1
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
DeAngelo JD, Maron MI, Roth JS, Silverstein AM, Gupta V, Stransky S, Basken J, Azofeifa J, Sidoli S, Gamble MJ, Shechter D. Productive mRNA Chromatin Escape is Promoted by PRMT5 Methylation of SNRPB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607355. [PMID: 39149374 PMCID: PMC11326253 DOI: 10.1101/2024.08.09.607355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Protein Arginine Methyltransferase 5 (PRMT5) regulates RNA splicing and transcription by symmetric dimethylation of arginine residues (Rme2s/SDMA) in many RNA binding proteins. However, the mechanism by which PRMT5 couples splicing to transcriptional output is unknown. Here, we demonstrate that a major function of PRMT5 activity is to promote chromatin escape of a novel, large class of mRNAs that we term Genomically Retained Incompletely Processed Polyadenylated Transcripts (GRIPPs). Using nascent and total transcriptomics, spike-in controlled fractionated cell transcriptomics, and total and fractionated cell proteomics, we show that PRMT5 inhibition and knockdown of the PRMT5 SNRP (Sm protein) adapter protein pICln (CLNS1A) -but not type I PRMT inhibition-leads to gross detention of mRNA, SNRPB, and SNRPD3 proteins on chromatin. Compared to most transcripts, these chromatin-trapped polyadenylated RNA transcripts have more introns, are spliced slower, and are enriched in detained introns. Using a combination of PRMT5 inhibition and inducible isogenic wildtype and arginine-mutant SNRPB, we show that arginine methylation of these snRNPs is critical for mediating their homeostatic chromatin and RNA interactions. Overall, we conclude that a major role for PRMT5 is in controlling transcript processing and splicing completion to promote chromatin escape and subsequent nuclear export.
Collapse
Affiliation(s)
- Joseph D. DeAngelo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Contributed equally
| | - Maxim I. Maron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Contributed equally
- Current address: Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| | - Jacob S. Roth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Aliza M. Silverstein
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Varun Gupta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Joel Basken
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Current address: Enveda Biosciences, Boulder, Colorado, 80301, United States
| | - Joey Azofeifa
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Matthew J. Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
3
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Li C, Lv J, Wumaier G, Zhao Y, Dong L, Zeng Y, Zhu N, Zhang X, Wang J, Xia J, Li S. NDRG1 promotes endothelial dysfunction and hypoxia-induced pulmonary hypertension by targeting TAF15. PRECISION CLINICAL MEDICINE 2023; 6:pbad024. [PMID: 37885911 PMCID: PMC10599394 DOI: 10.1093/pcmedi/pbad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Background Pulmonary hypertension (PH) represents a threatening pathophysiologic state that can be induced by chronic hypoxia and is characterized by extensive vascular remodeling. However, the mechanism underlying hypoxia-induced vascular remodeling is not fully elucidated. Methods and Results By using quantitative polymerase chain reactions, western blotting, and immunohistochemistry, we demonstrate that the expression of N-myc downstream regulated gene-1 (NDRG1) is markedly increased in hypoxia-stimulated endothelial cells in a time-dependent manner as well as in human and rat endothelium lesions. To determine the role of NDRG1 in endothelial dysfunction, we performed loss-of-function studies using NDRG1 short hairpin RNAs and NDRG1 over-expression plasmids. In vitro, silencing NDRG1 attenuated proliferation, migration, and tube formation of human pulmonary artery endothelial cells (HPAECs) under hypoxia, while NDRG1 over-expression promoted these behaviors of HPAECs. Mechanistically, NDRG1 can directly interact with TATA-box binding protein associated factor 15 (TAF15) and promote its nuclear localization. Knockdown of TAF15 abrogated the effect of NDRG1 on the proliferation, migration and tube formation capacity of HPAECs. Bioinformatics studies found that TAF15 was involved in regulating PI3K-Akt, p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways, which have been proved to be PH-related pathways. In addition, vascular remodeling and right ventricular hypertrophy induced by hypoxia were markedly alleviated in NDRG1 knock-down rats compared with their wild-type littermates. Conclusions Taken together, our results indicate that hypoxia-induced upregulation of NDRG1 contributes to endothelial dysfunction through targeting TAF15, which ultimately contributes to the development of hypoxia-induced PH.
Collapse
Affiliation(s)
- Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junzhu Lv
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhao
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuzhen Zeng
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Ratovitski T, Kamath SV, O'Meally RN, Gosala K, Holland CD, Jiang M, Cole RN, Ross CA. Arginine methylation of RNA-binding proteins is impaired in Huntington's disease. Hum Mol Genet 2023; 32:3006-3025. [PMID: 37535888 PMCID: PMC10549789 DOI: 10.1093/hmg/ddad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Siddhi V Kamath
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N O'Meally
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Keerthana Gosala
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chloe D Holland
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mali Jiang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Liu Z, Wang K, Ye M. Photoreactive Probe-Based Strategy Enables the Specific Identification of the Transient Substrates of Methyltransferase at the Proteome Scale. Anal Chem 2023; 95:12580-12585. [PMID: 37578933 DOI: 10.1021/acs.analchem.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
To decipher the biological function of protein arginine methyltransferases (PRMTs), the identification of their substrate proteins is crucial. However, this is not a trivial task as the stable and strong interacting proteins always prevail over the weak and transient substrate proteins. Herein, we report the development of a novel photoreactive probe-based strategy to identify the substrate proteins of methyltransferases. By applying it to PRMT1, we demonstrate that this strategy can effectively distinguish substrate proteins from other interacting proteins and allows the identification of highly confident substrate proteins. Noteworthily, we found for the first time that hypomethylation of proteins is a prerequisite for efficient capturing of substrate proteins. This study describes the development of a robust chemical proteomics tool for profiling the transient substrates and can be adapted for broad biomedical applications.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Krasnov AN, Evdokimova AA, Mazina MY, Erokhin M, Chetverina D, Vorobyeva NE. Coregulators Reside within Drosophila Ecdysone-Inducible Loci before and after Ecdysone Treatment. Int J Mol Sci 2023; 24:11844. [PMID: 37511602 PMCID: PMC10380596 DOI: 10.3390/ijms241411844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
SR Protein Kinase 1 Inhibition by TAF15. Cells 2022; 12:cells12010126. [PMID: 36611919 PMCID: PMC9818988 DOI: 10.3390/cells12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Although SRPKs were discovered nearly 30 years ago, our understanding of their mode of regulation is still limited. Regarded as constitutively active enzymes known to participate in diverse biological processes, their prominent mode of regulation mainly depends on their intracellular localization. Molecular chaperones associate with a large internal spacer sequence that separates the bipartite kinase catalytic core and modulates the kinases' partitioning between the cytoplasm and nucleus. Besides molecular chaperones that function as anchoring proteins, a few other proteins were shown to interact directly with SRPK1, the most-studied member of SRPKs, and alter its activity. In this study, we identified TAF15, which has been involved in transcription initiation, splicing, DNA repair, and RNA maturation, as a novel SRPK1-interacting protein. The C-terminal RGG domain of TAF15 was able to associate with SRPK1 and downregulate its activity. Furthermore, overexpression of this domain partially relocalized SRPK1 to the nucleus and resulted in hypophosphorylation of SR proteins, inhibition of splicing of a reporter minigene, and inhibition of Lamin B receptor phosphorylation. We further demonstrated that peptides comprising the RGG repeats of nucleolin, HNRPU, and HNRNPA2B1, were also able to inhibit SRPK1 activity, suggesting that negative regulation of SRPK1 activity might be a key biochemical property of RGG motif-containing proteins.
Collapse
|
9
|
Medvedev KE, Pei J, Grishin NV. DisEnrich: database of enriched regions in human dark proteome. Bioinformatics 2022; 38:1870-1876. [PMID: 35094056 PMCID: PMC8963327 DOI: 10.1093/bioinformatics/btac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Intrinsically disordered proteins (IDPs) are involved in numerous processes crucial for living organisms. Bias in amino acid composition of these proteins determines their unique biophysical and functional features. Distinct intrinsically disordered regions (IDRs) with compositional bias play different important roles in various biological processes. IDRs enriched in particular amino acids in human proteome have not been described consistently. RESULTS We developed DisEnrich-the database of human proteome IDRs that are significantly enriched in particular amino acids. Each human protein is described using Gene Ontology (GO) function terms, disorder prediction for the full-length sequence using three methods, enriched IDR composition and ranks of human proteins with similar enriched IDRs. Distribution analysis of enriched IDRs among broad functional categories revealed significant overrepresentation of R- and Y-enriched IDRs in metabolic and enzymatic activities and F-enriched IDRs in transport. About 75% of functional categories contain IDPs with IDRs significantly enriched in hydrophobic residues that are important for protein-protein interactions. AVAILABILITY AND IMPLEMENTATION The database is available at http://prodata.swmed.edu/DisEnrichDB/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Jimin Pei
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
11
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
12
|
Structure, Activity, and Function of PRMT1. Life (Basel) 2021; 11:life11111147. [PMID: 34833023 PMCID: PMC8619983 DOI: 10.3390/life11111147] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.
Collapse
|
13
|
Wei M, Tan C, Tang Z, Lian Y, Huang Y, Chen Y, Chen C, Zhou W, Cai T, Hu J. Proteome-Wide Alterations of Asymmetric Arginine Dimethylation Associated With Pancreatic Ductal Adenocarcinoma Pathogenesis. Front Cell Dev Biol 2020; 8:545934. [PMID: 33344439 PMCID: PMC7744470 DOI: 10.3389/fcell.2020.545934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023] Open
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) performs essential roles in regulating cancer initiation and progression, but its implication in pancreatic ductal adenocarcinoma (PDAC) requires further elucidation. In this study, asymmetric dimethylarginine (ADMA)-containing peptides in PDAC cell line PANC-1 were identified by label-free quantitative proteomics combined with affinity purification, using human non-cancerous pancreatic ductal epithelium cell line HPDE6c7 as the control. In total, 289 ADMA sites in 201 proteins were identified in HPDE6c7 and PANC-1 cells, including 82 sites with lower dimethylation and 37 sites with higher dimethylation in PANC-1 cells compared with HPDE6c7 cells. These ADMA-containing peptides demonstrated significant enrichment of glycine and proline residues in both cell lines. Importantly, leucine residues were significantly enriched in ADMA-containing peptides identified only in HPDE6c7 cells or showing lower dimethylation in PANC-1 cells. ADMA-containing proteins were significantly enriched in multiple biological processes and signaling cascades associated with cancer development, such as spliceosome machinery, the Wnt/β-catenin, Hedgehog, tumor growth factor beta (TGF-β), and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDAC cell lines with enhanced cell viability showed lower PRMT4 protein abundance and global ADMA-containing protein levels compared with HPDE6c7. PRMT4 overexpression partially recovered ADMA-containing protein levels and repressed viability in PANC-1 cells. These results revealed significantly altered ADMA-containing protein profiles in human pancreatic carcinoma cells, which provided a basis for elucidating the pathogenic roles of PRMT-mediated protein methylation in pancreatic cancer.
Collapse
Affiliation(s)
- Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Cai
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Morettin A, Bourassa J, Mahadevan K, Trinkle-Mulcahy L, Cote J. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods 2020; 175:44-52. [PMID: 31794835 DOI: 10.1016/j.ymeth.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.
Collapse
Affiliation(s)
- Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Bourassa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohila Mahadevan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jocelyn Cote
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Moore S, Rabichow BE, Sattler R. The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochem Res 2020; 45:1306-1327. [PMID: 32086712 DOI: 10.1007/s11064-020-02989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The widespread nature of nucleocytoplasmic trafficking defects and protein accumulation suggests distinct yet overlapping mechanisms in a variety of neurodegenerative diseases. Detailed understanding of the cellular pathways involved in nucleocytoplasmic transport and its dysregulation are essential for elucidating neurodegenerative pathogenesis and pinpointing potential areas for therapeutic intervention. The transport of cargos from the nucleus to the cytoplasm is generally regulated by the structure and function of the nuclear pore as well as the karyopherin α/β, importin, exportin, and mRNA export mechanisms. The disruption of these crucial transport mechanisms has been extensively described in the context of neurodegenerative diseases. One common theme in neurodegeneration is the cytoplasmic aggregation of proteins, including nuclear RNA binding proteins, repeat expansion associated gene products, and tau. These cytoplasmic aggregations are partly a consequence of failed nucleocytoplasmic transport machinery, but can also further disrupt transport, creating cyclical feed-forward mechanisms that exacerbate neurodegeneration. Here we describe the canonical mechanisms that regulate nucleocytoplasmic trafficking as well as how these mechanisms falter in neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen Moore
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Benjamin E Rabichow
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
16
|
Spadotto V, Giambruno R, Massignani E, Mihailovich M, Maniaci M, Patuzzo F, Ghini F, Nicassio F, Bonaldi T. PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis. Nucleic Acids Res 2020; 48:96-115. [PMID: 31777917 PMCID: PMC6943135 DOI: 10.1093/nar/gkz1051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) biogenesis is a tightly controlled multi-step process operated in the nucleus by the activity of the Microprocessor and its associated proteins. Through high resolution mass spectrometry (MS)- proteomics we discovered that this complex is extensively methylated, with 84 methylated sites associated to 19 out of its 24 subunits. The majority of the modifications occurs on arginine (R) residues (61), leading to 81 methylation events, while 30 lysine (K)-methylation events occurs on 23 sites of the complex. Interestingly, both depletion and pharmacological inhibition of the Type-I Protein Arginine Methyltransferases (PRMTs) lead to a widespread change in the methylation state of the complex and induce global decrease of miRNA expression, as a consequence of the impairment of the pri-to-pre-miRNA processing step. In particular, we show that the reduced methylation of the Microprocessor subunit ILF3 is linked to its diminished binding to the pri-miRNAs miR-15a/16, miR-17-92, miR-301a and miR-331. Our study uncovers a previously uncharacterized role of R-methylation in the regulation of miRNA biogenesis in mammalian cells.
Collapse
Affiliation(s)
- Valeria Spadotto
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Patuzzo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
17
|
Al-Hamashi AA, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Curr Protein Pept Sci 2020; 21:699-712. [PMID: 32379587 PMCID: PMC7529871 DOI: 10.2174/1389203721666200507091952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad, Iraq
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
18
|
Lorton BM, Shechter D. Cellular consequences of arginine methylation. Cell Mol Life Sci 2019; 76:2933-2956. [PMID: 31101937 PMCID: PMC6642692 DOI: 10.1007/s00018-019-03140-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein-protein and protein-nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform-catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)-has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins-the latter two of which are intimately connected with biological liquid-liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
19
|
Gittings LM, Foti SC, Benson BC, Gami-Patel P, Isaacs AM, Lashley T. Heterogeneous nuclear ribonucleoproteins R and Q accumulate in pathological inclusions in FTLD-FUS. Acta Neuropathol Commun 2019; 7:18. [PMID: 30755280 PMCID: PMC6371513 DOI: 10.1186/s40478-019-0673-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is pathologically subdivided based on the presence of particular pathological proteins that are identified in inclusion bodies observed post-mortem. The FTLD-FUS subgroup is defined by the presence of the fused in sarcoma protein (FUS) in pathological inclusions. FUS is a heterogeneous nuclear ribonucleoprotein (hnRNP) protein and a member of the FET (FUS, EWS, TAF15) protein family. It shuttles between the nucleus and cytoplasm, and has been implicated in many cellular functions including translation, splicing, and RNA transport. EWS, TAF15 and the nuclear import receptor transportin have been shown to co-accumulate with FUS in neuronal inclusions specifically in FTLD-FUS, with transportin-positive inclusions most frequently observed. Here, we report the identification of hnRNP R and hnRNP Q in neuronal cytoplasmic and intranuclear inclusions in the frontal cortex and hippocampus of FTLD-FUS patients, as frequently as transportin. hnRNP R and hnRNP Q were not found in the characteristic pathological inclusions observed in FTLD-TDP (subtypes A-C). Additionally, we studied the expression of hnRNP R in the frontal and temporal cortices from patients with FTLD and found significantly increased expression of the heterogeneous nuclear ribonucleoprotein R in several FTLD disease groups. Our identification of the frequent presence of hnRNP R and hnRNP Q in FTLD-FUS inclusions suggests a potential role for these hnRNPs in FTLD-FUS pathogenesis and supports the role of dysfunctional RNA metabolism in FTLD.
Collapse
|
20
|
Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R, Salinas F, Cox J, Uhlenhaut NH, Walther TC, Jungmann R, Zeigerer A, Borner GHH, Mann M. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Dev Cell 2018; 47:205-221.e7. [PMID: 30352176 DOI: 10.1016/j.devcel.2018.09.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023]
Abstract
Lipid metabolism is highly compartmentalized between cellular organelles that dynamically adapt their compositions and interactions in response to metabolic challenges. Here, we investigate how diet-induced hepatic lipid accumulation, observed in non-alcoholic fatty liver disease (NAFLD), affects protein localization, organelle organization, and protein phosphorylation in vivo. We develop a mass spectrometric workflow for protein and phosphopeptide correlation profiling to monitor levels and cellular distributions of ∼6,000 liver proteins and ∼16,000 phosphopeptides during development of steatosis. Several organelle contact site proteins are targeted to lipid droplets (LDs) in steatotic liver, tethering organelles orchestrating lipid metabolism. Proteins of the secretory pathway dramatically redistribute, including the mis-localization of the COPI complex and sequestration of the Golgi apparatus at LDs. This correlates with reduced hepatic protein secretion. Our systematic in vivo analysis of subcellular rearrangements and organelle-specific phosphorylation reveals how nutrient overload leads to organellar reorganization and cellular dysfunction.
Collapse
Affiliation(s)
- Natalie Krahmer
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Bahar Najafi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Florian Schueder
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Martin Steger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Robert Kasper
- Max Planck Institute of Neurobiology, Imaging facility, Martinsried 82152, Germany
| | - Favio Salinas
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nina Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Tobias Christian Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Georg Heinz Helmut Borner
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
21
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
22
|
Ernst EH, Nielsen J, Ipsen MB, Villesen P, Lykke-Hartmann K. Transcriptome Analysis of Long Non-coding RNAs and Genes Encoding Paraspeckle Proteins During Human Ovarian Follicle Development. Front Cell Dev Biol 2018; 6:78. [PMID: 30087896 PMCID: PMC6066568 DOI: 10.3389/fcell.2018.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple biological processes and dysregulation of their expression can cause diseases. Most regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression through epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. Interestingly, differential lncRNA expression profiles in human oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle development has not previously been described. In this study, transcriptome dynamics in human primordial, primary and small antral follicles were interrogated and revealed information of lncRNA genes. It is known that some lncRNAs form a complex with paraspeckle proteins and therefore, we extended our transcriptional analysis to include genes encoding paraspeckle proteins. Primordial, primary follicles and small antral follicles was isolated using laser capture micro-dissection from ovarian tissue donated by three women having ovarian tissue cryopreserved before chemotherapy. After RN sequencing, a bioinformatic class comparison was performed and primordial, primary and small antral follicles were found to express several lncRNA and genes encoding paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1, NEAT2 (MALAT1), and GAS5. Moreover, we noted a high expression of FUS, TAF15, and EWS components of the paraspeckles, proteins that belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and EWS proteins using immunofluorescence. The presence and the dynamics of genes that encode lncRNA and paraspeckle proteins may suggest that these may mediate functions in the cyclic recruitment and differentiation of human follicles and could participate in biological processes known to be associated with lncRNAs and paraspeckle proteins, such as gene expression control, scaffold formation and epigenetic control through human follicle development. This comprehensive transcriptome analysis of lncRNAs and genes encoding paraspeckle proteins expressed in human follicles could potentially provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
Affiliation(s)
- Emil H. Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Julie Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene B. Ipsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Palle Villesen
- Bioinformatic Research Centre, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol 2018; 430:4650-4665. [PMID: 29913160 DOI: 10.1016/j.jmb.2018.06.014] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
Abstract
RGG/RG motifs are RNA binding segments found in many proteins that can partition into membraneless organelles. They occur in the context of low-complexity disordered regions and often in multiple copies. Although short RGG/RG-containing regions can sometimes form high-affinity interactions with RNA structures, multiple RGG/RG repeats are generally required for high-affinity binding, suggestive of the dynamic, multivalent interactions that are thought to underlie phase separation in formation of cellular membraneless organelles. Arginine can interact with nucleotide bases via hydrogen bonding and π-stacking; thus, nucleotide conformers that provide access to the bases provide enhanced opportunities for RGG interactions. Methylation of RGG/RG regions, which is accomplished by protein arginine methyltransferase enzymes, occurs to different degrees in different cell types and may regulate the behavior of proteins containing these regions.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert M Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Cui W, Yoneda R, Ueda N, Kurokawa R. Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity. J Biol Chem 2018; 293:10937-10948. [PMID: 29784880 DOI: 10.1074/jbc.ra117.000598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike WT TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation.
Collapse
Affiliation(s)
- Wei Cui
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Ryoma Yoneda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Naomi Ueda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Riki Kurokawa
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| |
Collapse
|
25
|
Lee CY, Wang D, Wilhelm M, Zolg DP, Schmidt T, Schnatbaum K, Reimer U, Pontén F, Uhlén M, Hahne H, Kuster B. Mining the Human Tissue Proteome for Protein Citrullination. Mol Cell Proteomics 2018; 17:1378-1391. [PMID: 29610271 DOI: 10.1074/mcp.ra118.000696] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Citrullination is a posttranslational modification of arginine catalyzed by five peptidylarginine deiminases (PADs) in humans. The loss of a positive charge may cause structural or functional alterations, and while the modification has been linked to several diseases, including rheumatoid arthritis (RA) and cancer, its physiological or pathophysiological roles remain largely unclear. In part, this is owing to limitations in available methodology to robustly enrich, detect, and localize the modification. As a result, only a few citrullination sites have been identified on human proteins with high confidence. In this study, we mined data from mass-spectrometry-based deep proteomic profiling of 30 human tissues to identify citrullination sites on endogenous proteins. Database searching of ∼70 million tandem mass spectra yielded ∼13,000 candidate spectra, which were further triaged by spectrum quality metrics and the detection of the specific neutral loss of isocyanic acid from citrullinated peptides to reduce false positives. Because citrullination is easily confused with deamidation, we synthetized ∼2,200 citrullinated and 1,300 deamidated peptides to build a library of reference spectra. This led to the validation of 375 citrullination sites on 209 human proteins. Further analysis showed that >80% of the identified modifications sites were new, and for 56% of the proteins, citrullination was detected for the first time. Sequence motif analysis revealed a strong preference for Asp and Gly, residues around the citrullination site. Interestingly, while the modification was detected in 26 human tissues with the highest levels found in the brain and lung, citrullination levels did not correlate well with protein expression of the PAD enzymes. Even though the current work represents the largest survey of protein citrullination to date, the modification was mostly detected on high abundant proteins, arguing that the development of specific enrichment methods would be required in order to study the full extent of cellular protein citrullination.
Collapse
Affiliation(s)
- Chien-Yun Lee
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,§Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,¶Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
| | - Dongxue Wang
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Daniel P Zolg
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Tobias Schmidt
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Ulf Reimer
- ‖JPT Peptide Technologies GmbH, Berlin, Germany
| | - Fredrik Pontén
- **Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- ‡‡Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Bernhard Kuster
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; .,¶¶Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| |
Collapse
|
26
|
Kanli A, Kasap M, Yoneten KK, Akpinar G, Gulkac MD. Identification of differentially regulated deceitful proteins in SH-SY5Y cells engineered with Tet-regulated protein expression system. J Cell Biochem 2018; 119:6065-6071. [PMID: 29600520 DOI: 10.1002/jcb.26804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/23/2018] [Indexed: 01/28/2023]
Abstract
Tetracycline regulated protein expression in mammalian cells is a powerful tool to predict the physiological function, cellular localization, and stability of a protein. In addition, to predict metabolic networks affected by the expression of wild-type or mutant forms of proteins, researchers generally produce a single mammalian cell clone that can express the protein of interest under tetracycline control and study the changes occurring in overall proteome before and after expression of a protein of interest. One limitation of tetracycline regulated clonal cell creation, however, is that it sometimes creates clones with changed protein levels even without the expression of the protein of interest due to the nonspecific insertion of the gene encoding the protein of interest into the genome or disruption of a metabolic pathway due to insertional silencing or activation. The aim of this study was to demonstrate the limitation of tetracycline regulated gene expression by creating clonal cell lines expressing the wild-type or the mutant forms of Fat mass and obesity-associated protein. Comparative proteome analysis of the protein extracts by two-dimensional gel electrophoresis coupled to MALDI-TOF/TOF revealed the presence of eight proteins subjected to differential regulation even in the absence of induction. The identified proteins were 14-3-3 protein Epsilon, Vimentin, Heterogeneous nuclear ribonucleoprotein K, Tubulin beta-2C chain, Heat shock protein HSP 90-alpha, Heat shock protein HSP 90-beta, Alpha-enolase, TATA-binding protein-associated factor 2N. An ultimate care should be taken to prevent reporting of deceitful proteins generated from studies utilizing tetracycline regulated gene expression systems.
Collapse
Affiliation(s)
- Aylin Kanli
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Kubra K Yoneten
- Department of Biomedical Engineering, Technology Faculty, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Mehmet Dogan Gulkac
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
27
|
Li KKC, Chau BL, Lee KAW. Differential interaction of PRMT1 with RGG-boxes of the FET family proteins EWS and TAF15. Protein Sci 2017; 27:633-642. [PMID: 29193371 DOI: 10.1002/pro.3354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
The FET sub-family (FUS/TLS, EWS, TAF15) of RNA-binding proteins have remarkably similar overall structure but diverse biological and pathological roles. The molecular basis for FET protein specialization is largely unknown. Gly-Arg-Rich regions (RGG-boxes) within FET proteins are targets for methylation by Protein-Arginine-Methyl-Transferase-1 (PRMT1) and substrate capture is thought to involve electrostatic attraction between positively charged polyRGG substrates and negatively charged surface channels of PRMT1. Unlike FUS and EWS, a high proportion of TAF15 RGG-boxes are embedded within neutrally charged YGGDR(S/G)G repeats, suggesting that they might not bind well to PRMT1. This notion runs contrary however to a report that YGGDR(S/G)G repeats are methylated by PRMT1. Using peptide-based polyRGG substrates and a novel 2-hybrid binding assay, we find that the Asp residue in YGGDR(S/G)G repeats confers poor binding to PRMT1. Our results therefore indicate that YGGDR(S/G)G repeats may contribute to TAF15 specialization by enabling differential interactions with PRMT1 and reduced overall levels of TAF15 methylation compared with other FET proteins. By analogy with molecular recognition of other disordered polyvalent ligands by globular protein partners, we also propose a dynamic polyelectrostatic model for substrate capture by PRMT1.
Collapse
Affiliation(s)
- Kim K C Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Bess L Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Kevin A W Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| |
Collapse
|
28
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
29
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
30
|
Kapeli K, Martinez FJ, Yeo GW. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet 2017; 136:1193-1214. [PMID: 28762175 PMCID: PMC5602095 DOI: 10.1007/s00439-017-1830-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Mutations in genes that encode RNA-binding proteins (RBPs) have emerged as critical determinants of neurological diseases, especially motor neuron disorders such as amyotrophic lateral sclerosis (ALS). RBPs are involved in all aspects of RNA processing, controlling the life cycle of RNAs from synthesis to degradation. Hallmark features of RBPs in neuron dysfunction include misregulation of RNA processing, mislocalization of RBPs to the cytoplasm, and abnormal aggregation of RBPs. Much progress has been made in understanding how ALS-associated mutations in RBPs drive pathogenesis. Here, we focus on several key RBPs involved in ALS—TDP-43, HNRNP A2/B1, HNRNP A1, FUS, EWSR1, and TAF15—and review our current understanding of how mutations in these proteins cause disease.
Collapse
Affiliation(s)
- Katannya Kapeli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Fernando J Martinez
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Molecular Engineering Laboratory, A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
31
|
Sambataro F, Pennuto M. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Front Mol Neurosci 2017; 10:82. [PMID: 28408866 PMCID: PMC5374214 DOI: 10.3389/fnmol.2017.00082] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Maria Pennuto
- Centre for Integrative Biology, Dulbecco Telethon Institute, University of TrentoTrento, Italy
| |
Collapse
|
32
|
Prpar Mihevc S, Darovic S, Kovanda A, Bajc Česnik A, Župunski V, Rogelj B. Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain 2016; 140:13-26. [PMID: 27497493 DOI: 10.1093/brain/aww197] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are two ends of a phenotypic spectrum of disabling, relentlessly progressive and ultimately fatal diseases. A key characteristic of both conditions is the presence of TDP-43 (encoded by TARDBP) or FUS immunoreactive cytoplasmic inclusions in neuronal and glial cells. This cytoplasmic mislocalization of otherwise predominantly nuclear RNA binding proteins implies a perturbation of the nucleocytoplasmic shuttling as a possible event in the pathogenesis. Compromised nucleocytoplasmic shuttling has recently also been associated with a hexanucleotide repeat expansion mutation in C9orf72, which is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and leads to accumulation of cytoplasmic TDP-43 inclusions. Mutation in C9orf72 may disrupt nucleocytoplasmic shuttling on the level of C9ORF72 protein, the transcribed hexanucleotide repeat RNA, and/or dipeptide repeat proteins translated form the hexanucleotide repeat RNA. These defects of nucleocytoplasmic shuttling may therefore, constitute the common ground of the underlying disease mechanisms in different molecular subtypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Simona Darovic
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Anja Kovanda
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ana Bajc Česnik
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- 2 Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Boris Rogelj
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia .,2 Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia.,3 Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Abstract
Neurodegenerative disorders such as Alzheimer disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) affect different neuronal cells, and have a variable age of onset, clinical symptoms, and pathological features. Despite the great progress in understanding the etiology of these disorders, the underlying mechanisms remain largely unclear. Among the processes affected in neurodegenerative diseases, alteration in RNA metabolism is emerging as a crucial player. RNA-binding proteins (RBPs) are involved at all stages of RNA metabolism and display a broad range of functions, including modulation of mRNA transcription, splicing, editing, export, stability, translation and localization and miRNA biogenesis, thus enormously impacting regulation of gene expression. On the other hand, aberrant regulation of RBP expression or activity can contribute to disease onset and progression. Recent reports identified mutations causative of neurological disorders in the genes encoding a family of RBPs named FET (FUS/TLS, EWS and TAF15). This review summarizes recent works documenting the involvement of FET proteins in the pathology of ALS, FTLD, essential tremor (ET) and other neurodegenerative diseases. Moreover, clinical implications of recent advances in FET research are critically discussed.
Collapse
Affiliation(s)
- Francesca Svetoni
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Paola Frisone
- b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Maria Paola Paronetto
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
34
|
Preusse M, Marr C, Saunders S, Maticzka D, Lickert H, Backofen R, Theis F. SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins. RNA Biol 2016; 12:998-1009. [PMID: 26383775 PMCID: PMC4615630 DOI: 10.1080/15476286.2015.1068496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that compares enriched functional categories such as pathways and GO terms. We applied simiRa to the known functional cooperation between Pumilio family proteins and miR-221/222 in the regulation of tumor supressor gene p27 and show that the cooperation is reflected by similar enriched categories but not by target genes. SimiRa also predicts possible cooperation of microRNAs and RBPs beyond direct interaction on the target mRNA for the nuclear RBP TAF15. To further facilitate research into cooperation of microRNAs and RBPs, we made simiRa available as a web tool that displays the functional neighborhood and similarity of microRNAs and RBPs: http://vsicb-simira.helmholtz-muenchen.de.
Collapse
Affiliation(s)
- Martin Preusse
- a Helmholtz Zentrum München - German Research Center for Environmental Health; Institute of Computational Biology ; Neuherberg , Germany.,b Helmholtz Zentrum München - German Research Center for Environmental Health; Institute of Diabetes and Regeneration Research ; Neuherberg , Germany
| | - Carsten Marr
- a Helmholtz Zentrum München - German Research Center for Environmental Health; Institute of Computational Biology ; Neuherberg , Germany
| | - Sita Saunders
- c Bioinformatics; Department of Computer Science; University of Freiburg ; Freiburg , Germany
| | - Daniel Maticzka
- c Bioinformatics; Department of Computer Science; University of Freiburg ; Freiburg , Germany
| | - Heiko Lickert
- b Helmholtz Zentrum München - German Research Center for Environmental Health; Institute of Diabetes and Regeneration Research ; Neuherberg , Germany.,d Medical Faculty; Technische Universität München ; Munich , Germany
| | - Rolf Backofen
- c Bioinformatics; Department of Computer Science; University of Freiburg ; Freiburg , Germany.,e BIOSS Center for Biological Signaling Studies; Cluster of Excellence; University of Freiburg ; Freiburg , Germany
| | - Fabian Theis
- b Helmholtz Zentrum München - German Research Center for Environmental Health; Institute of Diabetes and Regeneration Research ; Neuherberg , Germany.,f Technische Universität München; Center for Mathematics; Chair of Mathematical Modeling of Biological Systems ; Garching , Germany
| |
Collapse
|
35
|
Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol 2016; 131:587-604. [PMID: 26895297 DOI: 10.1007/s00401-016-1544-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.
Collapse
|
36
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
37
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
38
|
Davidson YS, Robinson AC, Hu Q, Mishra M, Baborie A, Jaros E, Perry RH, Cairns NJ, Richardson A, Gerhard A, Neary D, Snowden JS, Bigio EH, Mann DMA. Nuclear carrier and RNA-binding proteins in frontotemporal lobar degeneration associated with fused in sarcoma (FUS) pathological changes. Neuropathol Appl Neurobiol 2015; 39:157-65. [PMID: 22497712 DOI: 10.1111/j.1365-2990.2012.01274.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS We aimed to investigate the role of the nuclear carrier and binding proteins, transportin 1 (TRN1) and transportin 2 (TRN2), TATA-binding protein-associated factor 15 (TAF15) and Ewing's sarcoma protein (EWS) in inclusion body formation in cases of frontotemporal lobar degeneration (FTLD) associated with fused in sarcoma protein (FTLD-FUS). METHODS Eight cases of FTLD-FUS (five cases of atypical FTLD-U, two of neuronal intermediate filament inclusion body disease and one of basophilic inclusion body disease) were immunostained for FUS, TRN1, TRN2, TAF15 and EWS. Ten cases of FTLD associated with TDP-43 inclusions served as reference cases. RESULTS The inclusion bodies in FTLD-FUS contained TRN1 and TAF15 and, to a lesser extent, EWS, but not TRN2. The patterns of immunostaining for TRN1 and TAF15 were very similar to that of FUS. None of these proteins was associated with tau or TDP-43 aggregations in FTLD. CONCLUSIONS Data suggest that FUS, TRN1 and TAF15 may participate in a functional pathway in an interdependent way, and imply that the function of TDP-43 may not necessarily be in parallel with, or complementary to, that of FUS, despite each protein sharing many similar structural elements.
Collapse
Affiliation(s)
- Y S Davidson
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - A C Robinson
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Q Hu
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - M Mishra
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - A Baborie
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - E Jaros
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - R H Perry
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - N J Cairns
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - A Richardson
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - A Gerhard
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - D Neary
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - J S Snowden
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - E H Bigio
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - D M A Mann
- Mental Health and Neurodegeneration Research Group, Faculty of Human and Medical Sciences, University of Manchester, ManchesterCerebral Function Unit, Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, SalfordDepartment of Neuropathology, Walton Centre for Neurology and Neurosurgery, LiverpoolNeuropathology/Cellular Pathology, Royal Victoria InfirmaryInstitute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UKNorthwestern CNADC Neuropathology Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Departments ofNeurologyPathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
39
|
Sylvestersen KB, Nielsen ML. Large‐Scale Identification of the Arginine Methylome by Mass Spectrometry. ACTA ACUST UNITED AC 2015; 82:24.7.1-24.7.17. [DOI: 10.1002/0471140864.ps2407s82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kathrine B. Sylvestersen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| | - Michael L. Nielsen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| |
Collapse
|
40
|
Basso M, Pennuto M. Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration. Exp Neurol 2015; 271:77-83. [DOI: 10.1016/j.expneurol.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/13/2022]
|
41
|
Baldwin RM, Bejide M, Trinkle-Mulcahy L, Côté J. Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics 2015; 15:2187-97. [DOI: 10.1002/pmic.201400209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 11/10/2022]
Affiliation(s)
- R. Mitchell Baldwin
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Faculty of Medicine; University of Ottawa; Ottawa ON Canada
| | - Margaret Bejide
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Faculty of Medicine; University of Ottawa; Ottawa ON Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Faculty of Medicine; University of Ottawa; Ottawa ON Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Faculty of Medicine; University of Ottawa; Ottawa ON Canada
| |
Collapse
|
42
|
Kaehler C, Guenther A, Uhlich A, Krobitsch S. PRMT1-mediated arginine methylation controls ATXN2L localization. Exp Cell Res 2015; 334:114-25. [PMID: 25748791 DOI: 10.1016/j.yexcr.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 01/02/2023]
Abstract
Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine-glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory.
Collapse
Affiliation(s)
- Christian Kaehler
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Anja Uhlich
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
| |
Collapse
|
43
|
Abstract
Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.
Collapse
Affiliation(s)
- Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309; , ,
| | | | | |
Collapse
|
44
|
Xie Y, Zhou R, Lian F, Liu Y, Chen L, Shi Z, Zhang N, Zheng M, Shen B, Jiang H, Liang Z, Luo C. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem 2014; 12:9665-73. [PMID: 25348815 DOI: 10.1039/c4ob01591f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein arginine methylation is a common post-translational modification which is crucial for a variety of biological processes. Dysregulation of protein arginine methyltransferases (PRMTs) activity has been implicated in cancer and other serious diseases. Thus, small molecule inhibitors against PRMT have great potential for therapeutic development. Herein, through the combination of virtual screening and bioassays, six small molecular compounds were identified as PRMT1 inhibitors. Amongst them, the binding affinity of compounds DCLX069 and DCLX078 with PRMT1 was further validated by T1ρ and saturation transfer difference (STD) NMR experiments. Most important of all, both compounds effectively blocked cell proliferation in breast cancer, liver cancer and acute myeloid leukemia cell lines. The binding mode analysis from molecular docking simulations theoretically indicated that both inhibitors occupied the SAM binding pocket to exert the inhibitory effect. Taken together, our compounds enriched the structural scaffolds as PRMT1 inhibitors and afforded clues for further optimization.
Collapse
Affiliation(s)
- Yiqian Xie
- Center for Systems Biology, Soochow University, Jiangsu 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Droppelmann CA, Campos-Melo D, Ishtiaq M, Volkening K, Strong MJ. RNA metabolism in ALS: When normal processes become pathological. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:321-36. [DOI: 10.3109/21678421.2014.881377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Marko M, Leichter M, Patrinou-Georgoula M, Guialis A. Selective interactions of hnRNP M isoforms with the TET proteins TAF15 and TLS/FUS. Mol Biol Rep 2014; 41:2687-95. [PMID: 24474660 DOI: 10.1007/s11033-014-3128-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 01/11/2014] [Indexed: 11/26/2022]
Abstract
The molecular composition of macromolecular assemblies engaged in transcription and splicing influences biogenesis of mRNA transcripts. Preference for one over the other interactive protein partner within those complexes is expected to change the gene expression pattern and to affect subsequent cellular events. We report here the novel and selective associations between RNA-binding proteins, namely the hnRNP M1-4 isoforms-involved in early spliceosome assembly and alternative splicing-and the transcription factors TAF15 and TLS/FUS. In immunoprecipitation studies on HeLa nuclear extracts, TAF15 co-immunoprecipitates preferably with the higher molecular weight hnRNP M3/4 isoforms, opposite to TLS/FUS that associates with the lower molecular weight hnRNP M1/2 species. We demonstrate that these associations can be mediated through direct protein-protein interactions via the amino-termini of the TET proteins, independently of RNA. Finally, we show partial co-localization of TAF15 and TLS/FUS with hnRNP M proteins in HeLa nuclei, supporting the biochemically obtained data. The participation of hnRNP M in an expanding network of protein-protein interactions suggests its important functioning in the coordination of transcriptional and post-transcriptional events.
Collapse
Affiliation(s)
- Marija Marko
- Medical Faculty, Institute for Biochemistry I, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany,
| | | | | | | |
Collapse
|
47
|
Wei H, Mundade R, Lange K, Lu T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 2013; 13:32-41. [PMID: 24296620 PMCID: PMC3925732 DOI: 10.4161/cc.27353] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate arginine residues on histones and other proteins. PRMTs play a crucial role in influencing various cellular functions, including cellular development and tumorigenesis. Arginine methylation by PRMTs is found on both nuclear and cytoplasmic proteins. Recently, there is increasing evidence regarding post-translational modifications of non-histone proteins by PRMTs, illustrating the previously unknown importance of PRMTs in the regulation of various cellular functions by post-translational modifications. In this review, we present the recent developments in the regulation of non-histone proteins by PRMTs.
Collapse
|
48
|
Zhang R, Li X, Liang Z, Zhu K, Lu J, Kong X, Ouyang S, Li L, Zheng YG, Luo C. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1. PLoS One 2013; 8:e72424. [PMID: 23977297 PMCID: PMC3748068 DOI: 10.1371/journal.pone.0072424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.
Collapse
Affiliation(s)
- Ruihan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Kongkai Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangqian Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sisheng Ouyang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yujun George Zheng
- Department of Chemistry, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia, United States of America
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Systems Biology, Soochow University, Jiangsu, China
| |
Collapse
|
49
|
Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration - lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70. [DOI: 10.1111/febs.12287] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Eva Bentmann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| | - Christian Haass
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Dorothee Dormann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| |
Collapse
|
50
|
Ravenscroft TA, Baker MC, Rutherford NJ, Neumann M, Mackenzie IR, Josephs KA, Boeve BF, Petersen R, Halliday GM, Kril J, van Swieten JC, Seeley WW, Dickson DW, Rademakers R. Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiol Aging 2013; 34:2235.e11-3. [PMID: 23635657 DOI: 10.1016/j.neurobiolaging.2013.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/17/2022]
Abstract
The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain that is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine whether the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3, and PRMT8) and performed complete sequencing analysis and real-time polymerase chain reaction mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.
Collapse
|