1
|
Ruehle MD, Li S, Agard DA, Pearson CG. Poc1 bridges basal body inner junctions to promote triplet microtubule integrity and connections. J Cell Biol 2024; 223:e202311104. [PMID: 38743010 PMCID: PMC11094743 DOI: 10.1083/jcb.202311104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.
Collapse
Affiliation(s)
- Marisa D. Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood Shores, CA, USA
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Alzahem TA, AlTheeb A, Ba-Abbad R. Phenotypic and genotypic features of POC1B-associated cone dystrophy. Ophthalmic Genet 2024; 45:72-77. [PMID: 37246743 DOI: 10.1080/13816810.2023.2204361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Patients with cone dystrophy (CD) can present with virtually normal retinal appearance, which may delay diagnosis. This study describes the inconspicuous clinical features of POC1B-associated CD in two Saudi families. METHODS This is a retrospective case study. Clinical data analyzed included multimodal retinal imaging and electroretinography of the affected individuals. Genetic analysis was done for all probands. RESULTS Three affected males from two Saudi families with POC1B-associated CD were included. The ages at presentation ranged from 18 to 34 years. Ophthalmic examination showed decreased Snellen visual acuities (range: 20/100-20/300) and color vision bilaterally. Fundus examination showed only mild vascular attenuation. Macular optical coherence tomography showed reduced reflectivity of the external limiting membrane, ellipsoid, and interdigitation zones. Full-field electroretinography demonstrated undetectable light-adapted responses and normal dark-adapted responses in all patients. Next-generation sequencing showed one proband to be homozygous for a previously unpublished nonsense variant in POC1B (NM_172240):c.672C>G; p(Tyr224*). Whole exome sequencing for the second proband showed a novel homozygous frameshifting variant in POC1B: c.991del; p(Arg331Glufs*13). CONCLUSION We described two novel variants in POC1B and the associated subtle, yet significant retinal features. POC1B-associated CD is a rare cause of visual loss in patients with relatively normal fundus appearance. Deep phenotyping is necessary in formulating appropriate differential diagnosis.
Collapse
Affiliation(s)
- Tariq A Alzahem
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
- Ophthalmology Department, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdulwahab AlTheeb
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rola Ba-Abbad
- Ocular Genetics Service, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Jo KH, Jaiswal A, Khanal S, Fishman EL, Curry AN, Avidor-Reiss T. Poc1B and Sas-6 Function Together during the Atypical Centriole Formation in Drosophila melanogaster. Cells 2019; 8:cells8080841. [PMID: 31387336 PMCID: PMC6721650 DOI: 10.3390/cells8080841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Insects and mammals have atypical centrioles in their sperm. However, it is unclear how these atypical centrioles form. Drosophila melanogaster sperm has one typical centriole called the giant centriole (GC) and one atypical centriole called the proximal centriole-like structure (PCL). During early sperm development, centriole duplication factors such as Ana2 and Sas-6 are recruited to the GC base to initiate PCL formation. The centriolar protein, Poc1B, is also recruited at this initiation stage, but its precise role during PCL formation is unclear. Here, we show that Poc1B recruitment was dependent on Sas-6, that Poc1B had effects on cellular and PCL Sas-6, and that Poc1B and Sas-6 were colocalized in the PCL/centriole core. These findings suggest that Sas-6 and Poc1B interact during PCL formation. Co-overexpression of Ana2 and Sas-6 induced the formation of ectopic particles that contained endogenous Poc1 proteins and were composed of PCL-like structures. These structures were disrupted in Poc1 mutant flies, suggesting that Poc1 proteins stabilize the PCL-like structures. Lastly, Poc1B and Sas-6 co-overexpression also induced the formation of PCL-like structures, suggesting that they can function together during the formation of the PCL. Overall, our findings suggest that Poc1B and Sas-6 function together during PCL formation.
Collapse
Affiliation(s)
- Kyoung H Jo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Alaina N Curry
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA.
| |
Collapse
|
4
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
5
|
Kominami A, Ueno S, Kominami T, Nakanishi A, Ito Y, Fujinami K, Tsunoda K, Hayashi T, Kikuchi S, Kameya S, Iwata T, Terasaki H. Case of cone dystrophy with normal fundus appearance associated with biallelic POC1B variants. Ophthalmic Genet 2017; 39:255-262. [PMID: 29220607 DOI: 10.1080/13816810.2017.1408846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Biallelic variants of POC1B were recently reported to cause autosomal recessive non-syndromic cone dystrophy. However, the number of studies supporting this is limited, and the clinical phenotypes of cone dystrophy have not been definitively determined. The purpose of this study was to report the phenotype of a case of POC1B-associated cone dystrophy. MATERIALS AND METHODS The medical chart of one case diagnosed with cone dystrophy was reviewed. RESULTS The patient was a 20-year-old Japanese man whose chief complaint was a progressive decrease in his central vision. His decimal best-corrected visual acuity was 0.2 for the right and 0.3 for the left. Fundus examinations showed no abnormalities. The photopic electroretinograms were nonrecordable, but the scotopic electroretinograms were within normal limits. Optical coherence tomography detected a blurry line in the region of the external limiting membrane and ellipsoid zone. Adaptive optics images showed sparsely distributed cone cells around the fovea. The patient was initially diagnosed with incomplete achromatopsia. Whole-exome sequence with targeted analysis identified new compound heterozygous mutations of c.G1355A (p R452Q) and c.C987A (pY329X) in the POC1B gene. The patient was then diagnosed with cone dystrophy. CONCLUSIONS The cone dystrophy associated with POC1B variants has features similar to achromatopsia, and genetic analyses is useful in discriminating these two diseases.
Collapse
Affiliation(s)
- Azusa Kominami
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Shinji Ueno
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Taro Kominami
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Ayami Nakanishi
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuki Ito
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kaoru Fujinami
- b National Institute of Sensor Organs, National Hospital Organization Tokyo Medical Center , Tokyo , Japan
| | - Kazushige Tsunoda
- b National Institute of Sensor Organs, National Hospital Organization Tokyo Medical Center , Tokyo , Japan
| | - Takaaki Hayashi
- c Department of Ophthalmology , The Jikei University School of Medicine , Tokyo , Japan
| | - Sachiko Kikuchi
- d Department of Ophthalmology , Nippon Medical School Chiba Hokusoh Hospital , Chiba , Japan
| | - Shuhei Kameya
- d Department of Ophthalmology , Nippon Medical School Chiba Hokusoh Hospital , Chiba , Japan
| | - Takeshi Iwata
- b National Institute of Sensor Organs, National Hospital Organization Tokyo Medical Center , Tokyo , Japan
| | - Hiroko Terasaki
- a Department of Ophthalmology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
6
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
7
|
Khire A, Jo KH, Kong D, Akhshi T, Blachon S, Cekic AR, Hynek S, Ha A, Loncarek J, Mennella V, Avidor-Reiss T. Centriole Remodeling during Spermiogenesis in Drosophila. Curr Biol 2016; 26:3183-3189. [PMID: 28094036 DOI: 10.1016/j.cub.2016.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 07/06/2016] [Indexed: 10/20/2022]
Abstract
The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila.
Collapse
Affiliation(s)
- Atul Khire
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Kyoung H Jo
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Tara Akhshi
- Department of Biochemistry, Cell Biology Program, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | - Anthony R Cekic
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Sarah Hynek
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Andrew Ha
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Vito Mennella
- Department of Biochemistry, Cell Biology Program, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA.
| |
Collapse
|
8
|
Meehl JB, Bayless BA, Giddings TH, Pearson CG, Winey M. Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Mol Biol Cell 2016; 27:2394-403. [PMID: 27251062 PMCID: PMC4966981 DOI: 10.1091/mbc.e16-03-0165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity.
Collapse
Affiliation(s)
- Janet B Meehl
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Brian A Bayless
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas H Giddings
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Mark Winey
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|
9
|
Gulsen T, Hadjicosti I, Li Y, Zhang X, Whitley PR, Chalmers AD. Truncated RASSF7 promotes centrosomal defects and cell death. Dev Biol 2015; 409:502-17. [PMID: 26569555 DOI: 10.1016/j.ydbio.2015.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
RASSF7 protein localises to the centrosome and plays a key role in mitosis. Its expression is also increased in a range of tumour types. However, little is known about the molecular basis of RASSF7's function and it is not clear if it acts as an oncogene in the cancers where its levels are elevated. Here, we carry out the first analysis of the domains of rassf7, focusing on which of them are responsible for its localisation to the centrosome. Constructs were generated to allow the expression of a series of truncated versions of rassf7 and the level of centrosomal localisation shown by each protein quantified. This analysis was carried out in Xenopus embryos which are a tractable system where rassf7 localisation can easily be studied. Our data shows that the coiled-coil domain of rassf7 is required and sufficient to direct its centrosomal localisation. The RA domain did not appear to have a role in mediating localisation. Surprisingly, removal of the extreme C-terminus of the protein caused rassf7 to accumulate at the centrosome and drive centrosome defects, including accumulation of the centrosomal protein γ-tubulin and an amplification of the number of γ-tubulin foci. These effects required the centrosomal localisation mediated by the coiled-coil domain. Later in development cells expressing this truncated rassf7 protein underwent cell death. Finally, analysis of a database of tumour sequences identified a mutation in RASSF7 which would cause a similar C-terminal truncation of the protein. Based on our data this truncated protein might drive centrosomal defects and we propose the hypothesis that truncated RASSF7 could act as an oncogene in a small subset of tumours where it is mutated in this way.
Collapse
Affiliation(s)
- Tulay Gulsen
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Irene Hadjicosti
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Yueshi Li
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xinyun Zhang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Paul R Whitley
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Andrew D Chalmers
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
10
|
Barraza-García J, Iván Rivera-Pedroza C, Salamanca L, Belinchón A, López-González V, Sentchordi-Montané L, del Pozo Á, Santos-Simarro F, Campos-Barros Á, Lapunzina P, Guillén-Navarro E, González-Casado I, García-Miñaur S, Heath KE. Two novelPOC1Amutations in the primordial dwarfism, SOFT syndrome: Clinical homogeneity but also unreported malformations. Am J Med Genet A 2015; 170A:210-6. [DOI: 10.1002/ajmg.a.37393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jimena Barraza-García
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Carlos Iván Rivera-Pedroza
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Luis Salamanca
- Department of Pediatric Endocrinology; Hospital Universitario La Paz; Universidad Autónoma de Madrid; Spain
| | - Alberta Belinchón
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Vanesa López-González
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Department of Pediatrics; Medical Genetics Section; Hospital Clínico Universitario Virgen de la Arrixaca; IMIB-Arrixaca; Murcia Spain
| | - Lucía Sentchordi-Montané
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
- Department of Pediatric Endocrinology; Hospital Universitario Infanta Leonor; Madrid Spain
| | - Ángela del Pozo
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
| | - Fernando Santos-Simarro
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Ángel Campos-Barros
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
| | - Pablo Lapunzina
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Encarna Guillén-Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Department of Pediatrics; Medical Genetics Section; Hospital Clínico Universitario Virgen de la Arrixaca; IMIB-Arrixaca; Murcia Spain
- Cátedra de Genética Médica; UCAM-Universidad Católica San Antonio de Murcia; Spain
| | - Isabel González-Casado
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
- Department of Pediatric Endocrinology; Hospital Universitario La Paz; Universidad Autónoma de Madrid; Spain
| | - Sixto García-Miñaur
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| | - Karen E. Heath
- Institute of Medical & Molecular Genetics (INGEMM); Hospital Universitario La Paz; Universidad Autónoma de Madrid; IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto Carlos III; Madrid Spain
- Multidisciplinary Skeletal Dysplasia Unit (UMDE); Hospital Universitario La Paz; Madrid Spain
| |
Collapse
|
11
|
von Tobel L, Mikeladze-Dvali T, Delattre M, Balestra FR, Blanchoud S, Finger S, Knott G, Müller-Reichert T, Gönczy P. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. PLoS Genet 2014; 10:e1004777. [PMID: 25412110 PMCID: PMC4238951 DOI: 10.1371/journal.pgen.1004777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023] Open
Abstract
Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. Centrioles are microtubule-based organelles critical for forming cilia, flagella and centrosomes. Centrioles are very stable, but how such stability is ensured is poorly understood. We identified sas-1 as a component that contributes to centriole stability in C. elegans. Centrioles that lack sas-1 function loose their integrity, and our analysis reveals that sas-1 is particularly important for sperm-derived centrioles. Moreover, we show that SAS-1 binds and stabilizes microtubules in human cells, together leading us to propose that SAS-1 acts by stabilizing centriolar microtubules. We identify C2CD3 as a human homolog of SAS-1. C2CD3 is needed for the presence of the distal part of centrioles in human cells, and we thus propose that this protein family is broadly needed to maintain centriole structure.
Collapse
Affiliation(s)
- Lukas von Tobel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Tamara Mikeladze-Dvali
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Marie Delattre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Fernando R. Balestra
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Simon Blanchoud
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Susanne Finger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Graham Knott
- BioEM Facility, School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | - Thomas Müller-Reichert
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Beck BB, Phillips JB, Bartram MP, Wegner J, Thoenes M, Pannes A, Sampson J, Heller R, Göbel H, Koerber F, Neugebauer A, Hedergott A, Nürnberg G, Nürnberg P, Thiele H, Altmüller J, Toliat MR, Staubach S, Boycott KM, Valente EM, Janecke AR, Eisenberger T, Bergmann C, Tebbe L, Wang Y, Wu Y, Fry AM, Westerfield M, Wolfrum U, Bolz HJ. Mutation of POC1B in a severe syndromic retinal ciliopathy. Hum Mutat 2014; 35:1153-62. [PMID: 25044745 PMCID: PMC4425427 DOI: 10.1002/humu.22618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/12/2014] [Indexed: 12/20/2022]
Abstract
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.
Collapse
Affiliation(s)
- Bodo B. Beck
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | | | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Pannes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Josephina Sampson
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Heike Göbel
- Department of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Friederike Koerber
- Department of Radiology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Antje Neugebauer
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University Hospital of Cologne, 50931 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mohammad R. Toliat
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Simon Staubach
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Enza Maria Valente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Institute, 71013 San Giovanni Rotondo, Italy
- Department of Medicine and Surgery, University of Salerno, 84080 Salerno, Italy
| | - Andreas R. Janecke
- Department of Pediatrics I, and Division of Human Genetics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79095 Freiburg, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
| | - Yundong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
- College of Chemistry, Peking University, 100871 Beijing, P. R. China
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom, LE7 9HN
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, 97401 Eugene, Oregon, USA
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg, University of Mainz, 55099 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Hanno J. Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| |
Collapse
|
13
|
Roosing S, Lamers IJC, de Vrieze E, van den Born LI, Lambertus S, Arts HH, Peters TA, Hoyng CB, Kremer H, Hetterschijt L, Letteboer SJF, van Wijk E, Roepman R, den Hollander AI, Cremers FPM. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy. Am J Hum Genet 2014; 95:131-42. [PMID: 25018096 PMCID: PMC4129401 DOI: 10.1016/j.ajhg.2014.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | | | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Theo A Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Nijjar S, Woodland HR. Protein interactions in Xenopus germ plasm RNP particles. PLoS One 2013; 8:e80077. [PMID: 24265795 PMCID: PMC3827131 DOI: 10.1371/journal.pone.0080077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| |
Collapse
|
15
|
Nijjar S, Woodland HR. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One 2013; 8:e61847. [PMID: 23626739 PMCID: PMC3633952 DOI: 10.1371/journal.pone.0061847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 11/21/2022] Open
Abstract
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Venoux M, Tait X, Hames RS, Straatman KR, Woodland HR, Fry AM. Poc1A and Poc1B act together in human cells to ensure centriole integrity. J Cell Sci 2012; 126:163-75. [PMID: 23015594 DOI: 10.1242/jcs.111203] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteomic studies in unicellular eukaryotes identified a set of centriolar proteins that included proteome of centriole 1 (Poc1). Functional studies in these organisms implicated Poc1 in centriole duplication and length control, as well as ciliogenesis. Using isoform-specific antibodies and RNAi depletion, we have examined the function of the two related human proteins, Poc1A and Poc1B. We find that Poc1A and Poc1B each localize to centrioles and spindle poles, but do so independently and with different dynamics. However, although loss of one or other Poc1 protein does not obviously disrupt mitosis, depletion of both proteins leads to defects in spindle organization with the generation of unequal or monopolar spindles. Our data indicate that, once incorporated, a fraction of Poc1A and Poc1B remains stably associated with parental centrioles, but that depletion prevents incorporation into nascent centrioles. Nascent centrioles lacking both Poc1A and Poc1B exhibit loss of integrity and maturation, and fail to undergo duplication. Thus, when Poc1A and Poc1B are co-depleted, new centrosomes capable of maturation cannot assemble and unequal spindles result. Interestingly, Poc1B, but not Poc1A, is phosphorylated in mitosis, and depletion of Poc1B alone was sufficient to perturb cell proliferation. Hence, Poc1A and Poc1B play redundant, but essential, roles in generation of stable centrioles, but Poc1B may have additional independent functions during cell cycle progression.
Collapse
Affiliation(s)
- Magali Venoux
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
17
|
Sarig O, Nahum S, Rapaport D, Ishida-Yamamoto A, Fuchs-Telem D, Qiaoli L, Cohen-Katsenelson K, Spiegel R, Nousbeck J, Israeli S, Borochowitz ZU, Padalon-Brauch G, Uitto J, Horowitz M, Shalev S, Sprecher E. Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis syndrome is caused by a POC1A mutation. Am J Hum Genet 2012; 91:337-42. [PMID: 22840363 DOI: 10.1016/j.ajhg.2012.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/26/2022] Open
Abstract
Disproportionate short stature refers to a heterogeneous group of hereditary disorders that are classified according to their mode of inheritance, clinical skeletal and nonskeletal manifestations, and radiological characteristics. In the present study, we report on an autosomal-recessive osteocutaneous disorder that we termed SOFT (short stature, onychodysplasia, facial dysmorphism, and hypotrichosis) syndrome. We employed homozygosity mapping to locate the disease-causing mutation to region 3p21.1-3p21.31. Using whole-exome-sequencing analysis complemented with Sanger direct sequencing of poorly covered regions, we identified a homozygous point mutation (c.512T>C [p.Leu171Pro]) in POC1A (centriolar protein homolog A). This mutation was found to cosegregate with the disease phenotype in two families. The p.Leu171Pro substitution affects a highly conserved amino acid residue and is predicted to interfere with protein function. Poc1, a POC1A ortholog, was previously found to have a role in centrosome stability in unicellular organisms. Accordingly, although centrosome structure was preserved, the number of centrosomes and their distribution were abnormal in affected cells. In addition, the Golgi apparatus presented a dispersed morphology, cholera-toxin trafficking from the plasma membrane to the Golgi was aberrant, and large vesicles accumulated in the cytosol. Collectively, our data underscore the importance of POC1A for proper bone, hair, and nail formation and highlight the importance of normal centrosomes in Golgi assembly and trafficking from the plasma membrane to the Golgi apparatus.
Collapse
|
18
|
Fourrage C, Chevalier S, Houliston E. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies. PLoS One 2010; 5:e13994. [PMID: 21103375 PMCID: PMC2982836 DOI: 10.1371/journal.pone.0013994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022] Open
Abstract
Poc1 (Protein of Centriole 1) proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.
Collapse
Affiliation(s)
- Cécile Fourrage
- Université Pierre et Marie Curie and CNRS, Developmental Biology Unit, Villefranche-sur-Mer, France
| | - Sandra Chevalier
- Université Pierre et Marie Curie and CNRS, Developmental Biology Unit, Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Université Pierre et Marie Curie and CNRS, Developmental Biology Unit, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
19
|
Zhou RR, Wang B, Wang J, Schatten H, Zhang YZ. Is the mitochondrial cloud the selection machinery for preferentially transmitting wild-type mtDNA between generations? Rewinding Müller's ratchet efficiently. Curr Genet 2010; 56:101-7. [PMID: 20179933 DOI: 10.1007/s00294-010-0291-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/30/2009] [Accepted: 01/24/2010] [Indexed: 11/30/2022]
Abstract
In animal mitochondrial DNA inheritance, it remains largely unclear where the mitochondrial genetic bottleneck localizes and how it works in rewinding Müller's ratchet. In a variety of different animals germ plasm mRNAs typically aggregate along with numerous mitochondria to form the mitochondrial cloud (MC) during oogenesis. The MC has been found to serve as messenger transport organizer for germ plasm mRNAs. Germ plasm RNAs in MC will specifically distribute to the primordial germ cells of the future embryo. It has been proposed that the MC might be the site where selected mitochondria accumulate for specific transmission to grandchildren but this idea received relatively little attention and the criterion by which mitochondria are selected remains unknown. Our recent results in zebrafish provided further evidence for selective mitochondria accumulation in the MC by showing that mitochondria with high-inner membrane potential tend to be recruited preferentially into the MC, and these mitochondria are transported along with germ plasm to the cortex of the vegetal pole. By analyzing the composition, behavior and functions of the MC, and in reviewing related literature, we found strong support for the proposition that the MC corresponds to the position and function of the mitochondrial genetic bottleneck.
Collapse
Affiliation(s)
- Rong Rong Zhou
- Department of Life Sciences, Liaocheng University, Liaocheng 252059, Shandong, China
| | | | | | | | | |
Collapse
|
20
|
Pearson CG, Osborn DPS, Giddings TH, Beales PL, Winey M. Basal body stability and ciliogenesis requires the conserved component Poc1. ACTA ACUST UNITED AC 2010; 187:905-20. [PMID: 20008567 PMCID: PMC2806327 DOI: 10.1083/jcb.200908019] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Poc1 shores up basal bodies to support cilia formation in Tetrahymena thermophila, zebrafish, and humans; Poc1 depletion causes phenotypes commonly seen in ciliopathies. Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T.thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
We have made a wide phylogenetic survey of Pix proteins, which are constituents of vertebrate centrioles in most eukaryotes. We have also surveyed the presence and structure of flagella or cilia and centrioles in these organisms, as far as is possible from published information. We find that Pix proteins are present in a vast range of eukaryotes, but not all. Where centrioles are absent so are Pix proteins. If one considers the maintenance of Pix proteins over evolutionary time scales, our analysis would suggest that their key function is to make cilia and flagella, and the same is true of centrioles. Moreover, this survey raises the possibility that Pix proteins are only maintained to make cilia and flagella that undulate, and even then only when they are constructed by transporting ciliary constituents up the cilium using the intraflagellar transport (IFT) system. We also find that Pix proteins have become generally divergent within Ecdysozoa and between this group and other taxa. This correlates with a simplification of centrioles within Ecdysozoa and a loss or divergence of cilia/flagella. Thus Pix proteins act as a weathervane to indicate changes in centriole function, whose core activity is to make cilia and flagella.
Collapse
Affiliation(s)
- Hugh R Woodland
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom.
| | | |
Collapse
|