1
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
2
|
Leiva-Cepas F, Jimena I, Ruz-Caracuel I, Luque E, Villalba R, Peña-Amaro J. Histology of skeletal muscle reconstructed by means of the implantation of autologous adipose tissue: an experimental study. Histol Histopathol 2019; 35:457-474. [PMID: 31523800 DOI: 10.14670/hh-18-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to determine the histological characteristics of a skeletal muscle reconstructed by means of the implantation of autologous adipose tissue following an experimentally-induced volumetric muscle loss. A cylindrical piece in the belly of the rat anterior tibial muscle was removed. In the hole, inguinal subcutaneous adipose tissue of the same rat was grafted. Animals were sacrificed 7, 14, 21, 28 and 60 days posttransplantation. Histological, histochemical, immunohistochemical and morphometric techniques were used. At all times analyzed, the regenerative muscle fibers formed from the edges of the muscle tissue showed histological, histochemical and immunohistochemical differences in comparison with the control group. These differences are related to delays in the maturation process and are related to problems in reinnervation and disorientation of muscle fibers. The stains for MyoD and desmin showed that some myoblasts and myotubes seem to derive from the transplanted adipose tissue. After 60 days, the transplant area was 20% occupied by fibrosis and by 80% skeletal muscle. However, the neo-muscle was chaotically organized showing muscle fiber disorientation and centronucleated fibers with irregular shape and size. Our results support the hypothesis that, at least from a morphological point of view, autologous adipose tissue transplantation favors reconstruction following a volumetric loss of skeletal muscle by combining the inherent regenerative response of the organ itself and the myogenic differentiation of the stem cells present in the adipose tissue. However, in our study, the formed neo-muscle exhibited histological differences in comparison with the normal skeletal muscle.
Collapse
Affiliation(s)
- Fernando Leiva-Cepas
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Spain.,Present address: Department of Pathology, Reina Sofia University Hospital, Córdoba, Spain
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Present address: Department of Pathology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Evelio Luque
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Rafael Villalba
- Tissue of Establishment of the Center for Transfusion, Tissues and Cells, Córdoba, Spain
| | - Jose Peña-Amaro
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.
| |
Collapse
|
3
|
Side Population: Its Use in the Study of Cellular Heterogeneity and as a Potential Enrichment Tool for Rare Cell Populations. Stem Cells Int 2018; 2018:2472137. [PMID: 30627171 PMCID: PMC6304857 DOI: 10.1155/2018/2472137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
There is still much to learn about the cells used for cell- and gene-based therapies in the clinical setting. Stem cells are found in virtually all tissues in the human body. As a result, cells isolated from these tissues are a heterogeneous population consisting of various subpopulations including stem cells. Several strategies have been used to isolate and define the subpopulations that constitute these heterogeneous populations, one of which is the side population (SP) assay. SP cells are identified by their ability to efflux a fluorescent dye at a rate that is greater than the main cell population. This elevated rate of dye efflux has been attributed to the expression of members of the ATP-binding cassette (ABC) transporter protein family. SP cells have been identified in various tissues. In this review, we discuss the research to date on SP cells, focussing on SP cells identified in haematopoietic stem cells, adipose-derived stromal cells, and dental pulp.
Collapse
|
4
|
Comparison of Stromal Vascular Fraction with or Without a Novel Bioscaffold to Fibrin Glue in a Porcine Model of Mechanically Induced Anorectal Fistula. Inflamm Bowel Dis 2017; 23:1962-1971. [PMID: 28945635 DOI: 10.1097/mib.0000000000001254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Anorectal fistulas (ARFs) are a common, devastating, event in the life of a patient with Crohn's disease. ARFs occur in up to 50% of patients with Crohn's disease. Treatment begins with surgical drainage of the initial abscess, followed by antibiotic therapy, then anti-inflammatory medications. If medical therapy fails to close the fistula tract, surgical intervention is often pursued. Surgery incurs risk of incontinence because of sphincter injury. Increasingly, the role of cell-based therapy is being investigated in ARFs. We evaluated the role a bioabsorbable scaffold plays in delivering cell-based therapy using a porcine model of AFR. METHODS ARFs were mechanically created and matured by setons. After 28 days, setons were removed; periaortic fat was harvested and processed for stromal vascular fraction (SVF). The cells were labeled with a membrane stain for later identification, then injected into the fistula or implanted through scaffold. Fistulas not treated with cells were injected with fibrin glue. Animals were monitored visually for healing at weeks 2 and 4, then euthanized to evaluate fistulas for histologic healing. RESULTS All fistulas (6/6) treated with SVF + scaffolds healed by week 2, compared with only 4/6 with just SVF and 0/5 treated with fibrin glue. Scaffolds retained SVF within the fistula tract more readily than injection method and SVF+scaffold treatment accelerated the healing process. Robust neovascularization was also seen in fistulas treated with SVF+scaffold. No adverse events occurred. CONCLUSIONS Scaffold technology may improve cell-based therapy healing rates for Crohn's ARFs. This advance should be investigated by human trials.
Collapse
|
5
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
6
|
Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining. Stem Cells Int 2016; 2016:3846971. [PMID: 27994622 PMCID: PMC5141324 DOI: 10.1155/2016/3846971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/08/2016] [Accepted: 10/25/2016] [Indexed: 01/20/2023] Open
Abstract
Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture expanded, adherent cells (A-CEAC). This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC). Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV) was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM) antibody staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM-CEAC yielded significantly higher BV/TV than any A-CEAC group. In vitro treatment to enhance osteogenic capacity of A-CEAC is suggested for further research in ovine bone tissue engineering.
Collapse
|
7
|
Andersen DC, Jensen CH, Skovrind I, Johnsen RH, Traustadottir GA, Aagaard KS, Ganesalingam S, Sheikh SP. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle. Int J Cardiol 2016; 222:448-456. [PMID: 27505332 DOI: 10.1016/j.ijcard.2016.07.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES Epicardium-derived progenitor cells (EPDCs) differentiate into all heart cell types in the embryonic heart, yet their differentiation into cardiomyocytes in the adult heart is limited and poorly described. This may be due to EPDCs lacking myogenic potential or the inert adult heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate, in contrast to the adult heart. METHODS Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS No donor EPDC-derived cardiomyocytes were observed in hearts. In contrast, a remarkable contribution of EPDCs to skeletal muscle myofiber formation was evident in vivo. Furthermore, co-cultures of EPDCs with myoblasts showed that EPDCs became part of multinucleated fibers and appeared to acquire myogenic traits independent of a fusion event. Fluorescence activated cell sorting of EPDCs co-cultured with and without myoblasts and subsequent qRT-PCR of 64 transcripts established that the myogenic phenotype conversion was accomplished through induction of a transcriptional myogenic program. CONCLUSION These results suggest that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation.
Collapse
Affiliation(s)
- Ditte C Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Clinical Institute, University of Southern Denmark, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark.
| | - Charlotte H Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Ida Skovrind
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Clinical Institute, University of Southern Denmark, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Rikke Helin Johnsen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Clinical Institute, University of Southern Denmark, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Gunnhildur Asta Traustadottir
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Cardiovascular and Renal Research, University of Southern Denmark, Winsloewparken 21(3rd), 5000 Odense, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Katrine S Aagaard
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Cardiovascular and Renal Research, University of Southern Denmark, Winsloewparken 21(3rd), 5000 Odense, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Suganya Ganesalingam
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Cardiovascular and Renal Research, University of Southern Denmark, Winsloewparken 21(3rd), 5000 Odense, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Søren P Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Cardiovascular and Renal Research, University of Southern Denmark, Winsloewparken 21(3rd), 5000 Odense, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| |
Collapse
|
8
|
Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage. Stem Cells Int 2016; 2016:6549347. [PMID: 27375746 PMCID: PMC4916289 DOI: 10.1155/2016/6549347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.
Collapse
|
9
|
Quaade ML, Jensen CH, Andersen DC, Sheikh SP. A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype. Acta Histochem 2016; 118:513-8. [PMID: 27265810 DOI: 10.1016/j.acthis.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/01/2023]
Abstract
The stromal vascular fraction (SVF) is a heterogeneous population obtained from collagenase digestion of adipose tissue. When cultured the population becomes more homogeneous and the cells are then termed adipose stromal/stem cells (ASCs). Both the freshly isolated primary SVF population and the cultured ASC population possess regenerative abilities suggested to be mediated by paracrine mechanisms mainly. The use of ASCs and SVF cells, both in animal studies and human clinical studies, has dramatically increased during recent years. However, more knowledge regarding optimal donor characteristics such as age is demanded. Here we report that even a short age difference has an impact on the phenotype of primary SVF cells. We observed that a 3-month difference in relatively young adult rats affects the expression pattern of several mesenchymal stem cell markers in their primary SVF. The younger animals had significantly more CD90+/CD44+/CD29+/PDGFRα+primary cells, than the aged rats, suggesting an age dependent shift in the relative cell type distribution within the population. Taken together with recent studies of much more pronounced age differences, our data strongly suggest that donor age is a very critical parameter that should be taken into account in future stem cell studies, especially when using primary cells.
Collapse
Affiliation(s)
- Marlene Louise Quaade
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Cardiovascular and Renal Research, Denmark.
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Cardiovascular and Renal Research, Denmark.
| |
Collapse
|
10
|
Delayed muscle development in small pig fetuses around birth cannot be rectified by maternal early feed restriction and subsequent overfeeding during gestation. Animal 2015; 9:1996-2005. [DOI: 10.1017/s1751731115001202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
11
|
Stem cell survival is severely compromised by the thymidineanalog EdU (5-ethynyl-2′-deoxyuridine), an alternative to BrdU for proliferation assays and stem cell tracing. Anal Bioanal Chem 2013; 405:9585-91. [DOI: 10.1007/s00216-013-7387-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022]
|
12
|
Andersen DC, Laborda J, Baladron V, Kassem M, Sheikh SP, Jensen CH. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration. Development 2013; 140:3743-53. [DOI: 10.1242/dev.095810] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability to inhibit adipogenesis, is a crucial regulator of the myogenic program in skeletal muscle. Dlk1-/- mice were developmentally retarded in their muscle mass and function owing to inhibition of the myogenic program during embryogenesis. Surprisingly however, Dlk1 depletion improves in vitro and in vivo adult skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration.
Collapse
Affiliation(s)
- Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
- Insitute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Victoriano Baladron
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
- Department of Cardiovascular and Renal Research, Insitute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Winsloewparken 21 3rd, 5000 Odense C, Denmark
| |
Collapse
|
13
|
Rajput S, Kumar BNP, Dey KK, Pal I, Parekh A, Mandal M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci 2013; 93:783-90. [PMID: 24044882 DOI: 10.1016/j.lfs.2013.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 12/28/2022]
Abstract
AIM Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ's mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells. MAIN METHODS MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies. KEY FINDINGS Studies revealed G1 phase arrest till 24h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K. SIGNIFICANCE Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.
Collapse
Affiliation(s)
- Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | | | | | | | | |
Collapse
|
14
|
Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res 2013; 54:2214-2224. [PMID: 23740968 DOI: 10.1194/jlr.m038711] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brown adipose tissues (BAT) are derived from a myogenic factor 5 (Myf5)-expressing cell lineage and white adipose tissues (WAT) predominantly arise from non-Myf5 lineages, although a subpopulation of adipocytes in some WAT depots can be derived from the Myf5 lineage. However, the functional implication of the Myf5- and non-Myf5-lineage cells in WAT is unclear. We found that the Myf5-lineage constitution in subcutaneous WAT depots is negatively correlated to the expression of classical BAT and newly defined beige/brite adipocyte-specific genes. Consistently, fluorescent-activated cell sorting (FACS)-purified Myf5-lineage adipo-progenitors give rise to adipocytes expressing lower levels of BAT-specific Ucp1, Prdm16, Cidea, and Ppargc1a genes and beige adipocyte-specific CD137, Tmem26, and Tbx1 genes compared with the non-Myf5-lineage adipocytes from the same depots. Ablation of the Myf5-lineage progenitors in WAT stromal vascular cell (SVC) cultures leads to increased expression of BAT and beige cell signature genes. Strikingly, the Myf5-lineage cells in WAT are heterogeneous and contain distinct adipogenic [stem cell antigen 1(Sca1)-positive] and myogenic (Sca1-negative) progenitors. The latter differentiate robustly into myofibers in vitro and in vivo, and they restore dystrophin expression after transplantation into mdx mouse, a model for Duchenne muscular dystrophy. These results demonstrate the heterogeneity and functional differences of the Myf5- and non-Myf5-lineage cells in the white adipose tissue.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Xinrong Liang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Pengpeng Bi
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Pengpeng Zhang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Weiyi Liu
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Shihuan Kuang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
15
|
Horse serum reduces expression of membrane-bound and soluble isoforms of the preadipocyte marker Delta-like 1 homolog (Dlk1), but is inefficient for adipogenic differentiation of mouse preadipocytes. Acta Histochem 2013; 115:401-6. [PMID: 22975115 DOI: 10.1016/j.acthis.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/24/2022]
Abstract
Downregulation of the preadipocyte marker Delta-like 1 homologue (Dlk1), an inhibitor of adipogenesis, has been suggested to be a prerequisite for adipogenic differentiation to occur, and low Dlk1 levels are often used to verify adipogenesis. Mouse preadipocytic cell lines such as 3T3-L1, as well as primary derived preadipocytes, are important models to study adipogenic differentiation and obesity. However, in vitro adipogenic differentiation of primary derived preadipocytes remains incomplete, and identification of factors that will improve the adipogenic differentiation process is thus of high value. In this study we show that horse serum fails to improve adipogenic differentiation of mouse preadipocytes (both 3T3-L1 cells and primary derived mouse preadipocytes) as otherwise reported for bone marrow derived adipogenic precursors. Unexpectedly, while Dlk1 levels were indeed decreased using horse serum, this did not correlate with a high degree of adipogenic differentiation. In conclusion, our novel results thus reveal that horse serum clearly is insufficient for adipogenic differentiation of mouse preadipocytes and that low levels of Dlk1 alone are a poor marker of mouse in vitro adipogenesis. We would also like to emphasize that it is very important for the field of cellular differentiation that researchers thoroughly investigate the effect of individual reagents in their protocols. Such data will increase understanding of the limitations and possibilities of individual systems.
Collapse
|
16
|
Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 2013; 36:1161-70. [PMID: 22974058 DOI: 10.1042/cbi20120288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.
Collapse
|
17
|
Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 2013; 83:134-40. [PMID: 23184564 PMCID: PMC4157311 DOI: 10.1002/cyto.a.22227] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45-/CD31+/CD34+), pericytes (CD45-/CD31-/CD146+), and supra-adventitial adipose stromal cells (SA-ASC, CD45-/CD31-/CD146-/CD34+). EPC are luminal, pericytes are adventitial, and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45-/CD34-/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- The Johns Hopkins University School of Medicine, Department of Oncology, Division of Pediatric Oncology
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery
- University of Pittsburgh Cancer Institute
- McGowan Institute of Regenerative Medicine
| | - J. Peter Rubin
- McGowan Institute of Regenerative Medicine
- University of Pittsburgh School of Medicine, Department of Surgery, Division of Plastic Surgery
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute
- McGowan Institute of Regenerative Medicine
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology
| |
Collapse
|
18
|
Mortensen SB, Jensen CH, Schneider M, Thomassen M, Kruse TA, Laborda J, Sheikh SP, Andersen DC. Membrane-tethered delta-like 1 homolog (DLK1) restricts adipose tissue size by inhibiting preadipocyte proliferation. Diabetes 2012; 61:2814-22. [PMID: 22891218 PMCID: PMC3478550 DOI: 10.2337/db12-0176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipocyte renewal from preadipocytes has been shown to occur throughout life and to contribute to obesity, yet very little is known about the molecular circuits that control preadipocyte expansion. The soluble form of the preadipocyte factor (also known as pref-1) delta-like 1 homolog (DLK1(S)) is known to inhibit adipogenic differentiation; however, the impact of DLK1 isoforms on preadipocyte proliferation remains to be determined. We generated preadipocytes with different levels of DLK1 and examined differentially affected gene pathways, which were functionally tested in vitro and confirmed in vivo. Here, we demonstrate for the first time that only membrane-bound DLK1 (DLK1(M)) exhibits a substantial repression effect on preadipocyte proliferation. Thus, by independently manipulating DLK1 isoform levels, we established that DLK1(M) inhibits G1-to-S-phase cell cycle progression and thereby strongly inhibits preadipocyte proliferation in vitro. Adult DLK1-null mice exhibit higher fat amounts than wild-type controls, and our in vivo analysis demonstrates that this may be explained by a marked increase in preadipocyte replication. Together, these data imply a major dual inhibitory function of DLK1 on adipogenesis, which places DLK1 as a master regulator of preadipocyte homeostasis, suggesting that DLK1 manipulation may open new avenues in obesity treatment.
Collapse
Affiliation(s)
- Sussi B. Mortensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte H. Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mikael Schneider
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Søren P. Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| | - Ditte C. Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| |
Collapse
|
19
|
Unno K, Jain M, Liao R. Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circ Res 2012; 110:1355-63. [PMID: 22581921 DOI: 10.1161/circresaha.111.243014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed "side population" (SP) progenitor cells, identified by their unique ability to efflux DNA binding dyes through an ATP-binding cassette transporter. This review highlights the literature on the isolation, characterization, and functional relevance of cardiac SP cells. We review the initial discovery of cardiac SP cells in adult myocardium as well as their capacity for functional cardiomyogenic differentiation and role in cardiac regeneration after myocardial injury. Finally, we discuss recent advances in understanding the molecular regulators of cardiac SP cell proliferation and differentiation, as well as likely future areas of investigation required to realize the goal of effective cardiac regeneration.
Collapse
Affiliation(s)
- Kazumasa Unno
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
20
|
|
21
|
Andersen DC, Kristiansen GQ, Jensen L, Füchtbauer EM, Schrøder HD, Jensen CH. Quantitative gene expression profiling of CD45+ and CD45− skeletal muscle-derived side population cells. Cytometry A 2011; 81:72-80. [DOI: 10.1002/cyto.a.21121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/02/2023]
|
22
|
Andersen DC, Kliem A, Schrøder HD, Jensen CH. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies. Acta Histochem 2011; 113:68-71. [PMID: 19767062 DOI: 10.1016/j.acthis.2009.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/16/2022]
Abstract
Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining is only recognized (1) by a negative muscle tissue control that does not harbor the protein to be examined (fx. from knockout mouse) or (2) by use of a nonsense rabbit antibody that has been prepared in the same way as the antibody of interest. However, many muscle immuno(cyto/histo)chemical studies only rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit antibody and optimally a negative muscle/cell control.
Collapse
Affiliation(s)
- Ditte C Andersen
- Department of Immunology and Microbiology, University of Southern Denmark, Odense C, Denmark
| | | | | | | |
Collapse
|
23
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
25
|
Lin G, Banie L, Ning H, Bella AJ, Lin CS, Lue TF. Potential of adipose-derived stem cells for treatment of erectile dysfunction. J Sex Med 2009; 6 Suppl 3:320-7. [PMID: 19267855 DOI: 10.1111/j.1743-6109.2008.01190.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) are a somatic stem cell population contained in fat tissue that possess the ability for self-renewal, differentiation into one or more phenotypes, and functional regeneration of damaged tissue, which may benefit the recovery of erectile function by using a stem cell-based therapy. AIM To review available evidence concerning ADSCs availability, differentiation into functional cells, and the potential of these cells for the treatment of erectile dysfunction (ED). METHODS We examined the current data (from 1964 to 2008) associated with the definition, characterization, differentiation, and application of ADSCs, as well as other kinds of stem cells for the cell-based therapies of ED. MAIN OUTCOME MEASURES There is strong evidence supporting the concept that ADSCs may be a potential stem cell therapy source in treating ED. RESULTS The ADSCs are paravascularly localized in the adipose tissue. Under specific induction medium conditions, these cells differentiated into neuron-like cells, smooth muscle cells, and endothelium in vitro. The insulin-like growth factor/insulin-like growth factor receptor (IGF/IGFR) pathway participates in neuronal differentiation while the fibroblast growth factor 2 (FGF2) pathway is involved in endothelium differentiation. In a preliminary in vivo experiment, the ADSCs functionally recovered the damaged erectile function. However, the underlying mechanism needs to be further examined. CONCLUSION The ADSCs are a potential source for stem cell-based therapies, which imply the possibility of an effective clinical therapy for ED in the near future.
Collapse
Affiliation(s)
- Guiting Lin
- School of Medicine, Department of Urology, University of California-Knuppe Molecular Urology Laboratory, San Francisco, CA 94143-0738, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Andersen DC, Jensen L, Schrøder HD, Jensen CH. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential. FEBS Lett 2009; 583:2947-53. [PMID: 19665021 DOI: 10.1016/j.febslet.2009.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 01/22/2023]
Abstract
Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal vascular fraction (SVF). Unexpectedly, the DLK1(+)SVF population was enriched for cells expressing genes generally ascribed to the vascular lineage and did not possess any adipogenic differentiation potential in vitro. Instead, DLK1(+) cells comprised an immediate ability for cobblestone formation, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto.
Collapse
|
27
|
Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP. Murine “Cardiospheres” Are Not a Source of Stem Cells with Cardiomyogenic Potential. Stem Cells 2009; 27:1571-81. [DOI: 10.1002/stem.72] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Andersen DC, Petersson SJ, Jørgensen LH, Bollen P, Jensen PB, Teisner B, Schroeder HD, Jensen CH. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury. Stem Cells 2009; 27:898-908. [PMID: 19353518 DOI: 10.1634/stemcells.2008-0826] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delta like 1 (DLK1) has been proposed to act as a regulator of cell fate determination and is linked to the development of various tissues including skeletal muscle. Herein we further investigated DLK1 expression during skeletal muscle remodeling. Although practically absent in normal adult muscle, DLK1 was upregulated in all human myopathies analyzed, including Duchenne- and Becker muscular dystrophies. Substantial numbers of DLK1(+) satellite cells were observed in normal neonatal and Duchenne muscle, and furthermore, myogenic DLK1(+) cells were identified during muscle regeneration in animal models in which the peak expression of Dlk1 mRNA and protein coincided with that of myoblast differentiation and fusion. In addition to perivascular DLK1(+) cells, interstitial DLK1(+) cells were numerous in regenerating muscle, and in agreement with colocalization studies of DLK1 and CD90/DDR2, qPCR of fluorescence-activated cell sorting DLK1(+) and DLK1(-) cells revealed that the majority of DLK1(+) cells isolated at day 7 of regeneration had a fibroblast-like phenotype. The existence of different DLK1(+) populations was confirmed in cultures of primary derived myogenic cells, in which large flat nonmyogenic DLK1(+) cells and small spindle-shaped cells coexpressing DLK1 and muscle-specific markers were observed. Myogenic differentiation was achieved when sorted DLK1(+) cells were cocultured together with primary myoblasts revealing a myogenic potential that was 10% of the DLK1(-) population. Transplantation of DLK1(+) cells into lacerated muscle did, however, not give rise to DLK1(+) cell-derived myofibers. We suggest that the DLK1(+) subpopulations identified herein each may contribute at different levels/time points to the processes involved in muscle development and remodeling.
Collapse
Affiliation(s)
- Ditte C Andersen
- Department of Clinical Pathology, Odense University Hospital, Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sacramento CB, Cantagalli VD, Grings M, Carvalho LP, Baptista-Silva JCC, Beutel A, Bergamaschi CT, de Campos Junior RR, de Moraes JZ, Takiya CM, Samoto VY, Borojevic R, da Silva FH, Nardi NB, Dohmann HF, Junior HS, Valero VB, Han SW. Granulocyte-macrophage colony-stimulating factor gene based therapy for acute limb ischemia in a mouse model. J Gene Med 2009; 11:345-53. [PMID: 19194978 DOI: 10.1002/jgm.1298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Granulocyte-colony-stimulating factor (GM-CSF) is a pleiotropic factor for hematopoiesis that stimulates myeloblasts, monoblasts and mobilization of bone marrow stem cells. Therefore, the GM-CSF gene is a potential candidate for vessel formation and tissue remodeling in the treatment of ischemic diseases. METHODS A new mouse limb ischemia was established by surgery and gene transfer was performed by injection of 100 microg of a plasmid carrying GM-CSF. Muscle force and weight, histology, capillary density, circulating stem cells and monocytes were determined after 3-4 weeks. RESULTS More than 60% of nontreated ischemic animals showed gangrene below the heel after 4 weeks, whereas the GM-CSF gene-treated animals showed only darkening of nails or toes. These animals demonstrated a full recovery of the affected muscles in terms of weight, force and muscle fiber structure, but the muscles of nontreated ischemic animals lost approximately 50% weight, 86% force and their regular structure. When the GM-CSF gene was injected into the contralateral limb, only partial loss was observed, demonstrating a distant effect of GM-CSF. The capillary density in the GM-CSF-treated group was 52% higher in relation to the nontreated group. Blood analysis by flow cytometry showed that the GM-CSF-treated group had 10-20% higher levels of circulating monocytes and Sca-1(+). CONCLUSIONS We conclude that the direct administration of GM-CSF gene in limb ischemia had a strong therapeutic effect because it promoted the recovery of muscle mass, force and structure by mobilizing therapeutic cells and augmenting the number of vessels.
Collapse
|
30
|
Fujimura J, Sugihara H, Fukunaga Y, Suzuki H, Ogawa R. Adipose Tissue is A Better Source of Immature Non-Hematopoietic Cells than Bone Marrow. Int J Stem Cells 2009; 2:135-40. [PMID: 24855533 PMCID: PMC4021769 DOI: 10.15283/ijsc.2009.2.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2009] [Indexed: 01/09/2023] Open
Abstract
Adipose tissue (AT) is an alternative source of the adult stem cells that can also be harvested from bone marrow (BM). Cultured AT-derived stem cells (ASCs) have been well characterized by many groups. However, non-cultured ASCs remain to be characterized. Hoechst 33342 dye efflux is a characteristic that is common to stem cells, as well as chemotherapy-resistant cancer cells. Thus, we compared the Hoechst 33342-stained side population (SP) cells in murine adipose-tissue (AT-SP cells) to the SP cells from murine bone marrow (BM-SP cells). The AT-SP cells were detected much more frequently in the 22 AT samples that were tested (0.42∼6.00%, mean 2.57%) than the BM-SP cells were detected in the 6 BM samples (0.02∼0.36%, mean 0.12%). After Hoechst staining, SP cells were analyzed by fluorescence-activated cell sorting (FACS) and electron micrograms. FACS analysis revealed that the AT-SP cells were CD44-, CD45-, CD45R+, Sca-1± and c-kit-, while the BM-SP cells were CD44-, CD45±, CD45R-, Sca-1+ and c-kit+. This indicates that the AT-SP cells differ phenotypically from the BM-SP cells. Electron microscopic analysis revealed that the AT-SP cells are small cells with a diameter of about 5 um. Some of the BM-SP cells had granules, similar to eosinophils or basophils, whereas the AT-SP cells had fewer organelles and a higher N/C ratio than the BM-SP cells. This suggests that the AT-SP cells are considerably more immature than the BM-SP cells. Thus, it appears that AT is a better source of immature non-hematopoietic cells than BM.
Collapse
Affiliation(s)
- Juri Fujimura
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Hidemitsu Sugihara
- Tumor Stem Cell Team, Biological Research Group, Pharmaceutical Research Laboratories, Research & Development Group, Nippon Kayaku Co. Ltd., Tokyo, Japan
| | | | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|