1
|
Cecchini K, Ajaykumar N, Bagci A, Zamore PD, Gainetdinov I. Mouse Pachytene piRNAs Cleave Hundreds of Transcripts, But Alter the Steady-State Abundance of Only a Minority of Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621675. [PMID: 39554027 PMCID: PMC11566022 DOI: 10.1101/2024.11.02.621675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In animals, 18-35-nt piRNAs guide PIWI proteins to regulate complementary RNAs. During male meiosis, mammals produce an exceptionally abundant class of piRNAs called pachytene piRNAs. Pachytene piRNAs are required for spermatogenesis and have been proposed to control gene expression by various mechanisms. Here, we show that pachytene piRNAs regulate targets predominantly, if not exclusively, by endonucleolytic cleavage. Remarkably, pachytene piRNAs slice hundreds of RNAs, yet a change in steady-state level is detectable for a small fraction of transcripts. Our data suggest that cleavage of the few targets whose abundance is reduced significantly by piRNAs is essential for male fertility. Other pachytene piRNA targets are enriched for highly transcribed genes, which may explain why piRNA cleavage is often inconsequential for the steady-state abundance of targets. We propose that the retention of pachytene piRNAs throughout mammalian evolution is driven by the selective advantage conferred by a tiny minority of piRNAs.
Collapse
Affiliation(s)
- Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Ayca Bagci
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
2
|
Schettini GP, Peripolli E, Alexandre PA, dos Santos WB, Pereira ASC, de Albuquerque LG, Baldi F, Curi RA. Transcriptome Profile Reveals Genetic and Metabolic Mechanisms Related to Essential Fatty Acid Content of Intramuscular Longissimus thoracis in Nellore Cattle. Metabolites 2022; 12:metabo12050471. [PMID: 35629975 PMCID: PMC9144777 DOI: 10.3390/metabo12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Beef is a source of essential fatty acids (EFA), linoleic (LA) and alpha-linolenic (ALA) acids, which protect against inflammatory and cardiovascular diseases in humans. However, the intramuscular EFA profile in cattle is a complex and polygenic trait. Thus, this study aimed to identify potential regulatory genes of the essential fatty acid profile in Longissimus thoracis of Nellore cattle finished in feedlot. Forty-four young bulls clustered in four groups of fifteen animals with extreme values for each FA were evaluated through differentially expressed genes (DEG) analysis and two co-expression methodologies (WGCNA and PCIT). We highlight the ECHS1, IVD, ASB5, and ERLIN1 genes and the TF NFIA, indicated in both FA. Moreover, we associate the NFYA, NFYB, PPARG, FASN, and FADS2 genes with LA, and the RORA and ELOVL5 genes with ALA. Furthermore, the functional enrichment analysis points out several terms related to FA metabolism. These findings contribute to our understanding of the genetic mechanisms underlying the beef EFA profile in Nellore cattle finished in feedlot.
Collapse
Affiliation(s)
- Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
- Correspondence:
| | - Elisa Peripolli
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Pâmela Almeida Alexandre
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St Lucia, QLD 4067, Australia;
| | - Wellington Bizarria dos Santos
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Angélica Simone Cravo Pereira
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Lúcia Galvão de Albuquerque
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Fernando Baldi
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, SP, Brazil;
| |
Collapse
|
3
|
Zeng L, Li Z, Pan L, Li H, Wu J, Yuan X, Li Z, Liang D, Wu L. Novel GZF1 pathogenic variants identified in two Chinese patients with Larsen syndrome. Clin Genet 2020; 99:281-285. [PMID: 33009817 DOI: 10.1111/cge.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
GZF1 was recently reported as a genetic factor associated with Larsen syndrome. Two patients presenting hip dislocation, scoliosis and severe myopia, as well as hearing loss and other abnormal features, were found to carry two novel compounds heterozygous variants in GZF1 (c.397400del, p. Leu133fs; and c.1474del, p. Met492fs) through whole-exome sequencing. The mRNA expression level of L133fs-GZF1 did not significantly differ from that of WT-GZF1. However, no HA-conjugated mutant protein was detected by western blotting, which was also confirmed by immunofluorescence staining. In addition, both mRNA transcription and protein expression levels of M492fs-GZF1 were significantly lower than those of wild type, and HA-tagged M492fs-GZF1 was mainly distributed in the cytoplasm of HEK 293 T cells. These results suggested that the two variants could lead to loss of function of GZF1. Our study was the second to report the association between GZF1 variants and Larsen syndrome. We also provided functional evidence for the pathogenicity of GZF1 variants, which expands the mutation spectrum and offers a basis for functional research on the role of GZF1 in the development of Larsen syndrome.
Collapse
Affiliation(s)
- Lanlan Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongyan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jiayu Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiying Yuan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Wang X, Zhang D, Ma S, Li P, Zhou W, Zhang C, Jia W. Predicting the likelihood of early recurrence based on mRNA sequencing of pituitary adenomas. Gland Surg 2019; 8:648-656. [PMID: 32042672 DOI: 10.21037/gs.2019.11.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background There is no comprehensive and objective method existing for predicting early recurrence of pituitary adenomas (PAs). The most advanced gene sequencing technology can be applied to build a prognostic model that can effectively predict early recurrence of PAs. Methods In this study, using mRNA-Seq data, the corresponding postoperative early recurrence status, and other clinical features of 107 PA samples were obtained and randomly divided into the training and validation groups. Cox regression and receiver operating characteristic (ROC) analysis accompanied by the risk score method was used to build a seven-gene prediction model. Results Area under curve values was 0.857 in the training group, 0.936 in the validation group, and 0.848 in all patients. Patients with low-risk scores had a significantly lower probability of early postoperative recurrence compared to those acquiring high-risk scores in the training group, validation group, and all patient (P<0.0001) groups. In addition, 6 out of these 7 significant genes were highly correlated to the early recurrence of PAs. Conclusions This prediction model derived from mRNA-Seq data may help in identifying the early recurrence of PAs, consequently aiding in the classification of patients with PAs and the administration of the appropriate therapeutic and follow-up strategy for these patients.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shunchang Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Ditan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| |
Collapse
|
5
|
Cell surface expression of nucleolin mediates the antiangiogenic and antitumor activities of kallistatin. Oncotarget 2017; 9:2220-2235. [PMID: 29416766 PMCID: PMC5788634 DOI: 10.18632/oncotarget.23346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Kallistatin is a unique serine proteinase inhibitor and heparin-binding protein. A previous study conducted by our group indicated that kallistatin has antiangiogenic and antitumoral activities. In the present study, we report that kallistatin specifically binds to membrane surface-expressed nucleolin with high affinity. Antibody-mediated neutralization or siRNA-induced nucleolin knockdown results in loss of kallistatin suppression of endothelial cell proliferation and migration in vitro and tumor angiogenesis and growth in vivo. In addition, we show that kallistatin is internalized and transported into cell nuclei of endothelial cells via nucleolin. Within the nucleus, kallistatin inhibits the phosphorylation of nucleolin, which is a critical step required for cell proliferation. Thus, we demonstrate that nucleolin is a novel functional receptor of kallistatin that mediates its antiangiogenic and antitumor activities. These findings provide mechanistic insights into the inhibitory effects of kallistatin on endothelial cell growth, tumor cell proliferation, and tumor-related angiogenesis.
Collapse
|
6
|
Prognostic value of a 25-gene assay in patients with gastric cancer after curative resection. Sci Rep 2017; 7:7515. [PMID: 28790411 PMCID: PMC5548732 DOI: 10.1038/s41598-017-07604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
This study aimed to develop and validate a practical, reliable assay for prognosis and chemotherapy benefit prediction compared with conventional staging in Gastric cancer (GC). Twenty-three candidate genes with significant correlation between quantitative hybridization and microarray results plus 2 reference genes were selected to form a 25-gene prognostic classifier, which can classify patients into 3 distinct groups of different risk of mortality obtained by analyzing microarray data from 78 frozen tumor specimens. The 25-gene assay was associated with overall survival in both training (P = 0.017) and testing cohort (P = 0.005) (462 formalin-fixed paraffin-embedded samples). The risk prediction in stages I + II is significantly better than that in stages III. Analysis demonstrated that this 25-gene signature is an independent prognostic predictor and show higher prognostic accuracy than conventional TNM staging in early stage patients. Moreover, only high-risk patients in stage I + II were found benefit from adjuvant chemotherapy (P = 0.043), while low-risk patients in stage III were not found benefit from adjuvant chemotherapy. In conclusion, our results suggest that this 25-gene assay can reliably identify patients with different risk for mortality after surgery, especially for stage I + II patients, and might be able to predict patients who benefit from chemotherapy.
Collapse
|
7
|
Saito S, Murakumo Y, Tsuzuki T, Dambara A, Kato T, Enomoto A, Asai N, Maruyama S, Matsuo S, Takahashi M. Analysis of glial cell line–derived neurotrophic factor–inducible zinc finger protein 1 expression in human diseased kidney. Hum Pathol 2011; 42:848-58. [DOI: 10.1016/j.humpath.2010.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/29/2022]
|
8
|
Paliouras M, Zaman N, Lumbroso R, Kapogeorgakis L, Beitel LK, Wang E, Trifiro M. Dynamic rewiring of the androgen receptor protein interaction network correlates with prostate cancer clinical outcomes. Integr Biol (Camb) 2011; 3:1020-32. [DOI: 10.1039/c1ib00038a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kuystermans D, Dunn MJ, Al-Rubeai M. A proteomic study of cMyc improvement of CHO culture. BMC Biotechnol 2010; 10:25. [PMID: 20307306 PMCID: PMC2859402 DOI: 10.1186/1472-6750-10-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 03/22/2010] [Indexed: 02/07/2023] Open
Abstract
Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO) gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE) followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS). Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin), protein biosysnthesis (eIF6) and energy metabolism (ATP synthetase), and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.
Collapse
Affiliation(s)
- Darrin Kuystermans
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
10
|
Losfeld ME, Khoury DE, Mariot P, Carpentier M, Krust B, Briand JP, Mazurier J, Hovanessian AG, Legrand D. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp Cell Res 2009; 315:357-69. [PMID: 19026635 DOI: 10.1016/j.yexcr.2008.10.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/16/2008] [Accepted: 10/23/2008] [Indexed: 11/24/2022]
Abstract
Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [(3)H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca(2+) entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca(2+) fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca(2+) Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca(2+) entry into cells.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche no 8576 du Centre National de la Recherche Scientifique, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Suzuki C, Murakumo Y, Kawase Y, Sato T, Morinaga T, Fukuda N, Enomoto A, Ichihara M, Takahashi M. A novel GDNF-inducible gene, BMZF3, encodes a transcriptional repressor associated with KAP-1. Biochem Biophys Res Commun 2007; 366:226-32. [PMID: 18060868 DOI: 10.1016/j.bbrc.2007.11.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 11/21/2007] [Indexed: 11/26/2022]
Abstract
The Krüppel-associated box (KRAB)-containing zinc finger proteins (ZFPs) comprise the largest family of zinc finger transcription factors that function as transcriptional repressors. In the study of glial cell line-derived neurotrophic factor (GDNF)-RET signaling, we have identified bone marrow zinc finger 3 (BMZF3), encoding a KRAB-ZFP, as a GDNF-inducible gene by differential display analysis. The expression of BMZF3 transcripts in the human neuroblastoma cell line TGW increased 1h after GDNF stimulation, as determined by Northern blotting and quantitative reverse-transcriptase polymerase chain reaction. The BMZF3 possesses transcriptional repressor activity in the KRAB domain. BMZF3 interacts with a co-repressor protein, KRAB-associated protein 1 (KAP-1), through the KRAB domain and siRNA-mediated knockdown of KAP-1 abolished the transcriptional repressor activity of BMZF3, indicating that KAP-1 is necessary for BMZF3 function. Furthermore, siRNA-mediated silencing of BMZF3 inhibited cell proliferation. These findings suggest that BMZF3 is a transcriptional repressor induced by GDNF that plays a role in cell proliferation.
Collapse
Affiliation(s)
- Chikage Suzuki
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8850, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|