1
|
Ishii S, Arakawa Y, Ishii H, Yokoyama K, Yokoyama H, Saito T, Yano S. A novel stroma-dependent leukemia cell line from a patient with mixed-phenotype acute leukemia with Ph chromosome and PAX5 mutation. Int J Hematol 2025:10.1007/s12185-025-03944-y. [PMID: 39979768 DOI: 10.1007/s12185-025-03944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Mixed phenotype acute leukemia (MPAL) is a rare and aggressive form of leukemia with a poor prognosis and no established treatment. In this study, we established a novel leukemic cell line, JMPAL-1, from a specimen of a 69-year-old patient with Philadelphia chromosome-positive MPAL. Flow cytometry showed that JMPAL-1 expresses B-cell markers but not myeloperoxidase. A genomic analysis of JMPAL-1 cells revealed the BCR::ABL1 fusion gene, missense mutation in PAX5, homozygous deletion of CDKN2A/CDKN2B, and BRAF amplification. This cell line was stroma-dependent in proliferation and required co-culturing with mouse bone marrow-derived mesenchymal cells (9-15C). Knowing the differences between JMPAL-1 and patient leukemia cells may improve understanding of the in vivo versus in vitro behavior of leukemia, clonal selection, and transformation. The stroma-dependent growth pattern of JMPAL-1 also provides a unique platform to study tumor-stromal interactions and their role in leukemic cell survival and drug resistance. Our study highlights the importance of establishing preclinical models such as JMPAL-1 and performing detailed cytogenetic analysis to develop targeted therapies in line with the pathogenesis of the disease.
Collapse
Affiliation(s)
- Shoko Ishii
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Arakawa
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Department of Clinical Pharmacology and Therapeutics, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hiroto Ishii
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology and Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Yokoyama
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeshi Saito
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Shafique S, Ali SR, Rajput SN, Salim A, Khan I. Cardiac Transcription Regulators Differentiate Human Umbilical Cord Mesenchymal Stem Cells into Cardiac Cells. Altern Lab Anim 2023; 51:12-29. [PMID: 36484201 DOI: 10.1177/02611929221143774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cell-based therapy presents an attractive alternative to conventional therapies for degenerative diseases. Numerous studies have investigated the capability of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to contribute to the regeneration of cardiomyocytes, and the results have encouraged further basic and clinical studies on the MSC-based treatment of cardiomyopathies. This study aimed to determine the potential of cardiomyogenic transcription factors in differentiating hUC-MSCs into cardiac-like cells in vitro. MSCs were isolated from umbilical cord tissue and were transduced with the transcription factor genes, GATA-4 and Nkx 2.5, via infection with lentiviruses, to promote differentiation into the cardiomyogenic lineage. Gene and protein expression were analysed with qPCR and immunocytochemical staining. After transduction, differentiated cardiac-like cells showed significant expression of cardiac genes and proteins, namely GATA-4, Nkx-2.5, cardiac troponin I (cTnI) and myosin heavy chain (MHC). The cardiomyogenic-induced group significantly overexpressed cardiac-specific genes (GATA-4, Nkx-2.5, cTnI, MHC, α-actinin and Wnt2). Expression of the calcium channel gene was also significantly increased, while the sodium channel gene was downregulated in the transduced hUC-MSCs, as compared to non-transduced cells. The results suggest that GATA-4 and Nkx-2.5 interact synergistically in the activation of downstream cardiac transcription factors, demonstrating the functional convergence of hUC-MSC differentiation into cardiac-like cells. These findings could potentially be utilised in the efficient production of cardiac-like cells from stem cells; these cardiac-like cells could then be used in various applications, such as for in vivo implantation in infarcted myocardium, and for drug screening in toxicity testing.
Collapse
Affiliation(s)
- Shumaila Shafique
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syeda Roohina Ali
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shafiqa Naeem Rajput
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
3
|
Razzaq SS, Khan I, Naeem N, Salim A, Begum S, Haneef K. Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells. World J Stem Cells 2022; 14:700-713. [PMID: 36188117 PMCID: PMC9516467 DOI: 10.4252/wjsc.v14.i9.700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Heart diseases are the primary cause of death all over the world. Following myocardial infarction, billions of cells die, resulting in a huge loss of cardiac function. Stem cell-based therapies have appeared as a new area to support heart regeneration. The transcription factors GATA binding protein 4 (GATA-4) and myocyte enhancer factor 2C (MEF2C) are considered prominent factors in the development of the cardiovascular system.
AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs).
METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry, and by their potential to differentiate into osteocytes and adipocytes. hUC-MSCs were transfected with GATA-4, MEF2C, and their combination to direct the differentiation. Cardiac differentiation was confirmed by semiquantitative real-time polymerase chain reaction and immunocytochemistry.
RESULTS hUC-MSCs expressed specific cell surface markers CD105, CD90, CD44, and vimentin but lack the expression of CD45. The transcription factors GATA-4 and MEF2C, and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e., GATA-4, MEF2C, NK2 homeobox 5 (NKX2.5), MHC, and connexin-43, and cardiac proteins GATA-4, NKX2.5, cardiac troponin T, and connexin-43.
CONCLUSION Transfection with GATA-4, MEF2C, and their combination effectively induces cardiac differentiation in hUC-MSCs. These genetically modified MSCs could be a promising treatment option for heart diseases in the future.
Collapse
Affiliation(s)
- Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology & Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS), Ojha Campus, Karachi 75200, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi 74200, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Smith AL, Eiken AP, Skupa SA, Moore DY, Umeta LT, Smith LM, Lyden ER, D’Angelo CR, Kallam A, Vose JM, Kutateladze TG, El-Gamal D. A Novel Triple-Action Inhibitor Targeting B-Cell Receptor Signaling and BRD4 Demonstrates Preclinical Activity in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:6712. [PMID: 35743155 PMCID: PMC9224275 DOI: 10.3390/ijms23126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.
Collapse
Affiliation(s)
- Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lelisse T. Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Elizabeth R. Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Avyakta Kallam
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Julie M. Vose
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| |
Collapse
|
5
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B, Mitchell S, Grieselhuber NR, Williams K, Lai TH, Alinari L, Baiocchi RA, Brinton L, Baskin E, Cannon M, Beaver L, Goettl VM, Lucas DM, Woyach JA, Sampath D, Lehman AM, Yu L, Zhang J, Ma Y, Zhang Y, Spevak W, Shi S, Severson P, Shellooe R, Carias H, Tsang G, Dong K, Ewing T, Marimuthu A, Tantoy C, Walters J, Sanftner L, Rezaei H, Nespi M, Matusow B, Habets G, Ibrahim P, Zhang C, Mathé EA, Bollag G, Byrd JC, Lapalombella R. BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discov 2018; 8:458-477. [PMID: 29386193 PMCID: PMC5882533 DOI: 10.1158/2159-8290.cd-17-0902] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Mice
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Dalia El-Gamal
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Zachary A Hing
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Bonnie Harrington
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Tzung-Huei Lai
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lindsey Brinton
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Elizabeth Baskin
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Virginia M Goettl
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - David M Lucas
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | | | - Yan Ma
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Ken Dong
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | - Ewy A Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| | - Rosa Lapalombella
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
7
|
Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, Pothacharoen P, Puaninta C. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte‑like cells. Mol Med Rep 2017; 16:6068-6076. [PMID: 28849052 PMCID: PMC5865810 DOI: 10.3892/mmr.2017.7333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Ischemic heart disease (IHD) is a major factor influencing worldwide mortality rates. Furthermore, IHD has become a significant health problem among the Thai population. Stem cell therapy using mesenchymal stem cells (MSCs) is an alternative therapeutic method that has been applied to improve the quality of life of patients. Amniotic fluid (AF) contains a heterogeneous cell population, including MSCs, which are multipotent stem cells that have the capability to differentiate into mesenchymal lineages. The purpose of the present study was to evaluate the MSC characteristics of human (h)AF and determine its potency regarding cardiogenic differentiation. MSC characterization following flow cytometric analysis revealed that the cells expressed MSC markers, cluster of differentiation (CD)44, CD90, human leukocyte antigen-ABC and CD73. The results of the alamar blue assay demonstrated that cell proliferation rate continuously increased from the early cultivation phase up to 5-fold during days 1 to 5 of cell culturing. The highest rate of cell proliferation was observed on day 17 with a 30-fold increase compared with that on day 1. During the cardiogenic induction stage, morphological changes were observed between day 0 and day 21, and it was revealed that the hAF derived-MSCs in the cardiogenic-induced group exhibited myotube-like morphology after 7 days of cell culturing. Following cardiogenic induction, immunohistochemistry staining was performed on day 21, and reverse transcription-quantitative polymerase chain reaction on day 7 and 21. These steps were performed to detect the protein and gene expression levels of cardiac specific proteins (GATA4, cardiac troponin T, Nkx2.5 and Connexin43). The results of the present study indicated that hAF-MSCs possess the potential to differentiate into cardiomyocyte-like cells. Thus, it was concluded that hAF may be a suitable source of MSCs for stem cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Kanokkarn Bumrungkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Nataporn Pangchaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Cardiac stem cell transplantation with 2,3,5,4′-tetrahydroxystilbehe-2-O-β-d-glucoside improves cardiac function in rat myocardial infarction model. Life Sci 2016; 158:37-45. [DOI: 10.1016/j.lfs.2016.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023]
|
9
|
Laemmle LL, Cohen JB, Glorioso JC. Constitutive Expression of GATA4 Dramatically Increases the Cardiogenic Potential of D3 Mouse Embryonic Stem Cells. ACTA ACUST UNITED AC 2016; 10:248-257. [PMID: 27441042 PMCID: PMC4948750 DOI: 10.2174/1874070701610010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transcription factor GATA binding protein 4 (GATA4) is a vital regulator of cardiac programming that acts by inducing the expression of many different genes involved in cardiomyogenesis. Here we generated a D3 mouse embryonic stem cell line that constitutively expresses high levels of GATA4 and show that these cells have dramatically increased cardiogenic potential compared to an eGFP-expressing control cell line. Embryoid bodies (EB) derived from the D3-GATA4 line displayed increased levels of cardiac gene expression and showed more abundant cardiomyocyte differentiation than control eGFP EB. These cells and two additional lines expressing lower levels of GATA4 provide a platform to screen previously untested cardiac genes and gene combinations for their ability to further increase the efficiency of cardiomyocyte differentiation beyond that achieved by transgenic GATA4 alone. Non-integrative delivery of identified gene combinations will aid in the production of differentiated cells for the treatment of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Lillian L Laemmle
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
10
|
Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Sci Rep 2016; 6:23544. [PMID: 27045658 PMCID: PMC4820697 DOI: 10.1038/srep23544] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.
Collapse
|
11
|
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92:41-51. [PMID: 27012163 DOI: 10.1016/j.diff.2016.02.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells.
Collapse
Affiliation(s)
- Sami G Almalki
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
12
|
Ruan Z, Zhu L, Yin Y, Chen G. Overexpressing NKx2.5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells. Biomed Pharmacother 2016; 78:110-115. [PMID: 26898431 DOI: 10.1016/j.biopha.2016.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nkx2.5 is one of the transcription factors in early myocardial cell development and Nkx2.5 gene expression increased gradually in the course of stem cells differentiation. In this study, this study aimed to investigate whether overexpression of NKx2.5 increases human umbilical cord drived mesenchymal stem cells (hUCMSCs) transdifferentiation into a cardiac phenotype in vitro. METHODS hUCMSCs were transduced with Nkx2.5 at the third passage (transduced group). Gene expression of cTnI, Desmin, Nkx2.5 and GATA-4 in transduced group was analyzed using real-time PCR and immunohistochemistry, and compared with no-transduced hUCMSCs (control group), which were transfected with green fluorescent protein (GFP) only. RESULTS Compared with control group, hUCMSCs in transduced group were shown by immunofluorescence to have higher expression of Nkx2.5. After incubation for 4 weeks, the mRNA and protein expression of cardiac genes, including cTnI, Desmin, Nkx2.5 and GATA-4, were up- regulated in transduced group compared with control group (P<0.05). CONCLUSIONS Overexpression of Nkx2.5 significantly promotes the differentiation of hUCMSCs into cardiomyocytes and increases the expression of cTnI, Desmin, Nkx2.5, and GATA-4.
Collapse
Affiliation(s)
- Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, PR China
| | - Yigang Yin
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, PR China
| | - Gecai Chen
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|
13
|
Karam JP, Bonafè F, Sindji L, Muscari C, Montero-Menei CN. Adipose-derived stem cell adhesion on laminin-coated microcarriers improves commitment toward the cardiomyogenic lineage. J Biomed Mater Res A 2014; 103:1828-39. [PMID: 25098676 DOI: 10.1002/jbm.a.35304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/14/2014] [Accepted: 07/31/2014] [Indexed: 12/27/2022]
Abstract
For tissue-engineering studies of the infarcted heart it is essential to identify a source of cells that may provide cardiomyocyte progenitors, which is easy to amplify, accessible in adults, and allowing autologous grafts. Preclinical studies have shown that human adipose-derived stem cells (ADSCs) can differentiate into cardiomyocyte-like cells and improve heart function in myocardial infarction. We have developed pharmacologically active microcarriers (PAMs) which are biodegradable and biocompatible polymeric microspheres conveying cells on their biomimetic surface, therefore providing an adequate three-dimensional (3D) microenvironment. Moreover, they can release a growth factor in a prolonged manner. In order to implement ADSCs and PAMs for cardiac tissue engineering we first defined the biomimetic surface by studying the influence of matrix molecules laminin (LM) and fibronectin (FN), in combination with growth factors present in the cardiogenic niche, to further enhance the in vitro cardiac differentiation of ADSCs. We demonstrated that LM increased the expression of cardiac markers (Nkx2.5, GATA4, MEF2C) by ADSCs after 2 weeks in vitro. Interestingly, our results suggest that the 3D support provided by PAMs with a LM biomimetic surface (LM-PAMs) further enhanced the expression of cardiac markers and induced the expression of a more mature contractile protein, cardiac troponin I, compared with the 2D differentiating conditions after only 1 week in culture. The enrichment of the growth-factor cocktail with TGF-β1 potentiated the cardiomyogenic differentiation. These results suggest that PAMs offering a LM biomimetic surface may be efficiently used for applications combining adult stem cells in tissue-engineering strategies of the ischemic heart.
Collapse
Affiliation(s)
- Jean-Pierre Karam
- LUNAM Université, UMR S-1066 F-49933, Angers, France; NSERM U1066, MINT "Micro et nanomédecines biomimétiques,", F-49933, Angers, France; INRC-National Institute for Cardiovascular Research, 40126, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | | | | | | | | |
Collapse
|
14
|
Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014; 2:50. [PMID: 25364757 PMCID: PMC4206995 DOI: 10.3389/fcell.2014.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
15
|
Yang C, Madonna R, Li Y, Zhang Q, Shen WF, McNamara K, Yang YJ, Geng YJ. Simvastatin-enhanced expression of promyogenic nuclear factors and cardiomyogenesis of murine embryonic stem cells. Vascul Pharmacol 2013; 60:8-16. [PMID: 24200505 DOI: 10.1016/j.vph.2013.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
A combination of statin and stem cell therapies has been shown to benefit in experimental models of myocardial infarction. This study tests whether treatment with simvastatin has a direct impact on the cardiomyogenic development of murine embryonic stem cells (ESCs) in embryoid bodies. In a concentration-dependent manner, simvastatin treatment enhanced expression of several promyogenic nuclear transcription factors, including GATA4, Nkx2.5, DTEF-1 and myocardin A. The statin-treated cells also displayed higher levels of cardiac proteins, including myosin, α-actinin, Ryanodine receptor-2, and atrial natriuretic peptide, and they developed synchronized contraction. The statin's promyogenic effect was partially diminished by the addition of the two isoprenoids FPP and GGPP, which are intermediates of cholesterol synthesis. Thus, simvastatin treatment enhances ESC myogenesis during early development perhaps via a mechanism inhibiting the mevalonate-FPP/GGPP pathway.
Collapse
Affiliation(s)
- ChenMin Yang
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; The Department of Obstetrics and Gynecology, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China; Texas Heart Institute, Houston, TX, USA
| | - Rosalinda Madonna
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yangxin Li
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Qi Zhang
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Wei-Feng Shen
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Katharine McNamara
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yue-Jin Yang
- FuWai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
16
|
Gao XR, Tan YZ, Wang HJ. Overexpression of Csx/Nkx2.5 and GATA-4 enhances the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Circ J 2011; 75:2683-91. [PMID: 21828931 DOI: 10.1253/circj.cj-11-0238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The high death rate of the transplanted stem cells in the infarcted heart and low efficiency of differentiation toward cardiomyocytes show that mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) is not effective. Csx/Nkx2.5 and GATA-4 are considered to be key regulators of cardiogenesis. The aim of the present study was to investigate the effect of transplanting MSC overexpressing Csx/Nkx2.5 and GATA-4 (MSCs-CG) after MI. METHODS AND RESULTS According to acridine orange/ethidium bromide staining, MSCs-CG were more resistant to anoxia as compared with MSCs in vitro. In a mouse MI model, ejection fraction and fractional shortening were higher in the MSC-CG group than in the MSC or phosphate-buffered saline group. Wall thickness of the infarct area was increased and collagen deposition was clearly reduced in the MSC-CG group as compared with the other groups. There were more surviving MSCs in the MSC-CG group than in the MSC group. Most of the Y chromosome-positive cells expressed cardiac troponin T and connexin43 (Cx-43). Cx-43 was localized between Y chromosome-positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions increased significantly in the MSC-CG group. CONCLUSIONS Transplantation of MSCs overexpressing Csx/Nkx2.5 and GATA-4 represents a new treatment strategy with the potential to improve cardiac function after MI.
Collapse
Affiliation(s)
- Xi-Ren Gao
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Japan.
| | | | | |
Collapse
|
17
|
Zhao L, Ju D, Gao Q, Zheng X, Yang G. Over-expression of Nkx2.5 and/or cardiac α-actin inhibit the contraction ability of ADSCs-derived cardiomyocytes. Mol Biol Rep 2011; 39:2585-95. [PMID: 21691712 DOI: 10.1007/s11033-011-1011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/02/2011] [Indexed: 11/28/2022]
Abstract
Adipose tissue-derived stromal cells (ADSCs) can differentiate into cardiomyocytes, which provide a source of new cardiomyocyte progenitors for tissue engineering. Here, we showed that ADSCs isolated from subcutaneous adipose tissues of mouse were largely negative for CD31, CD34, but positive for CD105. About 1.62% cells in these cells can spontaneously differentiate into cardiac-like cells (cells expressing cardiac marker proteins) when cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented only with penicillin, streptomycin, and 20% newborn bovine serum (NBS), expressed cardiac markers such as MF20, Connexin45, cMHC, cTnT, a-actin, Nkx2.5, and GATA4, and part of these cells (account for about 0.47% of inoculated cells) showed spontaneous contractions accompanied by transient Ca(2+) activity in culture. In vitro, although over-expression of Nkx2.5 and/or cardiac α-actin increased the number of cardiac-like cells expressing cardiac-specific proteins, but while inhibited the contraction function of ADSCs-derived cardiomyocytes.
Collapse
Affiliation(s)
- Lili Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, Akutsu H, Takahashi Y, Kanzaki S, Narimatsu H, Hirabayashi J, Umezawa A. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2010; 16:1-11. [PMID: 21155951 DOI: 10.1111/j.1365-2443.2010.01459.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stem cells have a capability to self-renew and differentiate into multiple types of cells; specific markers are available to identify particular stem cells for developmental biology research. In this study, we aimed to define the status of somatic stem cells and the pluripotency of human embryonic stem (hES) and induced pluripotent stem (iPS) cells using a novel molecular methodology, lectin microarray analysis. Our lectin microarray analysis successfully categorized murine somatic stem cells into the appropriate groups of differentiation potency. We then classified hES and iPS cells by the same approach. Undifferentiated hES cells were clearly distinguished from differentiated hES cells after embryoid formation. The pair-wise comparison means based on 'false discovery rate' revealed that three lectins -Euonymus europaeus lectin (EEL), Maackia amurensis lectin (MAL) and Phaseolus vulgaris leucoagglutinin [PHA(L)]- generated maximal values to define undifferentiated and differentiated hES cells. Furthermore, to define a pluripotent stem cell state, we generated a discriminant for the undifferentiated state with pluripotency. The discriminant function based on lectin reactivities was highly accurate for judgment of stem cell pluripotency. These results suggest that glycomic analysis of stem cells leads to a novel comprehensive approach for quality control in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Masashi Toyoda
- Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cardiac cells are under constant, self-generated mechanical stress which can affect the differentiation of stem cells into cardiac myocytes, the development of differentiated cells and the maturation of cells in neonatal mammals. In this article, the effects of direct stretch, electrically induced beating and substrate elasticity on the behavior and development of cardiomyocytes are reviewed, with particular emphasis on the effects of substrate stiffness on cardiomyocyte maturation. In order to relate these observations to in vivo mechanical conditions, we isolated the left ventricle of Black Swiss mice from embryonic day 13.5 through post-natal day 14 and measured the elastic modulus of the epicardium using atomic force microscope indentation. We found that the elastic modulus of the epicardium significantly changes at birth, from an embryonic value of 12+/-4kPa to a neonatal value of 39+/-7kPa. This change is in the range shown to significantly affect the development of neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Jeffrey G Jacot
- Rice University, Department of Bioengineering, 6100 Main St. MS-142, Houston, TX 77005, USA.
| | | | | |
Collapse
|
20
|
Naujokat C, Sarić T. Concise Review: Role and Function of the Ubiquitin-Proteasome System in Mammalian Stem and Progenitor Cells. Stem Cells 2007; 25:2408-18. [PMID: 17641241 DOI: 10.1634/stemcells.2007-0255] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly ordered degradation of cell proteins by the ubiquitin-proteasome system, a sophisticated cellular proteolytic machinery, has been identified as a key regulatory mechanism in many eukaryotic cells. Accumulating evidence reveals that the ubiquitin-proteasome system is involved in the regulation of fundamental processes in mammalian stem and progenitor cells of embryonic, neural, hematopoietic, and mesenchymal origin. Such processes, including development, survival, differentiation, lineage commitment, migration, and homing, are directly controlled by the ubiquitin-proteasome system, either via proteolytic degradation of key regulatory proteins of signaling and gene expression pathways or via nonproteolytic mechanisms involving the proteasome itself or posttranslational modifications of target proteins by ubiquitin or other ubiquitin-like modifiers. Future characterization of the precise roles and functions of the ubiquitin-proteasome system in mammalian stem and early progenitor cells will improve our understanding of stem cell biology and may provide an experimental basis for the development of novel therapeutic strategies in regenerative medicine. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
21
|
Tian L, Zhu J, Yang J, Zhu Q, Du R, Li J, Li W. Missense mutations in CSX/NKX2.5 are associated with atrial septal defects. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1007-4376(07)60049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Okamoto K, Miyoshi S, Toyoda M, Hida N, Ikegami Y, Makino H, Nishiyama N, Tsuji H, Cui CH, Segawa K, Uyama T, Kami D, Miyado K, Asada H, Matsumoto K, Saito H, Yoshimura Y, Ogawa S, Aeba R, Yozu R, Umezawa A. 'Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res 2007; 313:2550-62. [PMID: 17544394 DOI: 10.1016/j.yexcr.2007.04.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 01/10/2023]
Abstract
The clinical application of cell transplantation for severe heart failure is a promising strategy to improve impaired cardiac function. Recently, an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and embryonic stem cells, have become important candidates for cell sources for cardiac repair. In the present study, we focused on the placenta as a cell source. Cells from the chorionic plate in the fetal portion of the human placenta were obtained after delivery by the primary culture method, and the cells generated in this study had the Y sex chromosome, indicating that the cells were derived from the fetus. The cells potentially expressed 'working' cardiomyocyte-specific genes such as cardiac myosin heavy chain 7beta, atrial myosin light chain, cardiac alpha-actin by gene chip analysis, and Csx/Nkx2.5, GATA4 by RT-PCR, cardiac troponin-I and connexin 43 by immunohistochemistry. These cells were able to differentiate into cardiomyocytes. Cardiac troponin-I and connexin 43 displayed a discontinuous pattern of localization at intercellular contact sites after cardiomyogenic differentiation, suggesting that the chorionic mesoderm contained a large number of cells with cardiomyogenic potential. The cells began spontaneously beating 3 days after co-cultivation with murine fetal cardiomyocytes and the frequency of beating cells reached a maximum on day 10. The contraction of the cardiomyocytes was rhythmical and synchronous, suggesting the presence of electrical communication between the cells. Placenta-derived human fetal cells may be useful for patients who cannot supply bone marrow cells but want to receive stem cell-based cardiac therapy.
Collapse
Affiliation(s)
- Kazuma Okamoto
- Department of Reproductive Biology and Pathology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Umezawa A, Toyoda M. Two MSCs: Marrow stromal cells and mesenchymal stem cells. Inflamm Regen 2007. [DOI: 10.2492/inflammregen.27.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|