1
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
2
|
Xu S, Yang N. The Role and Research Progress of Mitochondria in Sensorineural Hearing Loss. Mol Neurobiol 2024:10.1007/s12035-024-04470-4. [PMID: 39292339 DOI: 10.1007/s12035-024-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Hearing loss is one of the most common human diseases, seriously affecting everyday lives. Mitochondria, as the energy metabolism center in cells, are also involved in regulating active oxygen metabolism and mediating the occurrence of inflammation and apoptosis. Mitochondrial defects are closely related to hearing diseases. Studies have shown that mitochondrial DNA mutations are one of the causes of hereditary hearing loss. In addition, changes in mitochondrial homeostasis are directly related to noise-induced hearing loss and presbycusis. This review mainly summarizes and discusses the effects of mitochondrial dysfunction and mitophagy on hearing loss. Subsequently, we introduce the recent research progress of targeted mitochondria therapy in the hearing system.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
3
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
4
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
5
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98:1674-1684. [PMID: 31066107 PMCID: PMC7496655 DOI: 10.1002/jnr.24439] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.
Collapse
Affiliation(s)
- Elizabeth M. Keithley
- Division of Otolaryngology ‐ Head and Neck SurgeryUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
8
|
Whitehall JC, Greaves LC. Aberrant mitochondrial function in ageing and cancer. Biogerontology 2019; 21:445-459. [PMID: 31802313 PMCID: PMC7347693 DOI: 10.1007/s10522-019-09853-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022]
Abstract
Alterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.
Collapse
Affiliation(s)
- Julia C Whitehall
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura C Greaves
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Exp Gerontol 2019; 125:110675. [PMID: 31344454 DOI: 10.1016/j.exger.2019.110675] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.
Collapse
|
10
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
|
11
|
Han F, Wang O, Cai Q. Anti-apoptotic treatment in mouse models of age-related hearing loss. J Otol 2016; 11:7-12. [PMID: 29937804 PMCID: PMC6002598 DOI: 10.1016/j.joto.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Corresponding author. Key Laboratory for Genetic Hearing Disorders in Shandong, and Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Quanxiang Cai
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| |
Collapse
|
12
|
McKay SE, Yan W, Nouws J, Thormann MJ, Raimundo N, Khan A, Santos-Sacchi J, Song L, Shadel GS. Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3132-40. [PMID: 26552864 DOI: 10.1016/j.ajpath.2015.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
The A1555G mutation in the 12S rRNA gene of human mitochondrial DNA causes maternally inherited, nonsyndromic deafness, an extreme case of tissue-specific mitochondrial pathology. A transgenic mouse strain that robustly overexpresses the mitochondrial 12S ribosomal RNA methyltransferase TFB1M (Tg-mtTFB1 mice) exhibits progressive hearing loss that we proposed models aspects of A1555G-related pathology in humans. Although our previous studies of Tg-mtTFB1 mice implicated apoptosis in the spiral ganglion and stria vascularis because of mitochondrial reactive oxygen species-mediated activation of AMP kinase (AMPK) and the nuclear transcription factor E2F1, detailed auditory pathology was not delineated. Herein, we show that Tg-mtTFB1 mice have reduced endocochlear potential, indicative of significant stria vascularis dysfunction, but without obvious signs of strial atrophy. We also observed decreased auditory brainstem response peak 1 amplitude and prolonged wave I latency, consistent with apoptosis of spiral ganglion neurons. Although no major loss of hair cells was observed, there was a mild impairment of voltage-dependent electromotility of outer hair cells. On the basis of these results, we propose that these events conspire to produce the progressive hearing loss phenotype in Tg-mtTFB1 mice. Finally, genetically reducing AMPK α1 rescues hearing loss in Tg-mtTFB1 mice, confirming that aberrant up-regulation of AMPK signaling promotes the observed auditory pathology. The relevance of these findings to human A1555G patients and the potential therapeutic value of reducing AMPK activity are discussed.
Collapse
Affiliation(s)
- Sharen E McKay
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, University of Bridgeport, Bridgeport, Connecticut
| | - Wayne Yan
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Nouws
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Nuno Raimundo
- Institute of Cell Biology, University Medical Center Göettingen, Göttingen, Germany
| | - Abdul Khan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale School of Medicine, New Haven, Connecticut.
| | - Lei Song
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut.
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Genetics, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
13
|
Han X, Ge R, Xie G, Li P, Zhao X, Gao L, Zhang H, Wang O, Huang F, Han F. Caspase-mediated apoptosis in the cochleae contributes to the early onset of hearing loss in A/J mice. ASN Neuro 2015; 7:7/1/1759091415573985. [PMID: 25732708 PMCID: PMC4366423 DOI: 10.1177/1759091415573985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A/J and C57BL/6 J (B6) mice share a mutation in Cdh23 (ahl allele) and are characterized by age-related hearing loss. However, hearing loss occurs much earlier in A/J mice at about four weeks of age. Recent study has revealed that a mutation in citrate synthase (Cs) is one of the main contributors, but the mechanism is largely unknown. In the present study, we showed that A/J mice displayed more severe degeneration of hair cells, spiral ganglion neurons, and stria vascularis in the cochleae compared with B6 mice. Moreover, messenger RNA accumulation levels of caspase-3 and caspase-9 in the inner ears of A/J mice were significantly higher than those in B6 mice at 2 and 8 weeks of age. Immunohistochemistry localized caspase-3 expression mainly to the hair cells, spiral ganglion neurons, and stria vascularis in cochleae. In vitro transfection with Cs short hairpin RNA (shRNA) alone or cotransfection with Cs shRNA and Cdh23 shRNA significantly increased the levels of caspase-3 in an inner ear cell line (HEI-OC1). Finally, a pan-caspase inhibitor Z-VAD-FMK could preserve the hearing of A/J mice by lowering about 15 decibels of the sound pressure level for the auditory-evoked brainstem response thresholds. In conclusion, our results suggest that caspase-mediated apoptosis in the cochleae, which may be related to a Cs mutation, contributes to the early onset of hearing loss in A/J mice.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Ruli Ge
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- Department of Neurology, University Hospital of Binzhou Medical University, Binzhou, P. R. China
| | - Gang Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Xin Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Lixiang Gao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Heng Zhang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
| | - Fei Huang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- § Fengchan Han, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China. ; Fei Huang, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, P. R. China
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, P. R. China
- § Fengchan Han, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China. ; Fei Huang, Key Laboratory for Genetic Hearing Disorders in Shandong and Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, P. R. China.
| |
Collapse
|
14
|
Coutelle O, Hornig-Do HT, Witt A, Andree M, Schiffmann LM, Piekarek M, Brinkmann K, Seeger JM, Liwschitz M, Miwa S, Hallek M, Krönke M, Trifunovic A, Eming SA, Wiesner RJ, Hacker UT, Kashkar H. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol Med 2014; 6:624-39. [PMID: 24648500 PMCID: PMC4023885 DOI: 10.1002/emmm.201303016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the normal quiescent vasculature, only 0.01% of endothelial cells (ECs) are proliferating. However, this proportion increases dramatically following the angiogenic switch during tumor growth or wound healing. Recent evidence suggests that this angiogenic switch is accompanied by a metabolic switch. Here, we show that proliferating ECs increasingly depend on mitochondrial oxidative phosphorylation (OxPhos) for their increased energy demand. Under growth conditions, ECs consume three times more oxygen than quiescent ECs and work close to their respiratory limit. The increased utilization of the proton motif force leads to a reduced mitochondrial membrane potential in proliferating ECs and sensitizes to mitochondrial uncoupling. The benzoquinone embelin is a weak mitochondrial uncoupler that prevents neoangiogenesis during tumor growth and wound healing by exhausting the low respiratory reserve of proliferating ECs without adversely affecting quiescent ECs. We demonstrate that this can be exploited therapeutically by attenuating tumor growth in syngenic and xenograft mouse models. This novel metabolic targeting approach might be clinically valuable in controlling pathological neoangiogenesis while sparing normal vasculature and complementing cytostatic drugs in cancer treatment.
Collapse
Affiliation(s)
- Oliver Coutelle
- Department I for Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ross JM, Coppotelli G, Hoffer BJ, Olson L. Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci Rep 2014; 4:6569. [PMID: 25299268 PMCID: PMC4190956 DOI: 10.1038/srep06569] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 01/14/2023] Open
Abstract
We recently showed that germline transmission of mitochondrial DNA mutations via the oocyte cause aggravation of aging phenotypes in prematurely aging mtDNA mutator (PolgAmut/mut) mice. We discovered that 32% of these mice also exhibit stochastic disturbances of brain development, when maternal mtDNA mutations were combined with homozygosity for the PolgA mutation, leading to de novo somatic mtDNA mutations. Surprisingly, we also found that maternally transmitted mtDNA mutations can cause mild premature aging phenotypes also in mice with a wild-type nuclear DNA background. We now report that in addition to the early onset of aging phenotypes, these mice, burdened only by low levels of mtDNA mutations transmitted via the germline, also exhibit reduced longevity. Our data thus demonstrate that low levels of maternally inherited mtDNA mutations when present during development can affect both overall health and lifespan negatively.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Giuseppe Coppotelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals, Case Western Reserve Medical Center, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Gröschel M, Hubert N, Müller S, Ernst A, Basta D. Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 2014; 58:235-43. [DOI: 10.1016/j.exger.2014.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
17
|
Bird MJ, Thorburn DR, Frazier AE. Modelling biochemical features of mitochondrial neuropathology. Biochim Biophys Acta Gen Subj 2013; 1840:1380-92. [PMID: 24161927 DOI: 10.1016/j.bbagen.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The neuropathology of mitochondrial disease is well characterised. However, pathophysiological mechanisms at the level of biochemistry and cell biology are less clear. Progress in this area has been hampered by the limited accessibility of neurologically relevant material for analysis. SCOPE OF REVIEW Here we discuss the recent development of a variety of model systems that have greatly extended our capacity to understand the biochemical features associated with mitochondrial neuropathology. These include animal and cell based models, with mutations in both nuclear and mitochondrial DNA encoded genes, which aim to recapitulate the neuropathology and cellular biochemistry of mitochondrial diseases. MAJOR CONCLUSIONS Analysis of neurological tissue and cells from these models suggests that although there is no unifying mode of pathogenesis, dysfunction of the oxidative phosphorylation (OXPHOS) system is often central. This can be associated with altered reactive oxygen species (ROS) generation, disruption of the mitochondrial membrane potential (ΔΨm) and inadequate ATP synthesis. Thus, other cellular processes such as calcium (Ca(2+)) homeostasis, cellular signaling and mitochondrial morphology could be altered, ultimately compromising viability of neuronal cells. GENERAL SIGNIFICANCE Mechanisms of neuronal dysfunction in mitochondrial disease are only just beginning to be characterised, are system dependent and complex, and not merely driven by energy deficiency. The diversity of pathogenic mechanisms emphasises the need for characterisation in a wide range of models, as different therapeutic strategies are likely to be needed for different diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Matthew J Bird
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Ann E Frazier
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
18
|
Lee KY. Pathophysiology of age-related hearing loss (peripheral and central). KOREAN JOURNAL OF AUDIOLOGY 2013; 17:45-9. [PMID: 24653905 PMCID: PMC3936539 DOI: 10.7874/kja.2013.17.2.45] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
Age-related hearing loss (presbycusis) refers to bilaterally symmetrical hearing loss resulting from aging process. Presbycusis is a complex phenomenon characterized by audiometric threshold shift, deterioration in speech-understanding and speech-perception difficulties in noisy environments. Factors contributing to presbycusis include mitochondria DNA mutation, genetic disorders including Ahl, hypertension, diabetes, metabolic disease and other systemic diseases in the intrinsic aspects. Extrinsic factors include noise, ototoxic medication and diet. However, presbycusis may not be related to the intrinsic and extrinsic factors separately. Presbycusis affects not only the physical, cognitive and emotional activities of patients, but also their social functioning. As a result, patients' quality of life deteriorates, compounded by various symptoms including depression, social isolation and lower self-esteem. Presbycusis is classified into six categories, as based on results of audiometric tests and temporal bone pathology, established by Schuknecht (1993): sensory, neural, metabolic or strial, cochlear conductive, mixed and indeterminate types. Among these, metabolic presbycusis is the mainstay of presbycusis types. Age-related changes also develop in the central hearing system. Functional decline of the central auditory system, caused by aging, reduces speech-understanding in noisy background and increase temporal processing deficits in gap-detection measures. This study reviews the literature on the age-related hearing loss.
Collapse
Affiliation(s)
- Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 2013; 303:30-8. [PMID: 23422312 PMCID: PMC3723756 DOI: 10.1016/j.heares.2013.01.021] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 01/10/2023]
Abstract
Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. This article is part of a Special Issue entitled "Annual Reviews 2013".
Collapse
Affiliation(s)
- Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Han C, Someya S. Mouse models of age-related mitochondrial neurosensory hearing loss. Mol Cell Neurosci 2013; 55:95-100. [PMID: 22820179 PMCID: PMC3609944 DOI: 10.1016/j.mcn.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/01/2012] [Accepted: 07/10/2012] [Indexed: 11/18/2022] Open
Abstract
Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Han F, Yu H, Zheng T, Ma X, Zhao X, Li P, Le L, Su Y, Zheng QY. Otoprotective effects of erythropoietin on Cdh23erl/erl mice. Neuroscience 2013; 237:1-6. [PMID: 23384607 DOI: 10.1016/j.neuroscience.2013.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The Cdh23(erl/erl) mice are a novel mouse model for DFNB12 and are characterized by progressive hearing loss. In this study, erythropoietin (EPO) was given to the Cdh23(erl/erl) mice by intraperitoneal injection every other day from P7 for 7 weeks. Phosphate-buffered saline-treated or untreated Cdh23(erl/erl) mice were used as controls. Auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) were measured in the mouse groups at the age of 4, 6 and 8 weeks. The results show that EPO can significantly decrease the ABR thresholds in the Cdh23(erl/erl) mice as compared with those of the untreated mice at stimulus frequencies of click, 8-, 16- and 32-kHz at three time points. Meanwhile, DPOAE amplitudes in the EPO-treated Cdh23(erl/erl) mouse group were significantly higher than those of the untreated groups at f2 frequency of 15383 Hz at the three time points. Furthermore, the mean percentage of outer hair cell loss at middle through basal turns of cochleae was significantly lower in EPO-treated Cdh23(erl/erl) mice than in the untreated mice (P<0.05). This is the first report that EPO acts as an otoprotectant in a DFNB12 mouse model with progressive hearing loss.
Collapse
Affiliation(s)
- F Han
- Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kidd Iii AR, Bao J. Recent advances in the study of age-related hearing loss: a mini-review. Gerontology 2012; 58:490-6. [PMID: 22710288 PMCID: PMC3766364 DOI: 10.1159/000338588] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell-signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population.
Collapse
Affiliation(s)
- Ambrose R Kidd Iii
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, St. Louis, Mo., USA
| | | |
Collapse
|
23
|
Spoor M, Nagtegaal AP, Ridwan Y, Borgesius NZ, van Alphen B, van der Pluijm I, Hoeijmakers JH, Frens MA, Borst JGG. Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1δ/− mouse. Mech Ageing Dev 2012; 133:59-67. [DOI: 10.1016/j.mad.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/21/2022]
|
24
|
Vlajkovic SM, Guo CX, Telang R, Wong ACY, Paramananthasivam V, Boison D, Housley GD, Thorne PR. Adenosine kinase inhibition in the cochlea delays the onset of age-related hearing loss. Exp Gerontol 2011; 46:905-14. [PMID: 21846498 DOI: 10.1016/j.exger.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/07/2011] [Accepted: 08/01/2011] [Indexed: 12/12/2022]
Abstract
This study was undertaken to determine the role of adenosine signalling in the development of age-related hearing loss (ARHL). We and others have shown previously that adenosine signalling via A(1) receptors is involved in cochlear protection from noise-induced cochlear injury. Here we demonstrate that enhanced adenosine signalling in the cochlea provides partial protection from ARHL in C57BL/6J mice. We targeted adenosine kinase (ADK), the key enzyme in adenosine metabolism, using a treatment regime with the selective ADK inhibitor ABT-702 (1.5mg/kg intraperitoneally twice a week) commencing at the age of three months or six months. This treatment, intended to increase free adenosine levels in the cochlea, was maintained until the age of nine months and hearing thresholds were evaluated monthly using auditory brainstem responses (ABR). At nine months, when C57BL/6J mice normally exhibit significant ARHL, both groups treated with ABT-702 showed lower ABR threshold shifts at 10 and 16kHz compared to control animals receiving the vehicle solution. The better thresholds of the ABT-702-treated mice at these frequencies were supported by increased survival of hair cells in the apical region of the cochlea. This study provides the first evidence that ARHL can be mitigated by enhancing adenosine signalling in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kong YXG, Van Bergen N, Trounce IA, Bui BV, Chrysostomou V, Waugh H, Vingrys A, Crowston JG. Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury. Aging Cell 2011; 10:572-83. [PMID: 21332926 DOI: 10.1111/j.1474-9726.2011.00690.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mouse models that accumulate high levels of mitochondrial DNA (mtDNA) mutations owing to impairments in mitochondrial polymerase γ (PolG) proofreading function have been shown to develop phenotypes consistent with accelerated aging. As increase in mtDNA mutations and aging are risk factors for neurodegenerative diseases, we sought to determine whether increase in mtDNA mutations renders neurons more vulnerable to injury. We therefore examined the in vivo functional activity of retinal neurons and their ability to cope with stress in transgenic mice harboring a neural-targeted mutant PolG gene with an impaired proofreading capability (Kasahara, et al. (2006) Mol Psychiatry11(6):577-93, 523). We confirmed that the retina of these transgenic mice have increased mtDNA deletions and point mutations and decreased expression of mitochondrial oxidative phosphorylation enzymes. Associated with these changes, the PolG transgenic mice demonstrated accelerated age-related loss in retinal function as measured by dark-adapted electroretinogram, particularly in the inner and middle retina. Furthermore, the retinal ganglion cell-dominant inner retinal function in PolG transgenic mice showed greater vulnerability to injury induced by raised intraocular pressure, an insult known to produce mechanical, metabolic, and oxidative stress in the retina. These findings indicate that an accumulation of mtDNA mutations is associated with impairment in neural function and reduced capacity of neurons to resist external stress in vivo, suggesting a potential mechanism whereby aging central nervous system can become more vulnerable to neurodegeneration.
Collapse
Affiliation(s)
- Yu X G Kong
- Centre for Eye Research Australia, University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Alagic Z, Goiny M, Canlon B. Protection against acoustic trauma by direct application of D-methionine to the inner ear. Acta Otolaryngol 2011; 131:802-8. [PMID: 21480759 DOI: 10.3109/00016489.2011.564652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The findings from this study extend the use of the local application of D-methionine (D-met) to protect against acoustic trauma and demonstrate that D-met slowly diffuses from the perilymph. OBJECTIVES The objectives of the study were to determine the effect of D-met on auditory function and morphology after acoustic trauma and to measure the concentration of D-met in perilymph. METHODS Auditory thresholds were determine before, immediately after, and 24 h after acoustic trauma. Cochleae were analyzed using immunocytochemistry for c-Fos, TUJI, and cytochrome c. The concentration of D-met was determined from perilymph. RESULTS Protection against acoustic trauma (immediately and 24 h post trauma) on auditory brainstem thresholds was found at a time when the concentration of D-met in perilymph showed a fivefold increase above basal levels. The local application of D-met to the guinea pig cochlea results in elevated D-met concentrations that are maintained in the perilymph for at least 24 h.
Collapse
Affiliation(s)
- Zlatan Alagic
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Johnson KR, Gagnon LH, Longo-Guess C, Kane KL. Association of a citrate synthase missense mutation with age-related hearing loss in A/J mice. Neurobiol Aging 2011; 33:1720-9. [PMID: 21803452 DOI: 10.1016/j.neurobiolaging.2011.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/22/2011] [Accepted: 05/20/2011] [Indexed: 02/02/2023]
Abstract
We previously mapped a locus (ahl4) on distal Chromosome 10 that contributes to the age-related hearing loss of A/J strain mice. Here, we report on a refined genetic map position for ahl4 and its association with a mutation in the citrate synthase gene (Cs). We mapped ahl4 to the distal-most 7 megabases (Mb) of chromosome 10 by analysis of a new linkage backcross and then further narrowed the interval to 5.5 Mb by analysis of 8 C57BL/6J congenic lines with different A/J-derived segments of chromosome 10. A nucleotide variant in exon 3 of Cs is the only known DNA difference within the ahl4 candidate gene interval that is unique to the A/J strain and that causes a nonsynonymous codon change. Multiple lines of evidence implicate this missense mutation (H55N) as the underlying cause of ahl4-related hearing loss, likely through its effects on mitochondrial adenosine trisphosphate (ATP) and free radical production in cochlear hair cells. The A/J mouse thus provides a new model system for in vivo studies of mitochondrial function and hearing loss.
Collapse
|
28
|
Abstract
Understanding mitochondrial role in normal physiology and pathological conditions has proven to be of high importance as mitochondrial dysfunction is connected with a number of disorders as well as some of the most common diseases (e.g. diabetes or Parkinson's disease). Modeling mitochondrial dysfunction has been difficult mainly due to unique features of mitochondrial genetics. Here we discuss some of the most important mouse models generated so far and lessons learned from them.
Collapse
Affiliation(s)
- S A Dogan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | |
Collapse
|
29
|
Crawley BK, Keithley EM. Effects of mitochondrial mutations on hearing and cochlear pathology with age. Hear Res 2011; 280:201-8. [PMID: 21664445 DOI: 10.1016/j.heares.2011.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 02/04/2023]
Abstract
Age-related hearing loss is a multi-factorial process involving genetic and environmental factors, including exposure to noise and ototoxic agents, as well as pathological processes. Among these is the accumulation of mitochondrial DNA mutations and deletions. The creation of a transgenic mouse with a loss-of-function deletion of the nuclear gene that encodes the polymerase required to repair damaged mitochondrial DNA (PolgA) enabled evaluation of age-related cochlear pathology associated with random mitochondrial DNA deletions that accrue over the lifespan of the mouse. In comparison with their wild-type or heterozygous counterparts, animals with mutated DNA polymerase gamma developed hearing loss most rapidly. Any loss of mitochondrial DNA polymerase function however, resulted in detrimental effects, as evidenced by hearing tests and histological investigation of transgenic heterozygotes. Cochlear pathology in transgenic animals at 10 months of age included loss of neurons and clumping of surviving neurons in the apical turn of the spiral ganglion. Mitochondrial mutations in young animals, on the other hand, were protective against the development of temporary threshold shift in response to relatively low level noise exposure. This supports the idea that temporary threshold shifts are the result of an active process involving mitochondria and respiratory chain activity. Our results indicate that mitochondrial mutation and deletion can certainly contribute to the development of an aging phenotype, specifically age-related hearing loss.
Collapse
Affiliation(s)
- Brianna K Crawley
- Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0666, USA
| | | |
Collapse
|
30
|
Abstract
The small mammalian mitochondrial DNA (mtDNA) is very gene dense and encodes factors critical for oxidative phosphorylation. Mutations of mtDNA cause a variety of human mitochondrial diseases and are also heavily implicated in age-associated disease and aging. There has been considerable progress in our understanding of the role for mtDNA mutations in human pathology during the last two decades, but important mechanisms in mitochondrial genetics remain to be explained at the molecular level. In addition, mounting evidence suggests that most mtDNA mutations may be generated by replication errors and not by accumulated damage.
Collapse
Affiliation(s)
- Chan Bae Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
31
|
High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci U S A 2010; 107:20087-92. [PMID: 21041631 DOI: 10.1073/pnas.1008189107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.
Collapse
|
32
|
Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell Mol Life Sci 2010; 68:219-33. [PMID: 20927567 DOI: 10.1007/s00018-010-0530-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.
Collapse
|
33
|
Riquelme R, Cediel R, Contreras J, la Rosa Lourdes RD, Murillo-Cuesta S, Hernandez-Sanchez C, Zubeldia JM, Cerdan S, Varela-Nieto I. A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Front Neuroanat 2010; 4:27. [PMID: 20661454 PMCID: PMC2907134 DOI: 10.3389/fnana.2010.00027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/01/2010] [Indexed: 01/07/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or ameliorate age-related hearing loss.
Collapse
Affiliation(s)
- Raquel Riquelme
- Instituto de Investigaciones Biomedicas "Alberto Sols", CSIC-UAM Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao J, Ohlemiller KK. Age-related loss of spiral ganglion neurons. Hear Res 2010; 264:93-7. [PMID: 19854255 PMCID: PMC2868093 DOI: 10.1016/j.heares.2009.10.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/12/2023]
Abstract
Spiral ganglion neurons (SGNs) are the relay station for auditory information between hair cells and central nervous system. Age-related decline of auditory function due to SGN loss can not be ameliorated by hearing aids or cochlear implants. Recent findings clearly indicate that survival of SGNs during aging depends on genetic and environmental interactions, which can be demonstrated at the systemic, tissue, cellular, and molecular levels. At the systemic level, both insulin/insulin-like growth factor-1 and lipophilic/steroid hormone pathways influence SGN survival during aging. At the level of organ of the Corti, it is difficult to determine whether age-related SGN loss is primary or secondary degeneration. However, a late stage of SGN degeneration may be independent of age-related loss of hair cells. At the cellular and molecular level, several pathways, particularly free radical and calcium signaling pathways, can influence age-related SGN loss, and further studies should determine how these pathways contribute to SGN loss, such as whether they directly or indirectly act on SGNs. With the advancement of recent genetic and pharmacologic tools, we should not only understand how SGNs die during aging, but also find ways to delay this loss.
Collapse
Affiliation(s)
- Jianxin Bao
- Fay and Carl Simmons Center for the Biology of Hearing and Deafness, Department of Otolaryngology, Washington University Medical School, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | |
Collapse
|
35
|
Abstract
Mitochondrial dysfunction is heavily implicated in the multifactorial aging process. Aging humans have increased levels of somatic mtDNA mutations that tend to undergo clonal expansion to cause mosaic respiratory chain deficiency in various tissues, such as heart, brain, skeletal muscle, and gut. Genetic mouse models have shown that somatic mtDNA mutations and cell type-specific respiratory chain dysfunction can cause a variety of phenotypes associated with aging and age-related disease. There is thus strong observational and experimental evidence to implicate somatic mtDNA mutations and mosaic respiratory chain dysfunction in the mammalian aging process. The hypothesis that somatic mtDNA mutations are generated by oxidative damage has not been conclusively proven. Emerging data instead suggest that the inherent error rate of mitochondrial DNA (mtDNA) polymerase gamma (Pol gamma) may be responsible for the majority of somatic mtDNA mutations. The roles for mtDNA damage and replication errors in aging need to be further experimentally addressed.
Collapse
|
36
|
Cell Biology and Physiology of the Aging Central Auditory Pathway. THE AGING AUDITORY SYSTEM 2010. [DOI: 10.1007/978-1-4419-0993-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, Nijtmans L, Nedergaard J, Cannon B, Larsson NG, Trifunovic A. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 2009; 10:131-8. [PMID: 19656491 DOI: 10.1016/j.cmet.2009.06.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/11/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain function. We report that mitochondrial protein synthesis is unimpaired in mtDNA mutator mice consistent with the observed minor alterations of steady-state levels of mitochondrial transcripts. These findings refute recent claims that circular mtDNA molecules with large deletions are driving the premature aging phenotype. We further show that the stability of several respiratory chain complexes is severely impaired despite normal synthesis of the corresponding mtDNA-encoded subunits. Our findings reveal a mechanism for induction of aging phenotypes by demonstrating a causative role for amino acid substitutions in mtDNA-encoded respiratory chain subunits, which, in turn, leads to decreased stability of the respiratory chain complexes and respiratory chain deficiency.
Collapse
Affiliation(s)
- Daniel Edgar
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitochondrial DNA mutations and ageing. Biochim Biophys Acta Gen Subj 2009; 1790:1015-20. [PMID: 19409965 DOI: 10.1016/j.bbagen.2009.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/24/2009] [Accepted: 04/25/2009] [Indexed: 02/01/2023]
Abstract
The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.
Collapse
|
39
|
Khrapko K, Vijg J. Mitochondrial DNA mutations and aging: devils in the details? Trends Genet 2008; 25:91-8. [PMID: 19110336 DOI: 10.1016/j.tig.2008.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 11/14/2008] [Accepted: 11/24/2008] [Indexed: 01/07/2023]
Abstract
Although several lines of evidence support a role for accumulating somatic mitochondrial DNA (mtDNA) mutations in the etiology of aging, it remains unclear if they are a major cause of age-related deterioration and death. Mouse models that harbor elevated mtDNA mutation frequencies age prematurely; these findings were thought to provide conclusive evidence for a causal role of such mutations in aging. Yet, the presence of several conflicting reports has sparked controversy in the field and this is further aggravated by discrepancies in the estimates of mtDNA mutant fractions, which disagree by orders of magnitude. Here, we briefly review the evidence and some of the unresolved questions surrounding a causative role for accumulating mtDNA mutations in aging.
Collapse
Affiliation(s)
- Konstantin Khrapko
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Kukat A, Trifunovic A. Somatic mtDNA mutations and aging--facts and fancies. Exp Gerontol 2008; 44:101-5. [PMID: 18585880 DOI: 10.1016/j.exger.2008.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 11/18/2022]
Abstract
Mitochondria play a critical role in the life of the cell as they control their metabolic rate, energy production and cell death. Mitochondria have long been appreciated as causative to aging. The age-associated respiratory chain deficiency is typically unevenly distributed and affects only a subset of cells in various human tissues, such as heart, skeletal muscle, colonic crypts and neurons. Studies of mtDNA mutator mice has provided the first direct evidence that accelerating the mtDNA mutation rate can result in premature aging, consistent with the view that loss of mitochondrial function is a major causal factor in aging. New, controversial data have arisen from the studies on molecular mechanisms that drive premature aging in mtDNA mutator mice. Our results suggest that the accumulation of high levels of mtDNA point mutations, causing amino acid substitutions, combined with their clonal expansion is probably the main driving force behind premature aging in mtDNA mutator mice.
Collapse
Affiliation(s)
- Alexandra Kukat
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-14186 Stockholm, Sweden
| | | |
Collapse
|