1
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
2
|
Yamada K, Yoshida K. Multiple subcellular localizations and functions of protein kinase Cδ in liver cancer. World J Gastroenterol 2022; 28:188-198. [PMID: 35110944 PMCID: PMC8776529 DOI: 10.3748/wjg.v28.i2.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications have been reported in various biological and cancerous processes, including cell proliferation, cell death, tumor suppression, and tumor progression. In liver cancer cells, accumulating reports show the bi-functional regulation of PKCδ in cell death and survival. PKCδ function is defined by various factors, such as phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ has multiple intracellular distribution patterns, ranging from the cytosol to the nucleus. We recently found a unique extracellular localization of PKCδ in liver cancer and its growth factor-like function in liver cancer cells. In this review, we first discuss the structural features of PKCδ and then focus on the functional diversity of PKCδ based on its subcellular localization, such as the nucleus, cell surface, and extracellular space. These findings improve our knowledge of PKCδ involvement in the progression of liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
3
|
Arginine Methylation of hnRNPK Inhibits the DDX3-hnRNPK Interaction to Play an Anti-Apoptosis Role in Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189764. [PMID: 34575922 PMCID: PMC8469703 DOI: 10.3390/ijms22189764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.
Collapse
|
4
|
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 2020; 9:180239. [PMID: 30836866 PMCID: PMC6451366 DOI: 10.1098/rsob.180239] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Wei Wu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Qiu Han
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Cencen Li
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| |
Collapse
|
5
|
Stevens M, Oltean S. Modulation of the Apoptosis Gene Bcl-x Function Through Alternative Splicing. Front Genet 2019; 10:804. [PMID: 31552099 PMCID: PMC6743414 DOI: 10.3389/fgene.2019.00804] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Apoptosis plays a vital role in cell homeostasis during development and disease. Bcl-x, a member of the Bcl-2 family of proteins, is a mitochondrial transmembrane protein that functions to regulate the intrinsic apoptosis pathway. An alternative splicing (AS) event in exon 2 of Bcl-x results in two isoforms of Bcl-x with antagonistic effects on cell survival: Bcl-xL (long isoform), which is anti-apoptotic, and Bcl-xS (short isoform), which is pro-apoptotic. Bcl-xL is the most abundant Bcl-x protein and functions to inhibit apoptosis by a number of different mechanisms including inhibition of Bax. In contrast, Bcl-xS can directly bind to and inhibit the anti-apoptotic Bcl-xL and Bcl-2 proteins, resulting in the release of the pro-apoptotic Bak. There are multiple splice factors and signaling pathways that influence the Bcl-xL/Bcl-xS splicing ratio, including serine/arginine-rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), transcription factors, and cytokines. Dysregulation of the AS of Bcl-x has been implicated in cancer and diabetes. In cancer, the upregulation of Bcl-xL expression in tumor cells can result in resistance to chemotherapeutic agents. On the other hand, dysregulation of Bcl-x AS to promote Bcl-xS expression has been shown to be detrimental to pancreatic β-cells in diabetes, resulting in β-cell apoptosis. Therefore, manipulation of the splice factor, transcription factor, and signaling pathways that modulate this splicing event is fast emerging as a therapeutic avenue in the treatment of cancer and diabetes.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Tyson-Capper A, Gautrey H. Regulation of Mcl-1 alternative splicing by hnRNP F, H1 and K in breast cancer cells. RNA Biol 2018; 15:1448-1457. [PMID: 30468106 PMCID: PMC6333436 DOI: 10.1080/15476286.2018.1551692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 01/27/2023] Open
Abstract
Myeloid cell leukemia-1 (Mcl -1) is one of the most frequently amplified genes in cancer, and its overexpression is associated with poor prognosis and drug resistance. As a member of the Bcl-2 family it is involved in the control of the mitochondrial (intrinsic) cell death pathway. Alternative splicing of the (Mcl-1) gene results in the expression of two functionally distinct proteins, the anti-apoptotic Mcl-1L (exon 2 included) and the pro-apoptotic Mcl-1S (exon 2 skipped). Our data shows that transfecting siRNAs that target hnRNP K and the hnRNP F/H family result in a switch in splicing towards the pro-apoptotic Mcl-1S. Specific binding sites for these and other Mcl-1 splicing factors were investigated and identified by RNA immunoprecipitation and through construction of a Mcl-1 minigene construct. Moreover, this study shows up to a 30 fold change in the levels of Mcl-1S can be achieved through double and triple knockdowns of the most significant RNA binding proteins involved in Mcl-1 splicing, as well as activation of the mitochondrial cell death pathway. Targeting the splicing process of Mcl-1 along with other apoptotic regulators provides an exciting new therapeutic target in cancer cells, and may provide a way to overcome therapy resistance.
Collapse
Affiliation(s)
- Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
8
|
Zhang Y, Zhou X, Xu L, Wang L, Liu J, Ye J, Qiu P, Liu Q. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro. Can J Physiol Pharmacol 2017; 95:463-473. [PMID: 28177695 DOI: 10.1139/cjpp-2015-0527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.
Collapse
Affiliation(s)
- Yajie Zhang
- a Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoming Zhou
- a Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lipeng Xu
- b Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Lulu Wang
- c Center of Community Health Services, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Jinling Liu
- d Department of Digestive System Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Jing Ye
- d Department of Digestive System Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Pengxin Qiu
- e Department of Pharmacology, Zhong-Shan Medical College, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qinghua Liu
- f Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| |
Collapse
|
9
|
Wiesmann N, Strozynski J, Beck C, Zimmermann N, Mendler S, Gieringer R, Schmidtmann I, Brieger J. Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells. Carcinogenesis 2017; 38:321-328. [DOI: 10.1093/carcin/bgx006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/15/2017] [Indexed: 11/12/2022] Open
|
10
|
Park H, Ha J, Koo JY, Park J, Park SB. Label-free target identification using in-gel fluorescence difference via thermal stability shift. Chem Sci 2016; 8:1127-1133. [PMID: 28451252 PMCID: PMC5369521 DOI: 10.1039/c6sc03238a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022] Open
Abstract
A label-free method for proteome-wide target identification was developed using in-gel fluorescence difference caused by thermal stability shift.
Target engagement is a prerequisite for the therapeutic effects of bioactive small molecules, and unbiased identification of their target proteins can facilitate drug discovery and chemical biology research. Structural modifications of bioactive natural products for target identification exhibit potential limitations such as synthetic difficulties, limited supplies from natural sources, and loss of original efficacy. Herein, we developed a label-free method for proteome-wide target identification using in-gel fluorescence difference caused by thermal stability shift, namely TS-FITGE. Quantitative intra-gel image analysis of each protein spot revealed target proteins with shifted thermal stability upon drug engagement, and plotting of melting curves by inter-gel analysis confirmed the positive targets. We demonstrated the robustness and applicability of the TS-FITGE method by identifying target proteins, including membrane-anchored proteins, of complex bioactive compounds. Furthermore, we identified and functionally validated nucleophosmin as a novel target protein of hordenine, a natural product upregulator of in vitro translation.
Collapse
Affiliation(s)
- Hankum Park
- Department of Biophysics and Chemical Biology , Seoul National University , Seoul - 08826 , Korea .
| | - Jaeyoung Ha
- Department of Biophysics and Chemical Biology , Seoul National University , Seoul - 08826 , Korea .
| | - Ja Young Koo
- CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , Seoul - 08826 , Korea
| | - Jongmin Park
- CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , Seoul - 08826 , Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology , Seoul National University , Seoul - 08826 , Korea . .,CRI Center for Chemical Proteomics , Department of Chemistry , Seoul National University , Seoul - 08826 , Korea
| |
Collapse
|
11
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Eder S, Lamkowski A, Priller M, Port M, Steinestel K. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells. Oncotarget 2016; 6:17178-91. [PMID: 26136337 PMCID: PMC4627300 DOI: 10.18632/oncotarget.3935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an important cofactor in the p53-mediated DNA damage response pathway upon ionizing radiation (IR) and exerts anti-apoptotic effects also independent of p53 pathway activation. Furthermore, hnRNP K is overexpressed in various neoplasms including malignant melanoma (MM). Here, we investigate the role of hnRNP K in the radioresistance of MM cells. Methods and results Our results show cytoplasmic expression of hnRNP K in human MM surgical specimens, but not in benign nevi, and a quick dose- and time-dependent upregulation in response to IR accompanied by cytoplasmic redistribution of the protein in the IPC-298 cellular tumor model carrying an activating NRAS mutation (p.Q61L). SiRNA-based knockdown of hnRNP K induced a delayed decline in γH2AX/53BP1-positive DNA repair foci upon IR. Pharmacological interference with MAPK signaling abrogated ERK phosphorylation, diminished cellular hnRNP K levels, impaired γH2AX/53BP1-foci repair and proliferative capability and increased apoptosis comparable to the observed hnRNP K knockdown phenotype in IPC-298 cells. Conclusion Our results indicate that pharmacological interference with MAPK signaling increases vulnerability of NRAS-mutant malignant melanoma cells to ionizing radiation along with downregulation of endogenous hnRNP K and point towards a possible use for combined MEK inhibition and localized radiation therapy of MM in the NRAS-mutant setting where BRAF inhibitors offer no clinical benefit.
Collapse
Affiliation(s)
- Stefan Eder
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | | | - Markus Priller
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Konrad Steinestel
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany.,Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
13
|
Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M, Multani A, Nazha A, Manshouri T, Parker-Thornburg J, Rapado I, Quintas-Cardama A, Kornblau SM, Martinez-Lopez J, Post SM. hnRNP K Is a Haploinsufficient Tumor Suppressor that Regulates Proliferation and Differentiation Programs in Hematologic Malignancies. Cancer Cell 2015; 28:486-499. [PMID: 26412324 PMCID: PMC4652598 DOI: 10.1016/j.ccell.2015.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/14/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
hnRNP K regulates cellular programs, and changes in its expression and mutational status have been implicated in neoplastic malignancies. To directly examine its role in tumorigenesis, we generated a mouse model harboring an Hnrnpk knockout allele (Hnrnpk(+/-)). Hnrnpk haploinsufficiency resulted in reduced survival, increased tumor formation, genomic instability, and the development of transplantable hematopoietic neoplasms with myeloproliferation. Reduced hnRNP K expression attenuated p21 activation, downregulated C/EBP levels, and activated STAT3 signaling. Additionally, analysis of samples from primary acute myeloid leukemia patients harboring a partial deletion of chromosome 9 revealed a significant decrease in HNRNPK expression. Together, these data implicate hnRNP K in the development of hematological disorders and suggest hnRNP K acts as a tumor suppressor.
Collapse
Affiliation(s)
- Miguel Gallardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma & Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Bueso-Ramos
- Department of Histopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura R Pageon
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark McArthur
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha Multani
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aziz Nazha
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Inmaculada Rapado
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Sean M Post
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Abstract
Topoisomerase IIα is a nuclear enzyme that alters DNA topology. It is a well-known anticancer target and related to cell differentiation status. All-trans retinoic acid (ATRA), an important active metabolite of vitamin A, is a promising anticancer agent in numerous malignancies. However, there are little data on the effect of retinoids on topoisomerase IIα regulation. In the present study, we investigated the relationship between ATRA and topoisomerase IIα, and the potential mechanisms of ATRA on topoisomerase IIα regulation. In several human carcinoma cell lines, ATRA was shown to suppress topoisomerase IIα protein, but not mRNA expression. ATRA induced the degradation of topoisomerase IIα through the proteasome pathway, but not the lysosome pathway. Ubiquitination was involved in this degradation. Western blot and immunocytochemistry proved that ATRA-induced topoisomerase IIα repression occurred only in the cell nuclei. ATRA not only influenced the cycle procession but also reduced the expression of cyclin D1. Cyclin D1, which is involved in cell differentiation, was regulated by topoisomerase IIα. Similar to cyclin D1, knockdown of topoisomerase IIα resulted in the increased differentiation of the cells, which was in contrast to the overexpression of topoisomerase IIα in the cells. Taken together, these data suggested that ATRA could target topoisomerase IIα and exert potential beneficial effects on cell differentiation.
Collapse
|
15
|
Tobío A, Alfonso A, Botana LM. Cross-talks between c-Kit and PKC isoforms in HMC-1560 and HMC-1560,816 cells. Different role of PKCδ in each cellular line. Cell Immunol 2015; 293:104-12. [DOI: 10.1016/j.cellimm.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
|
16
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
17
|
hnRNP K in PU.1-containing complexes recruited at the CD11b promoter: a distinct role in modulating granulocytic and monocytic differentiation of AML-derived cells. Biochem J 2014; 463:115-22. [PMID: 25005557 DOI: 10.1042/bj20140358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PU.1 is essential for the differentiation of haemopoietic precursors and is strongly implicated in leukaemogenesis, yet the protein interactions that regulate its activity in different myeloid lineages are still largely unknown. In the present study, by combining fluorescent EMSA (electrophoretic mobility-shift assay) with MS, we reveal the presence of hnRNP K (heterogeneous nuclear ribonucleoprotein K) in molecular complexes that PU.1 forms on the CD11b promoter during the agonist-induced maturation of AML (acute myeloid leukaemia)-derived cells along both the granulocytic and the monocytic lineages. Although hnRNP K and PU.1 act synergistically during granulocytic differentiation, hnRNP K seems to have a negative effect on PU.1 activity during monocytic maturation. Since hnRNP K acts as a docking platform, integrating signal transduction pathways to nucleic acid-directed processes, it may assist PU.1 in activating or repressing transcription by recruiting lineage-specific components of the transcription machinery. It is therefore possible that hnRNP K plays a key role in the mechanisms underlying the specific targeting of protein-protein interactions identified as mediators of transcriptional activation or repression and may be responsible for the block of haemopoietic differentiation.
Collapse
|
18
|
Arsenic modulates posttranslational S-nitrosylation and translational proteome in keratinocytes. ScientificWorldJournal 2014; 2014:360153. [PMID: 25110733 PMCID: PMC4119667 DOI: 10.1155/2014/360153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a class I human carcinogen (such as inducing skin cancer) by its prominent chemical interaction with protein thio (-SH) group. Therefore, arsenic may compromise protein S-nitrosylation by competing the -SH binding activity. In the present study, we aimed to understand the influence of arsenic on protein S-nitrosylation and the following proteomic changes. By using primary human skin keratinocyte, we found that arsenic treatment decreased the level of protein S-nitrosylation. This was coincident to the decent expressions of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS). By using LC-MS/MS, around twenty S-nitrosoproteins were detected in the biotin-switched eluent. With the interest that arsenic not only regulates posttranslational S-nitrosylation but also separately affects protein's translation expression, we performed two-dimensional gel electrophoresis and found that 8 proteins were significantly decreased during arsenic treatment. Whether these decreased proteins are the consequence of protein S-nitrosylation will be further investigated. Taken together, these results provide a finding that arsenic can deplete the binding activity of NO and therefore reduce protein S-nitrosylation.
Collapse
|
19
|
Yang JH, Chiou YY, Fu SL, Shih IY, Weng TH, Lin WJ, Lin CH. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation. Nucleic Acids Res 2014; 42:9908-24. [PMID: 25104022 PMCID: PMC4150800 DOI: 10.1093/nar/gku705] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Yun Shih
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsai-Hsuan Weng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan Proteomics Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
20
|
Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, Moreland LW, Tchounwou PB, Isokpehi RD. Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:166-178. [PMID: 25419056 PMCID: PMC4240501 DOI: 10.4172/jpb.1000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types. METHOD The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family. RESULT The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance. CONCLUSION A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.
Collapse
Affiliation(s)
- Udensi K Udensi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Alan J Tackett
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Nathan L Avaritt
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Deepanwita Sengupta
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Linley W Moreland
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Raphael D Isokpehi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
- Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach FL 32114, USA
| |
Collapse
|
21
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
22
|
Xia L, Wang TD, Shen SM, Zhao M, Sun H, He Y, Xie L, Wu ZX, Han SF, Wang LS, Chen GQ. Phosphoproteomics study on the activated PKCδ-induced cell death. J Proteome Res 2013; 12:4280-301. [PMID: 23879269 DOI: 10.1021/pr400089v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proteolytic activation of protein kinase Cδ (PKCδ) generates a catalytic fragment called PKCδ-CF, which induces cell death. However, the mechanisms underlying PKCδ-CF-mediated cell death are largely unknown. On the basis of an engineering leukemic cell line with inducible expression of PKCδ-CF, here we employ SILAC-based quantitative phosphoproteomics to systematically and dynamically investigate the overall phosphorylation events during cell death triggered by PKCδ-CF expression. Totally, 3000 phosphorylation sites were analyzed. Considering the fact that early responses to PKCδ-CF expression initiate cell death, we sought to identify pathways possibly related directly with PKCδ by further analyzing the data set of phosphorylation events that occur in the initiation stage of cell death. Interacting analysis of this data set indicates that PKCδ-CF triggers complicated networks to initiate cell death, and motif analysis and biochemistry verification reveal that several kinases in the downstream of PKCδ conduct these networks. By analysis of the specific sequence motif of kinase-substrate, we also find 59 candidate substrates of PKCδ from the up-regulated phosphopeptides, of which 12 were randomly selected for in vitro kinase assay and 9 were consequently verified as substrates of PKCδ. To our greatest understanding, this study provides the most systematic analysis of phosphorylation events initiated by the cleaved activated PKCδ, which would vastly extend the profound understanding of PKCδ-directed signal pathways in cell death. The MS data have been deposited to the ProteomeXchange with identifier PXD000225.
Collapse
Affiliation(s)
- Li Xia
- The Department of Pathophysiology and Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM) , Shanghai, P.R. China , 200025
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dinh PX, Das A, Franco R, Pattnaik AK. Heterogeneous nuclear ribonucleoprotein K supports vesicular stomatitis virus replication by regulating cell survival and cellular gene expression. J Virol 2013; 87:10059-69. [PMID: 23843646 PMCID: PMC3754001 DOI: 10.1128/jvi.01257-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 11/20/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.
Collapse
Affiliation(s)
- Phat X. Dinh
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Anshuman Das
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Xiao Z, Ko HL, Goh EH, Wang B, Ren EC. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors. Carcinogenesis 2013; 34:1458-67. [DOI: 10.1093/carcin/bgt085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp (Warsz) 2012; 60:361-72. [PMID: 22918451 DOI: 10.1007/s00005-012-0188-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/06/2012] [Indexed: 12/21/2022]
Abstract
Protein kinase C-delta (PKCδ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. In the past decade, the critical role of PKCδ in the regulation of both intrinsic and extrinsic apoptosis pathways has been widely explored. In most cases, over-expression or activation of PKCδ results in the induction of apoptosis. The phosphorylations and multiple cell organelle translocations of PKCδ initiate apoptosis by targeting multiple downstream effectors. During apoptosis, PKCδ is proteolytically cleaved by caspase-3 to generate a constitutively activated catalytic fragment, which amplifies apoptosis cascades in nucleus and mitochondria. However, PKCδ also exerts its anti-apoptotic and pro-survival roles in some cases. Therefore, the complicated role of PKCδ in apoptosis appears to be stimulus and cell type dependent. This review is mainly focused on how PKCδ gets activated in diverse ways in response to apoptotic signals and how PKCδ targets different downstream regulators to sponsor or restrain apoptosis induction.
Collapse
|
26
|
van Domselaar R, Quadir R, van der Made AM, Broekhuizen R, Bovenschen N. All human granzymes target hnRNP K that is essential for tumor cell viability. J Biol Chem 2012; 287:22854-64. [PMID: 22582387 PMCID: PMC3391115 DOI: 10.1074/jbc.m112.365692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/11/2012] [Indexed: 11/06/2022] Open
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism to eliminate virus-infected cells and tumor cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes. All human granzymes display distinct substrate specificities and induce cell death by cleaving critical intracellular death substrates. In the present study, we show that all human granzymes directly cleaved the DNA/RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K), designating hnRNP K as the first known pan-granzyme substrate. Cleavage of hnRNP K was more efficient in the presence of RNA and occurred in two apparent proteolysis-sensitive amino acid regions, thereby dissecting the functional DNA/RNA-binding hnRNP K domains. HnRNP K was cleaved under physiological conditions when purified granzymes were delivered into living tumor cells and during lymphokine-activated killer cell-mediated attack. HnRNP K is essential for tumor cell viability, since knockdown of hnRNP K resulted in spontaneous tumor cell apoptosis with caspase activation and reactive oxygen species production. This apoptosis was more pronounced at low tumor cell density where hnRNP K knockdown also triggered a caspase-independent apoptotic pathway. This suggests that hnRNP K promotes tumor cell survival in the absence of cell-cell contact. Silencing of hnRNP K protein expression rendered tumor cells more susceptible to cellular cytotoxicity. We conclude that hnRNP K is indispensable for tumor cell viability and our data suggest that targeting of hnRNP K by granzymes contributes to or reinforces the cell death mechanisms by which cytotoxic lymphocytes eliminate tumor cells.
Collapse
Affiliation(s)
- Robert van Domselaar
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Razi Quadir
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Astrid M. van der Made
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Roel Broekhuizen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Niels Bovenschen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
27
|
Wang LS, Xia L, Shen SM, Zheng Y, Yu Y, Chen GQ. Dissecting cell death with proteomic scalpels. Proteomics 2012; 12:597-606. [DOI: 10.1002/pmic.201100353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
|
28
|
Bertagnolo V, Grassilli S, Petretto A, Lambertini E, Astati L, Bruschi M, Brugnoli F, Nika E, Candiano G, Piva R, Capitani S. Nuclear proteome analysis reveals a role of Vav1 in modulating RNA processing during maturation of tumoral promyelocytes. J Proteomics 2011; 75:398-409. [PMID: 21856460 DOI: 10.1016/j.jprot.2011.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/28/2011] [Accepted: 08/06/2011] [Indexed: 01/02/2023]
Abstract
Vav1 is a key molecule in the ATRA-induced acquisition of a mature phenotype by tumoral myeloid precursors. Since ATRA acts throughout events that require extensive changes of nuclear architecture and activity and considering that Vav1 accumulates inside the nuclear compartment of differentiating APL-derived cells, the possible role of this protein in modulating the nuclear proteome was investigated. Membrane-depleted nuclei purified from NB4 cells induced to differentiate with ATRA in the presence of forcedly down-modulated Vav1 were subjected to 2D-DIGE followed by mass spectra analysis. The obtained data demonstrated that, in NB4 cells treated with ATRA, Vav1 is involved in determining the nuclear amount of proteins involved in molecular complexes with DNA and may participate to RNA processing by carrying in the nucleus molecules involved in modulating mRNA production and stability, like hnRNPs and SR proteins. Our results provide the first evidence that, at least in maturation of tumoral myeloid precursors, Vav1 is part of interconnected networks of functionally related proteins ended to regulate different aspects of gene expression. Since defects in mRNA processing are common in tumor development, our data suggest that Vav1 is a potential target molecule for developing new anti-cancer strategies.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maris M, Waelkens E, Cnop M, D'Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C. Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 2011; 10:3372-85. [PMID: 21707097 DOI: 10.1021/pr101290n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang L, Chen G. Current advances in the application of proteomics in apoptosis research. SCIENCE CHINA-LIFE SCIENCES 2011; 54:209-19. [DOI: 10.1007/s11427-010-4123-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/26/2010] [Indexed: 01/18/2023]
|
31
|
White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, Wakamiya M, Edwards SF, Raskin S, Teive HAG, Zoghbi HY, Sarkar PS, Ashizawa T. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 2010; 6:e1000984. [PMID: 20548952 PMCID: PMC2883596 DOI: 10.1371/journal.pgen.1000984] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/12/2010] [Indexed: 01/20/2023] Open
Abstract
We have identified a large expansion of an ATTCT repeat within intron 9 of ATXN10 on chromosome 22q13.31 as the genetic mutation of spinocerebellar ataxia type 10 (SCA10). Our subsequent studies indicated that neither a gain nor a loss of function of ataxin 10 is likely the major pathogenic mechanism of SCA10. Here, using SCA10 cells, and transfected cells and transgenic mouse brain expressing expanded intronic AUUCU repeats as disease models, we show evidence for a key pathogenic molecular mechanism of SCA10. First, we studied the fate of the mutant repeat RNA by in situ hybridization. A Cy3-(AGAAU)10 riboprobe detected expanded AUUCU repeats aggregated in foci in SCA10 cells. Pull-down and co-immunoprecipitation data suggested that expanded AUUCU repeats within the spliced intronic sequence strongly bind to hnRNP K. Co-localization of hnRNP K and the AUUCU repeat aggregates in the transgenic mouse brain and transfected cells confirmed this interaction. To examine the impact of this interaction on hnRNP K function, we performed RT–PCR analysis of a splicing-regulatory target of hnRNP K, and found diminished hnRNP K activity in SCA10 cells. Cells expressing expanded AUUCU repeats underwent apoptosis, which accompanied massive translocation of PKCδ to mitochondria and activation of caspase 3. Importantly, siRNA–mediated hnRNP K deficiency also caused the same apoptotic event in otherwise normal cells, and over-expression of hnRNP K rescued cells expressing expanded AUUCU repeats from apoptosis, suggesting that the loss of function of hnRNP K plays a key role in cell death of SCA10. These results suggest that the expanded AUUCU–repeat in the intronic RNA undergoes normal transcription and splicing, but causes apoptosis via an activation cascade involving a loss of hnRNP K activities, massive translocation of PKCδ to mitochondria, and caspase 3 activation. In an earlier study, we showed that the mutation of spinocerebellar ataxia 10 (SCA10) is an enormous expansion of a gene segment, which contains a tandemly repeated 5-base (ATTCT) unit. Since SCA10 is the only known human disease that is proven to be caused by 5-base repeat expansion, it is important to learn how this novel class of mutation causes the disease. We found that the mutation produces an expanded RNA repeat, which aberrantly accumulates in SCA10 cells and interacts with a major RNA–binding protein. When we expressed expanded RNA repeats or decreased the RNA–binding protein level in cultured cells, either of these manipulations produced a specific type of cell death that is associated with a massive transfer of a key enzyme called protein kinase C delta to mitochondria. We also showed that either blocking the expanded AUUCU repeat or replenishing hnRNP K rescues cells from the cell death induced by the SCA10 mutation. Together, we conclude that the mutant RNA inactivates hnRNP K and kills cells by triggering the specific cell-death mechanism. Our data provide important clues for therapeutic intervention in SCA10.
Collapse
Affiliation(s)
- Misti C. White
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Weidong Xu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Santi M. Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jung G. Lim
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sharon F. Edwards
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Salmo Raskin
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Huda Y. Zoghbi
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|