subramaniyan B, Tilley A, Sridharan S, Villa N, Fraser CS, Raman D. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells. Front Oncol 2019; 9:284. [PMID: 31106142 PMCID: PMC6499106 DOI: 10.3389/fonc.2019.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5′UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.
Collapse
Affiliation(s)
- Cory M Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nicole Bearss
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nancy Villa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
21
|
ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Lett 2019; 449:196-206. [PMID: 30771434 DOI: 10.1016/j.canlet.2019.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
ProNGF expression has been linked to several types of cancers including breast cancer, and we have previously shown that proNGF stimulates breast cancer invasion in an autocrine manner through membrane receptors sortilin and TrkA. However, little is known regarding TrkA-associated protein partners upon proNGF stimulation. By proteomic analysis and proximity ligation assays, we found that proNGF binding to sortilin induced sequential formation of the functional sortilin/TrkA/EphA2 complex, leading to TrkA-phosphorylation dependent Akt activation and EphA2-dependent Src activation. EphA2 inhibition using siRNA approach abolished proNGF-stimulated clonogenic growth of breast cancer cell lines. Combinatorial targeting of TrkA and EphA2 dramatically reduced colony formation in vitro, primary tumor growth and metastatic dissemination towards the brain in vivo. Finally, proximity ligation assay in breast tumor samples revealed that increased TrkA/EphA2 proximity ligation assay signals were correlated with a decrease of overall survival in patients. All together, these data point out the importance of TrkA/EphA2 functional association in proNGF-induced tumor promoting effects, and provide a rationale to target proNGF/TrkA/EphA2 axis by alternative methods other than the simple use of tyrosine kinase inhibitors in breast cancer.
Collapse
|
22
|
Song X, Jin Y, Yan M, Zhang Y, Chen B. MicroRNA-342-3p functions as a tumor suppressor by targeting LIM and SH3 protein 1 in oral squamous cell carcinoma. Oncol Lett 2018; 17:688-696. [PMID: 30655818 DOI: 10.3892/ol.2018.9637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Although microRNA-342-3p (miR-342-3p) deregulation has been implicated in the development of a variety of cancer types, its role in oral squamous cell carcinoma (OSCC) progression remains unclear. Overexpression of LIM and SH3 protein 1 (LASP1) in OSCC tissues, and its promotion of OSCC cell proliferation were recently reported. However, the regulatory mechanism underlining LASP1 expression remains unknown. In the present study, the notable downregulation of miR-342-3p in OSCC cell lines and clinical specimens was revealed. The Cell Counting kit-8 and 5-bromo-2-deoxyuridine-incorporation assays demonstrated that miR-342-3p suppressed OSCC cell proliferation. Additionally, LASP1 was identified as a target gene of miR-342-3p through bioinformatics analysis and luciferase reporter assays. Further experiments suggested that overexpression of LASP1 attenuated the suppressive effect of miR-342-3p on the proliferation of OSCC cells. In conclusion, the present data suggest that miR-342-3p functions as a tumor suppressor in OSCC via targeting of LASP1 and may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xiaoyan Song
- Department of Stomatology, Inner Mongolia Autonomous Region Maternal and Child Health Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Yong Jin
- Department of Stomatology, Tong-Liao City Hospital of Inner Mongolia, Tong Liao, Inner Mongolia 028000, P.R. China
| | - Mingyu Yan
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia 014010, P.R. China
| | - Yonggang Zhang
- Department of General Surgery, Affiliated Renmin Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010017, P.R. China
| | - Bing Chen
- Department of General Surgery, Inner Mongolia Autonomous Region Maternal and Child Health Hospital, Huhhot, Inner Mongolia 010020, P.R. China
| |
Collapse
|
23
|
Lian Y, Xiong F, Yang L, Bo H, Gong Z, Wang Y, Wei F, Tang Y, Li X, Liao Q, Wang H, Zhou M, Xiang B, Wu X, Li Y, Li X, Chen X, Li G, Guo C, Zeng Z, Xiong W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:253. [PMID: 30326930 PMCID: PMC6191894 DOI: 10.1186/s13046-018-0918-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long noncoding RNA, is significantly highly expressed and associated with metastasis and poor prognosis in many cancers, including nasopharyngeal carcinoma (NPC). In this study, we aim to identify the role of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC metastasis. METHODS The role of AFAP1-AS1, miR-423-5p, and FOSL2 in NPC metastasis was investigated in vitro and in vivo. Bioinformatics analysis and luciferase activity assays were used to identify the interaction between AFAP1-AS1, miR-423-5p, and FOSL2. Additionally, real-time PCR and western blotting were used to assess the function of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC progression by regulating miR-423-5p and the downstream Rho/Rac pathway. RESULTS In this study, we determined that AFAP1-AS1 functions as a competing endogenous RNA in NPC to regulate the Rho/Rac pathway through miR-423-5p. These interactions can mediate the expression of RAB11B, LASP1, and FOSL2 and accelerate cell migration and invasion via the Rho/Rac signaling pathway or FOSL2. AFAP1-AS1 and FOSL2 could competitively bind with miR-423-5p to regulate several molecules, including RAB11B and LASP1 of the Rho/Rac signaling pathway. AFAP1-AS1 can also regulate the expression of LASP1, which was transcriptionally regulated by FOSL2, resulting in increased migration and invasion of NPC cells via the Rho/Rac signaling pathway. CONCLUSIONS The observations in this study identify an important role for AFAP1-AS1 as a competing endogenous RNA (ceRNA) in NPC pathogenesis and indicate that it may serve as a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yong Li
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Kotb A, Hyndman ME, Patel TR. The role of zyxin in regulation of malignancies. Heliyon 2018; 4:e00695. [PMID: 30094365 PMCID: PMC6072900 DOI: 10.1016/j.heliyon.2018.e00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Focal adhesions are highly dynamic multi-protein complexes found at the cell surface and effectively link the cell's internal cytoskeleton to a complex mixture of macromolecules known as the extracellular matrix and mediate transmission of signals from the extracellular matrix to the nucleus. Zyxin is one of the key focal adhesion proteins and is also found to shuttle in the nucleus. Although the mechanism of shuttling to the nucleus unclear, it moves out from the nucleus through a leucine-rich nuclear export signal sequence. It is known to contribute to fundamental cellular activities such as cell migration, adhesion and proliferation by interacting with a variety of cellular proteins. It is also linked with a number of cancers such as melanoma, hepatocellular carcinoma, oral squamous-cell carcinoma, Ewing sarcoma and prostate cancer. However, in many cases, the precise mechanisms by which the absence or presence of zyxin contributes to cancer progression or suppression is unknown. Thus, more work is required to gain insights into how zyxin modulates cellular functions in relationship to cancer. This review summarises the role of zyxin in cancer, with an emphasis on conflicting roles in prostate cancer.
Collapse
Affiliation(s)
- Ahmed Kotb
- Department of Urology, Southern Alberta Institute of Urology, 7007 14 St SW, Calgary, T2V 1P9, Alberta, Canada
| | - Matthew Eric Hyndman
- Department of Urology, Southern Alberta Institute of Urology, 7007 14 St SW, Calgary, T2V 1P9, Alberta, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada.,DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr NW, Calgary, T2N 1N4, Alberta, Canada
| |
Collapse
|
25
|
You H, Kong F, Zhou K, Wei X, Hu L, Hu W, Luo W, Kou Y, Liu X, Chen X, Zheng K, Tang R. HBX protein promotes LASP-1 expression through activation of c-Jun in human hepatoma cells. J Cell Physiol 2018; 233:7279-7291. [PMID: 29600594 DOI: 10.1002/jcp.26560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
LIM and SH3 domain protein 1 (LASP-1) is known to participate in the progression of hepatocellular carcinoma (HCC). We previously showed that ectopic expression of hepatitis B virus (HBV) X protein (HBX) enhanced the expression of LASP-1, which promoted proliferation and migration of HCC cells. Here, we further demonstrated the molecular mechanism underlying upregulation of LASP-1, mediated by HBX, in HBV-infected HCC cells. Through a luciferase activity assay, we discovered that the LASP-1 promoter region regulated by HBX contained an AP-1 binding element in human hepatoma cells. Interestingly, c-Jun, one subunit of AP-1, was mainly responsible for activation, mediated by HBX, of the LASP-1 promoter. Furthermore, HBX was shown not only to interact with phosphorylated c-Jun in HCC cells but also to activate c-Jun by increasing the activation of PI3-K/JNK signaling. Chromatin immunoprecipitation (ChIP) assay demonstrated that HBX was capable of binding to the LASP-1 promoter with c-Jun. Further, the expression levels of HBX were shown to be significantly positively correlated with that of LASP-1 and phosphorylatedc-Jun in HBV-related HCC tissues by immunohistochemistry analysis. In addition, the N-terminus of HBX was found to be responsible for the activation of c-Jun, as well as the expression of LASP-1. Taken together, these results suggest that HBX contributes to LASP-1 expression via the activation of c-Jun to increase the promoter activity of LASP-1 in HBV-related HCC cells.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenya Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Chen
- Bio-pharmaceuticals (Collaboration Articulation Program), School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Zhao H, Liu B, Li J. LIM and SH3 protein 1 knockdown suppresses proliferation and metastasis of colorectal carcinoma cells via inhibition of the mitogen-activated protein kinase signaling pathway. Oncol Lett 2018; 15:6839-6844. [PMID: 29731863 PMCID: PMC5920965 DOI: 10.3892/ol.2018.8222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
LIM and SH3 protein 1 (Lasp-1), a focal adhesion protein, serves a critical role in the regulation of cell proliferation and migration. The role of Lasp-1, as well as the intracellular signaling pathways involved in metastasis and progression of colorectal carcinoma, remains unclear. In the present study, the regulatory effect of Lasp-1 and the underlying molecular mechanism involved in migration and invasion of colorectal carcinoma were investigated. RNA interference and overexpression in SW480 cells were performed to elucidate the role of Lasp-1. Reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence were conducted to determine the mRNA and protein levels of Lasp-1 and extracellular-signal-regulated kinase 1/2 (ERK1/2) in SW480 cells as well as tumor and adjacent normal tissues obtained from 20 patients with colorectal carcinoma. Furthermore, a cell proliferation assay, flow cytometric analysis, and cell migration and invasion assays were performed to examine the effect of Lasp-1 on cell growth. The results of the present study demonstrated that Lasp-1 and ERK1/2 were upregulated in tumor tissue compared with adjacent normal colorectal mucosa. Cell-based in vitro assays demonstrated that Lasp-1 knockdown suppressed the expression and activation of ERK1/2, whereas Lasp-1 overexpression resulted in ERK1/2 upregulation. Additionally, Lasp-1 knockdown inhibited cell proliferation, migration, and invasion and induced cellular apoptosis and G0/G1 cell-cycle arrest. The results of the present study indicate that Lasp-1 serves a critical role in the progression of colorectal carcinoma regulating the activation of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Hongpeng Zhao
- Department of Gastrointestinal Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Bo Liu
- Department of Gastrointestinal Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
27
|
Zhou R, Shao Z, Liu J, Zhan W, Gao Q, Pan Z, Wu L, Xu L, Ding Y, Zhao L. COPS5 and LASP1 synergistically interact to downregulate 14-3-3σ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. Int J Cancer 2017; 142:1853-1864. [PMID: 29226323 DOI: 10.1002/ijc.31206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/25/2017] [Accepted: 11/30/2017] [Indexed: 02/01/2023]
Abstract
Overexpression of LIM and SH3 protein 1 (LASP1) is required for colorectal cancer (CRC) development and progression. Here, C-Jun activation domain-binding protein-1 (Jab1), also known as COP9 signalosome subunit 5 (COPS5), was verified as a new LASP1-interacting protein through yeast two-hybrid assay. The role of COPS5 in LASP1-mediated CRC progression remains unknown. GST pull-down assay indicated that the SH3 domain of LASP1 could directly bind to MPN domain of COPS5. In vitro gain- and loss-of-function analyses revealed the stimulatory role of COPS5 on CRC cell proliferation, migration and invasion. Endogenous overexpression of COPS5 could also enhance the homing capacity of CRC cells in vivo. Further analysis showed that COPS5 and LASP1 synergistically interact to stimulate the ubiquitination and degradation of 14-3-3σ and promote colorectal cancer progression via PI3K/Akt dependent signaling pathway. Clinically, the expression of COPS5 was studied in CRC tissues and it is associated with CRC differentiation, metastasis and poor prognosis. The colocalization of LASP1 and COPS5 was demonstrated in both nonmetastatic and metastatic CRC tissues. A positive correlation was found between the expression of LASP1 and COPS5 while a negative correlation existed between 14-3-3σ and COPS5/LASP1 in most CRC samples. A combination of COPS5 and LASP1 tends to be an independent prognostic indicator for CRC patients, and this is also suitable for CRC without lymph node metastasis. The current research has further advanced our understanding on the complicated molecular mechanism underlying LASP1-mediated CRC progression, which hopefully will contribute to the development of novel diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyun Shao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Nephrology, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Jian Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanqi Zhan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingzu Gao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihua Pan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Shi J, Guo J, Li X. Role of LASP-1, a novel SOX9 transcriptional target, in the progression of lung cancer. Int J Oncol 2017; 52:179-188. [PMID: 29138807 DOI: 10.3892/ijo.2017.4201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for most cancer-related deaths worldwide. However, the underlying mechanism by which it mediates the progression of lung cancer remains unclear. Expression of LASP-1 (LIM and SH3 protein 1) was evaluated in lung cancer tissues and tumor-adjacent normal tissues using immunohistochemistry and western blotting. Functional studies have shown that siRNA-mediated silencing of LASP-1 in human lung cancer cells and reduced cell proliferation, migration, and invasion. Flow cytometry and immunofluorescence staining also revealed that rate of cell apoptosis was increased after knockdown of expression of LASP-1, thereby suggesting that LASP-1 may function as an oncogene during lung cancer progression. SOX9 is an important transcription factor, which is involved in the development of several types of human cancer. Further analysis has showed the presence of a consensus-binding site of SOX9 in the promoter region of LASP-1. Mechanistic investigations showed that LASP-1 was transcriptionally activated by SOX9. Through luciferase reporter and ChIP assays, we demonstrated that LASP-1 was a direct target gene of sex determining region Y-box 9 (SOX9). Knockdown of SOX9 expression by RNA interference reduces cell proliferation and induces apoptosis of lung cancer cells, which was consistent with the results obtained from silencing the expression of LASP-1 in NCI‑H1650 cells. Together, these findings indicated that LASP-1, as a downstream target of SOX9, may act as a novel biomarker for lung cancer and plays an important role in cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianguang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
29
|
Sato M, Yoneyama MS, Hatakeyama S, Funyu T, Suzuki T, Ohyama C, Tsuboi S. The role of LIM and SH3 protein-1 in bladder cancer metastasis. Oncol Lett 2017; 14:4829-4834. [PMID: 29085487 DOI: 10.3892/ol.2017.6802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
The LIM and SH3 protein-1 (LASP-1) is a multi-domain protein that is involved in several malignant cancers. The role of LASP-1 in malignant phenotypes including high invasive properties and unrestricted cell proliferation, remain to be elucidated. The present study reported the association of LASP-1 expression with bladder cancer malignancy and its role in cancer cell invasion and proliferation. The immunohistochemical analysis of the expression status of LASP-1 in radical cystectomy specimens from invasive bladder cancer patients revealed that the LASP-1-positive patients demonstrated a decreased survival rate compared with the LASP-1-negative patients. The expression level of LASP-1 was increased in invasive bladder cancer cell lines compared with the non-invasive bladder cancer cell lines. Invasive cancer cells form invadopodia, the filamentous actin-based membrane protrusions that are essential in cancer cell invasion. Knockdown of LASP-1 reduced the ability to form invadopodia, resulting in decreased invasive capacity of the LASP-1 knockdown cells. In addition, knockdown of LASP-1 reduced cell proliferation. These results suggest that LASP-1 is important in invadopodia formation and cell proliferation of bladder cancer cells, promoting the malignant properties and resulting in poor-prognosis.
Collapse
Affiliation(s)
- Misaki Sato
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tomihisa Funyu
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Tadashi Suzuki
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeru Tsuboi
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036-8243, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
30
|
Hu S, Ran Y, Chen W, Zhang Y, Xu Y. MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 2017; 38:1569-1578. [PMID: 28713953 DOI: 10.3892/or.2017.5810] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yun Ran
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Wenlin Chen
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yuncheng Zhang
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yongjian Xu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
31
|
Kong FY, Zhu T, Li N, Cai YF, Zhou K, Wei X, Kou YB, You HJ, Zheng KY, Tang RX. Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci Rep 2017; 7:44017. [PMID: 28266596 PMCID: PMC5339786 DOI: 10.1038/srep44017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
LIM and SH3 domain protein (LASP-1) is responsible for the development of several types of human cancers via the interaction with other proteins; however, the precise biological functions of proteins interacting with LASP-1 are not fully clarified. Although the role of LASP-1 in hepatocarcinogenesis has been reported, the implication of LASP-1 interactors in HBV-related hepatocellular carcinoma (HCC) is not clearly evaluated. We obtained information regarding LASP-1 interactors from public databases and published studies. Via bioinformatics analysis, we found that LASP-1 interactors were related to distinct molecular functions and associated with various biological processes. Through an integrated network analysis of the interaction and pathways of LASP-1 interactors, cross-talk between different proteins and associated pathways was found. In addition, LASP-1 and several its interactors are significantly altered in HBV-related HCC through microarray analysis and could form a complex co-expression network. In the disease, LASP-1 and its interactors were further predicted to be regulated by a complex interaction network composed of different transcription factors. Besides, numerous LASP-1 interactors were associated with various clinical factors and related to the survival and recurrence of HBV-related HCC. Taken together, these results could help enrich our understanding of LASP-1 interactors and their relationships with HBV-related HCC.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Fei Cai
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Li W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J, Zhou Y. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 2017; 292:5801-5813. [PMID: 28232485 DOI: 10.1074/jbc.m116.758508] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/19/2017] [Indexed: 01/01/2023] Open
Abstract
Thousands of long intergenic non-protein coding RNAs (lincRNAs) have been identified in mammals in genome-wide sequencing studies. Some of these RNAs have been consistently conserved during the evolution of species and could presumably function in important biologic processes. Therefore, we measured the levels of 26 highly conserved lincRNAs in a total of 176 pairs of endometrial carcinoma (EC) and surrounding non-tumor tissues of two distinct Chinese populations. Here, we report that a lincRNA, LINC00672, which possesses an ultra-conserved region, is aberrantly down-regulated during the development of EC. Nevertheless, LINC00672 is a p53-targeting lincRNA acting along with heterogeneous nuclear ribonucleoproteins as a suppressive cofactor, which locally reinforces p53-mediated suppression of LASP1, an evolutionarily conserved neighboring gene of LINC00672 and putatively associated with increased tumor aggressiveness, during anti-tumor processes. LINC00672 overexpression could lower the levels of LASP1 and slow the development of malignant phenotypes of EC both in vitro and in vivo Moreover, LINC00672 significantly increased the 50% inhibitory concentration of paclitaxel in EC cells and increased the sensitivity of xenograft mice to paclitaxel. These findings indicate that LINC00672 can influence LASP1 expression as a locus-restricted cofactor for p53-mediated gene suppression, thus impacting EC malignancies and chemosensitivity to paclitaxel.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Hua Li
- the Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing 100191
| | - Liyuan Zhang
- the Departments of Radiotherapy and Oncology and
| | - Min Hu
- Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou 215004, and
| | - Fang Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jieqiong Deng
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Mingxing An
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Siqi Wu
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Rui Ma
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jiachun Lu
- the Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China
| | - Yifeng Zhou
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123,
| |
Collapse
|
33
|
Lin X, Liu X, Fang Y, Weng X. LIM and SH3 protein 1 promotes tumor proliferation and metastasis in lung carcinoma. Oncol Lett 2016; 12:4756-4760. [PMID: 28105185 PMCID: PMC5228407 DOI: 10.3892/ol.2016.5225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/02/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. In the present study, we focused on LIM and SH3 protein 1 (LASP-1), a key molecule involved in the development of multiple cancers, and attempted to elucidate its effect on the oncogenesis of lung cancer. We determined the expression level of LASP-1 in lung cancer using reverse transcription-quantitative polymerase chain reaction and western blot analysis, and also studied the potential function of LASP-1 in lung cancer cell growth, apoptosis and migration by small interfering RNA transfection. The results revealed that the levels of LASP-1 mRNA and protein were abnormally high in lung cancer cells. Following RNA interference of LASP-1, the proliferation and migration ability of the human cancer cell line A549 were significantly decreased. In addition, fluorescence-activated cell sorting analysis indicated that the apoptotic process in the A549 cell line was induced by the silencing of LASP-1. Our study is the first to investigate the potential of LASP-1 in lung cancer, and revealed its significant role in regulating the growth and metastasis of lung cancer cells. The present study suggests that LASP-1 has potential as a therapeutic target in the treatment of lung cancer in the clinic.
Collapse
Affiliation(s)
- Xueqiong Lin
- Department of Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515031, P.R. China
- Correspondence to: Professor Xueqiong Lin, Department of Clinical Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong 515031, P.R. China, E-mail:
| | - Xianhui Liu
- Department of Clinical Laboratory, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Yusen Fang
- Department of Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515031, P.R. China
| | - Xuefen Weng
- Department of Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515031, P.R. China
| |
Collapse
|
34
|
Sun W, Guo L, Shao G, Liu X, Guan Y, Su L, Zhao S. Suppression of LASP-1 attenuates the carcinogenesis of prostatic cancer cell lines: Key role of the NF-κB pathway. Oncol Rep 2016; 37:341-347. [PMID: 27840958 DOI: 10.3892/or.2016.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among males worldwide and causes a considerable number of deaths each year. One of the newly explored targets for the development of therapies against PCa is LIM and SH3 protein 1 (LASP-1). In the present study, the function of LASP-1 in the oncogenesis and metastasis of PCa was investigated using a series of in vitro experiments. Moreover, the mechanism through which LASP-1 exerted its effect on the carcinogenesis of PCa was also explored. The expression levels of LASP-1 in clinical PCa specimens were determined both at the mRNA and protein levels. Afterwards, the activity of LASP-1 in human PCa cell lines PC3 and DU145 was inhibited using a short hairpin RNA (shRNA) interfering method. The effects of LASP-1 knockdown on the cell growth, apoptosis, cell cycle distribution, migration and invasion were assessed. It was demonstrated that the expression of LASP-1 was significantly higher in the clinical PCa tissues than the level in the corresponding para-carcinoma tissues. Following the knockdown of the LASP-1 gene in human PCa cell lines, the viability, migration and invasion of the cancer cells were decreased. It was also demonstrated that the change in the cell viability and motile ability were associated with an induction of cell apoptosis and G1 phase cell cycle arrest. Based on the results of the detection of the expression of NF-κB-related factors, it was indicated that LASP-1 may affect the carcinogenesis of PCa through a NF-κB inhibition-dependent manner. Although the detailed explanation of the mechanism of LASP-1 in the carcinogenesis of PCa requires further elucidation, the present study highlights the potential of LASP-1 as a promising therapeutic target to ameliorate the oncogenesis and metastasis of PCa.
Collapse
Affiliation(s)
- Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqiang Guo
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangguo Liu
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Yong Guan
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Su
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Shengtian Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
35
|
Shao Z, Cai Y, Xu L, Yao X, Shi J, Zhang F, Luo Y, Zheng K, Liu J, Deng F, Li R, Zhang L, Wang H, Li M, Ding Y, Zhao L. Loss of the 14-3-3σ is essential for LASP1-mediated colorectal cancer progression via activating PI3K/AKT signaling pathway. Sci Rep 2016; 6:25631. [PMID: 27156963 PMCID: PMC4860602 DOI: 10.1038/srep25631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Abstract
LIM and SH3 protein 1 (LASP1) can promote colorectal cancer (CRC) progression and metastasis, but the direct evidence that elucidates the molecular mechanism remains unclear. Here, our proteomic data showed that LASP1 interacted with 14-3-3σ and decreased the expression of 14-3-3σ in CRC. Deletion of 14-3-3σ was required for LASP1-mediated CRC cell aggressiveness. In vitro gain- and loss-of-function assays showed that 14-3-3σ suppressed the ability of cell migration and decreased the phosphorylation of AKT in CRC cells. We further observed clearly co-localization between AKT and 14-3-3σ in CRC cells. Treatment of PI3K inhibitor LY294002 markedly prevented phosphorylation of AKT and subsequently counteract aggressive phenotype mediated by siRNA of 14-3-3σ. Clinically, 14-3-3σ is frequently down-regulated in CRC tissues. Down-regulation of 14-3-3σ is associated with tumor progression and poor prognosis of patients with CRC. Multivariate analysis confirmed low expression of 14-3-3σ as an independent prognostic factor for CRC. A combination of low 14-3-3σ and high LASP1 expression shows a worse trend with overall survival of CRC patients. Our research paves the path to future investigation of the LASP1-14-3-3σ axis as a target for novel anticancer therapies of advanced CRC.
Collapse
Affiliation(s)
- Ziyun Shao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Cai
- Department of Gerontology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Lijun Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Yao
- The Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Jiaolong Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feifei Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fengliu Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanzhi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Radiotherapy Department, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma. Int J Mol Sci 2016; 17:540. [PMID: 27070597 PMCID: PMC4848996 DOI: 10.3390/ijms17040540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 04/06/2016] [Indexed: 01/15/2023] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes.
Collapse
|
37
|
LASP-1, regulated by miR-203, promotes tumor proliferation and aggressiveness in human non-small cell lung cancer. Exp Mol Pathol 2016; 100:116-24. [DOI: 10.1016/j.yexmp.2015.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
|
38
|
Zhang H, Li Z, Chu B, Zhang F, Zhang Y, Ke F, Chen Y, Xu Y, Liu S, Zhao S, Liang H, Weng M, Wu X, Li M, Wu W, Quan Z, Liu Y, Zhang Y, Gong W. Upregulated LASP-1 correlates with a malignant phenotype and its potential therapeutic role in human cholangiocarcinoma. Tumour Biol 2016; 37:8305-15. [PMID: 26729195 DOI: 10.1007/s13277-015-4704-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/20/2015] [Indexed: 02/08/2023] Open
Abstract
LIM and SH3 protein 1 (LASP-1) is demonstrated to play a key role in occurrence and development of tumors. However, the expression and function of LASP-1 in cholangiocarcinoma (CCA) remain largely unexplored. This study aimed to investigate the effect of regulated LASP-1 expression on migration, invasion, proliferation, and apoptosis of CCA cells and on tumorigenesis in vivo, and to examine clinico-oncological correlates of LASP-1 expression. Expression of LASP-1 by immunohistochemistry was evaluated in CCA tissue samples. HCCC-9810 and RBE cells were transfected with the LASP-1 small interfering RNA (siRNA), and the effect of knocking down LASP-1 gene expression on cell migration, invasion, proliferation, and apoptosis were examined by wound healing, transwell assays, CCK-8 assays, colony formation, and flow cytometry assays, respectively. Xenograft tumor model was used to validate the effect of downregulated LASP-1 in vivo. Our results demonstrated that LASP-1 was over-expressed in CCA tissues, positively correlating with larger tumors, poor histological differentiation, lymph node metastasis, advanced TNM stage, and poor prognosis in CCA patients (P < 0.05). Downregulation of LASP-1 in HCCC-9810 and RBE cell lines significantly increased cell apoptosis and suppressed cell migration, invasion, and proliferation in vitro and tumorigenesis in vivo. Our results indicate that LASP-1 may essentially involve in the metastasis and growth of CCA and clinical significance of LASP-1 may reside in function as a biomarker to predict prognosis and as a promising therapeutic strategy for CCA patients by the inhibition of LASP-1 expression.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhizhen Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fayong Ke
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuanyuan Chen
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi Xu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shibo Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shuai Zhao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenguang Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China. .,The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
39
|
Coumans JVF, Gau D, Poljak A, Wasinger V, Roy P, Moens PDJ. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:778-91. [PMID: 25454514 DOI: 10.1089/omi.2014.0075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.
Collapse
Affiliation(s)
- Joëlle V F Coumans
- 1 School of Science and Technology, University of New England , Armidale, NSW, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
41
|
The cytoskeletal protein LASP-1 differentially regulates migratory activities of choriocarcinoma cells. Arch Gynecol Obstet 2015; 293:407-14. [DOI: 10.1007/s00404-015-3830-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/27/2015] [Indexed: 01/06/2023]
|
42
|
LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget 2015; 5:5257-71. [PMID: 24913448 PMCID: PMC4170624 DOI: 10.18632/oncotarget.2072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by a genomic translocation generating a permanently active BCR-ABL oncogene with a complex pattern of atypically tyrosine-phosphorylated proteins that drive the malignant phenotype of CML. Recently, the LIM and SH3 domain protein 1 (LASP1) was identified as a component of a six gene signature that is strongly predictive for disease progression and relapse in CML patients. However, the underlying mechanisms why LASP1 expression correlates with dismal outcome remained unresolved. Here, we identified LASP1 as a novel and overexpressed direct substrate of BCR-ABL in CML. We demonstrate that LASP1 is specifically phosphorylated by BCR-ABL at tyrosine-171 in CML patients, which is abolished by tyrosine kinase inhibitor therapy. Further studies revealed that LASP1 phosphorylation results in an association with CRKL - another specific BCR-ABL substrate and bona fide biomarker for BCR-ABL activity. pLASP1-Y171 binds to non-phosphorylated CRKL at its SH2 domain. Accordingly, the BCR-ABL-mediated pathophysiological hyper-phosphorylation of LASP1 in CML disrupts normal regulation of CRKL and LASP1, which likely has implications on downstream BCR-ABL signaling. Collectively, our results suggest that LASP1 phosphorylation might serve as an additional candidate biomarker for assessment of BCR-ABL activity and provide a first step toward a molecular understanding of LASP1 function in CML.
Collapse
|
43
|
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene 2015; 35:1122-33. [PMID: 25982273 PMCID: PMC4651668 DOI: 10.1038/onc.2015.166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/30/2022]
Abstract
Nuclear LASP-1 has a direct correlation with overall survival of breast cancer patients. In this study, immunohistochemical analysis of a human breast TMA showed that LASP-1 is absent in normal human breast epithelium but the expression increases with malignancy and is highly nuclear in aggressive breast cancer. We investigated whether the chemokines and growth factors present in the tumor microenvironment could trigger nuclear translocation of LASP-1.Treatment of human breast cancer cells with CXCL12, EGF and Heregulin and HMEC-CXCR2 cells with CXCL8 facilitated nuclear shuttling of LASP-1. Data from the biochemical analysis of the nuclear and cytosolic fractions further confirmed the nuclear translocation of LASP-1 upon chemokine and growth factor treatment. CXCL12-dependent nuclear import of LASP-1 could be blocked by CXCR4 antagonist, AMD-3100. Knock down of LASP-1 resulted in alterations in gene expression leading to an increased level of cell junction and extracellular matrix proteins and an altered cytokine secretory profile. Three dimensional cultures of human breast cancer cells on Matrigel revealed an altered colony growth, morphology and arborization pattern in LASP-1 knock down cells. Functional analysis of the LASP-1 knock down cells revealed increased adhesion to collagen IV and decreased invasion through the Matrigel. Proteomics analysis of immunoprecipitates of LASP-1 and subsequent validation approaches revealed that LASP-1associated with the epigenetic machinery especially UHRF1, DNMT1, G9a and the transcription factor Snail1. Interestingly, LASP-1 associated with UHRF1, G9a, Snail1 and di- and tri-methylated histoneH3 in a CXCL12-dependent manner based on immunoprecipitation and proximity ligation assays. LASP-1 also directly bound to Snail1 which may stabilize Snail1. Thus, nuclear LASP-1 appears to functionally serve as a hub for the epigenetic machinery.
Collapse
|
44
|
Hailer A, Grunewald TGP, Orth M, Reiss C, Kneitz B, Spahn M, Butt E. Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration. Oncotarget 2015; 5:4144-4153. [PMID: 24980827 PMCID: PMC4147312 DOI: 10.18632/oncotarget.1928] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.
Collapse
Affiliation(s)
- Amelie Hailer
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Thomas G P Grunewald
- INSERM Unit 830, Genetics and Biology of Cancers, Institute Curie Research Center, 26 rue d'Ulm, 75248 Paris, France. These authors contributed equally to this work
| | - Martin Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Cora Reiss
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| | - Burkhard Kneitz
- Urology and Pediatric Urology, University Clinic of Wuerzburg, Oberduerrbacher Strasse 6, 97080 Wuerzburg, Germany
| | - Martin Spahn
- Urology and Pediatric Urology, University Clinic of Wuerzburg, Oberduerrbacher Strasse 6, 97080 Wuerzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Wuerzburg, Grombuehlstrasse 12, 97080 Wuerzburg, Germany. These authors contributed equally to this work
| |
Collapse
|
45
|
Salvi A, Bongarzone I, Ferrari L, Abeni E, Arici B, De Bortoli M, Scuri S, Bonini D, Grossi I, Benetti A, Baiocchi G, Portolani N, De Petro G. Molecular characterization of LASP-1 expression reveals vimentin as its new partner in human hepatocellular carcinoma cells. Int J Oncol 2015; 46:1901-12. [PMID: 25760690 PMCID: PMC4383023 DOI: 10.3892/ijo.2015.2923] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We have previously reported that LASP-1 is a downstream protein of the urokinase type plasminogen activator (uPA). Here we investigated the role of LASP-1 in HCC by a molecular and biological characterization of LASP-1 expression in human HCC specimens and in cultured HCC cells. We determined the LASP-1 mRNA expression levels in 55 HCC cases with different hepatic background disease. We identified 3 groups of patients with high, equal or low LASP-1 mRNA levels in HCC tissues compared to the peritumoral (PT) tissues. In particular we found that i) the HCCs displayed a higher LASP-1 mRNA level in HCC compared to PT tissues; ii) the expression levels of LASP-1 mRNA in female HCCs were significantly higher compared to male HCCs; iii) the cirrhotic HCCs displayed a higher LASP-1 mRNA. Further, the biological characterization of the ectopic LASP-1 overexpression in HCC cells, using MALDI-TOF mass spectrometer on the LASP-1 co-immunoprecipitated fractions, displayed vimentin as a novel putative partner of LASP-1. Our results suggest that LASP-1 mRNA overexpression may be mainly implicated in female HCCs and cirrhotic HCCs; and that LASP1 may play its role with vimentin in HCC cells.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Italia Bongarzone
- Department of Experimental Oncology and Molecular Medicine, Proteomics Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lia Ferrari
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Edoardo Abeni
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Bruna Arici
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Maida De Bortoli
- Department of Experimental Oncology and Molecular Medicine, Proteomics Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabrina Scuri
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Daniela Bonini
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, Division of Morbid Anatomy, University of Brescia, Brescia, Italy
| | - Gianluca Baiocchi
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Nazario Portolani
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| |
Collapse
|
46
|
Zhao T, Ren H, Li J, Chen J, Zhang H, Xin W, Sun Y, Sun L, Yang Y, Sun J, Wang X, Gao S, Huang C, Zhang H, Yang S, Hao J. LASP1 is a HIF1α target gene critical for metastasis of pancreatic cancer. Cancer Res 2015; 75:111-9. [PMID: 25385028 PMCID: PMC4286473 DOI: 10.1158/0008-5472.can-14-2040] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LASP1 is an actin-binding protein associated with actin assembly dynamics in cancer cells. Here, we report that LASP1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) where it promotes invasion and metastasis. We found that LASP1 overexpression in PDAC cells was mediated by HIF1α through direct binding to a hypoxia response element in the LASP1 promoter. HIF1α stimulated LASP1 expression in PDAC cells in vitro and mouse tumor xenografts in vivo. Clinically, LASP1 overexpression in PDAC patient specimens was associated significantly with lymph node metastasis and overall survival. Overall, our results defined LASP1 as a direct target gene for HIF1α upregulation that is critical for metastatic progression of PDAC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/physiology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Heterografts
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Mice
- Mice, Nude
- Neoplasm Metastasis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Promoter Regions, Genetic
- Transcriptional Activation
- Transfection
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Tiansuo Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - He Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Huan Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wen Xin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yongwei Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junwei Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Huafeng Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
47
|
The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene 2015; 555:377-81. [DOI: 10.1016/j.gene.2014.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
48
|
Wang H, Shi J, Luo Y, Liao Q, Niu Y, Zhang F, Shao Z, Ding Y, Zhao L. LIM and SH3 protein 1 induces TGFβ-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin Cancer Res 2014; 20:5835-47. [PMID: 25252758 DOI: 10.1158/1078-0432.ccr-14-0485] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The expression of LIM and SH3 protein 1 (LASP1) was upregulated in colorectal cancer cases, thereby contributing to the aggressive phenotypes of colorectal cancer cells. However, we still cannot decipher the underlying molecular mechanism associated with colorectal cancer metastasis. EXPERIMENTAL DESIGN In this study, IHC was performed to investigate the expression of proteins in human colorectal cancer tissues. Western blot analysis was used to assess the LASP1-induced signal pathway. Two-dimensional difference gel electrophoresis was performed to screen LASP1-modulated proteins and uncover the molecular mechanism of LASP1. TGFβ was used to induce an epithelial-mesenchymal transition (EMT). RESULTS LASP1 expression was correlated with the mesenchymal marker vimentin and was inversely correlated with epithelial markers, namely, E-cadherin and β-catenin, in clinical colorectal cancer samples. The gain- and loss-of-function assay showed that LASP1 induces EMT-like phenotypes in vitro and in vivo. S100A4, identified as a LASP1-modulated protein, was upregulated by LASP1. Moreover, it is frequently coexpressed with LASP1 in colorectal cancer. S100A4 was required for EMT, and an increased cell invasiveness of colorectal cancer cell is induced by LASP1. Furthermore, the stimulation of TGFβ resulted in an activated Smad pathway that increased the expression of LASP1 and S100A4. The depletion of LASP1 or S100A4 expression inhibited the TGFβ signaling pathway. Moreover, it significantly weakened the proinvasive effects of TGFβ on colorectal cancer cells. CONCLUSION These findings elucidate the central role of LASP1 in the TGFβ-mediated EMT process and suggest a potential target for the clinical intervention in patients with advanced colorectal cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaolong Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Liao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya Niu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Feifei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyun Shao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med 2014; 12:244. [PMID: 25196260 PMCID: PMC4172896 DOI: 10.1186/s12967-014-0244-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Aberrant expression of miR-1 has been implicated in various cancers. However, the mechanisms underlying the role of miR-1 in CRC progression still have not been clarified clearly. Here, we showed the decreased expression of miR-1 in colorectal carcinoma (CRC) tissues and cell lines. Ectopic introduction of miR-1 suppressed cell proliferation and migration, whereas miR-1 inhibitor performed contrary functions in CRC cells. Stable overexpression of miR-1 was sufficient to inhibit tumor growth and homing capacity in vivo. Proteomic analysis revealed that miR-1 modulated the expression of key cellular molecules and involved in the MAPK and PI3K/AKT pathways by inhibiting phosphorylation of ERK and AKT. Meanwhile, miR-1 also reversed epithelial–mesenchymal transition (EMT), which played a pivotal role in the initiation of metastasis. Further studies found that miR-1 can target the 3' untranslated region (3'UTR) of LIM and SH3 protein 1 (LASP1) mRNA and suppress the expression of LASP1, identified as a CRC-associated protein. In contrast to the phenotypes induced by miR-1 restoration, LASP1-induced cell proliferation and migration partly rescued miR-1-mediated biological behaviors. Our results illustrated that miR-1 play a critical role in CRC progression, which suggests its potential role in the molecular therapy of cancer.
Collapse
|
50
|
Zheng J, Yu S, Qiao Y, Zhang H, Liang S, Wang H, Liu Y, Zhou F, Jiang J, Lu S. LASP-1 promotes tumor proliferation and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J Cancer Res Clin Oncol 2014; 140:1891-9. [PMID: 24990592 DOI: 10.1007/s00432-014-1759-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE The LIM and SH3 protein 1 (LASP-1) is a focal adhesion protein, and its expression has been reported to be increased in many malignant tumors. However, the role of LASP-1 in gastric cancer is still unknown. The aim of this study was to determine the relationship of LASP-1 expression with the progression and prognosis of gastric cancer. METHODS Expression of LASP-1 was evaluated in gastric cancer tissues and cell lines by immunohistochemistry and Western blot analysis. The relationship between LASP-1 expression and clinicopathological characteristics was analyzed. Using RNA interference, the effects of LASP-1 on cell proliferation, migration and invasion were investigated in gastric cancer cell lines both in vitro and in vivo. RESULTS The LASP-1 was overexpressed in gastric cancer tissues and cell lines. LASP-1 expression was significantly associated with tumor size, invasive depth, TNM stage, lymph node metastasis and p53 expression (all P < 0.05). Multivariate survival analysis showed that LASP-1 expression was recognized as an independent prognostic factor of patient's survival. Knockdown of LASP-1 inhibited cell proliferation, migration and invasion in vitro as well as tumorigenesis and metastasis in vivo. CONCLUSIONS Our study showed that LASP-1, overexpressed in gastric cancer and associated with poor prognosis, plays an important role in the growth and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pathology, Weifang Medical University, Baotong Street No. 7166, Weifang, 261053, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|