1
|
Gu J, Wang M, Wang X, Li J, Liu H, Lin Z, Yang X, Zhang X, Liu H. Exosomal miR-483-5p in Bone Marrow Mesenchymal Stem Cells Promotes Malignant Progression of Multiple Myeloma by Targeting TIMP2. Front Cell Dev Biol 2022; 10:862524. [PMID: 35300408 PMCID: PMC8921260 DOI: 10.3389/fcell.2022.862524] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC) is one crucial component of the multiple myeloma (MM) microenvironment and supports the malignant progression of MM. Whether BMSCs act on MM cells via exosomes has not been well characterized. Herein, we used microarrays to screen out differentially expressed miRNAs in BMSCs from patients with MM (MM-MSCs) or benign diseases (BD-MSCs). We found that miR-483-5p was highly expressed in MM-MSCs, which may be transported through exosomes from MM-MSCs to MM cells to increase miR-483-5p expression in them. We then investigated the role and mechanism of miR-483-5p in the aggressive progression of MM in vitro. We verified that miR-483-5p promoted MM cell proliferation and reduced apoptosis. Then we predicted and validated that TIMP2, a tumor suppressor gene, is the downstream target of miR-483-5p in MM. In summary, our study indicated that MM-MSCs promote MM malignant progression via the release of exosomes and regulation of miR-483-5p/TIMP2 axis, suggesting an essential role of BMSCs derived exosomal miRNA in MM and a potential marker for MM diagnosis and therapy.
Collapse
Affiliation(s)
- Jianmei Gu
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Clinical Laboratory Medicine, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiao Li
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zenghua Lin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hong Liu
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Mondala PK, Vora AA, Zhou T, Lazzari E, Ladel L, Luo X, Kim Y, Costello C, MacLeod AR, Jamieson CHM, Crews LA. Selective antisense oligonucleotide inhibition of human IRF4 prevents malignant myeloma regeneration via cell cycle disruption. Cell Stem Cell 2021; 28:623-636.e9. [PMID: 33476575 DOI: 10.1016/j.stem.2020.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
In multiple myeloma, inflammatory and anti-viral pathways promote disease progression and cancer stem cell generation. Using diverse pre-clinical models, we investigated the role of interferon regulatory factor 4 (IRF4) in myeloma progenitor regeneration. In a patient-derived xenograft model that recapitulates IRF4 pathway activation in human myeloma, we test the effects of IRF4 antisense oligonucleotides (ASOs) and identify a lead agent for clinical development (ION251). IRF4 overexpression expands myeloma progenitors, while IRF4 ASOs impair myeloma cell survival and reduce IRF4 and c-MYC expression. IRF4 ASO monotherapy impedes tumor formation and myeloma dissemination in xenograft models, improving animal survival. Moreover, IRF4 ASOs eradicate myeloma progenitors and malignant plasma cells while sparing normal human hematopoietic stem cell development. Mechanistically, IRF4 inhibition disrupts cell cycle progression, downregulates stem cell and cell adhesion transcript expression, and promotes sensitivity to myeloma drugs. These findings will enable rapid clinical development of selective IRF4 inhibitors to prevent myeloma progenitor-driven relapse.
Collapse
Affiliation(s)
- Phoebe K Mondala
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashni A Vora
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Elisa Lazzari
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luisa Ladel
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | - Caitlin Costello
- Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA.
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Volpin V, Michels T, Sorrentino A, Menevse AN, Knoll G, Ditz M, Milenkovic VM, Chen CY, Rathinasamy A, Griewank K, Boutros M, Haferkamp S, Berneburg M, Wetzel CH, Seckinger A, Hose D, Goldschmidt H, Ehrenschwender M, Witzens-Harig M, Szoor A, Vereb G, Khandelwal N, Beckhove P. CAMK1D Triggers Immune Resistance of Human Tumor Cells Refractory to Anti-PD-L1 Treatment. Cancer Immunol Res 2020; 8:1163-1179. [PMID: 32665263 DOI: 10.1158/2326-6066.cir-19-0608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
The success of cancer immunotherapy is limited by resistance to immune checkpoint blockade. We therefore conducted a genetic screen to identify genes that mediated resistance against CTLs in anti-PD-L1 treatment-refractory human tumors. Using PD-L1-positive multiple myeloma cells cocultured with tumor-reactive bone marrow-infiltrating CTL as a model, we identified calcium/calmodulin-dependent protein kinase 1D (CAMK1D) as a key modulator of tumor-intrinsic immune resistance. CAMK1D was coexpressed with PD-L1 in anti-PD-L1/PD-1 treatment-refractory cancer types and correlated with poor prognosis in these tumors. CAMK1D was activated by CTL through Fas-receptor stimulation, which led to CAMK1D binding to and phosphorylating caspase-3, -6, and -7, inhibiting their activation and function. Consistently, CAMK1D mediated immune resistance of murine colorectal cancer cells in vivo The pharmacologic inhibition of CAMK1D, on the other hand, restored the sensitivity toward Fas-ligand treatment in multiple myeloma and uveal melanoma cells in vitro Thus, rapid inhibition of the terminal apoptotic cascade by CAMK1D expressed in anti-PD-L1-refractory tumors via T-cell recognition may have contributed to tumor immune resistance.
Collapse
Affiliation(s)
- Valentina Volpin
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany.,German Cancer Research Center (DKFZ), Translational Immunology, Heidelberg, Germany
| | - Tillmann Michels
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany.,German Cancer Research Center (DKFZ), Translational Immunology, Heidelberg, Germany.,iOmx Therapeutics AG, Martinsried/Munich, Germany
| | - Antonio Sorrentino
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany.,German Cancer Research Center (DKFZ), Translational Immunology, Heidelberg, Germany
| | - Ayse N Menevse
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Madlen Ditz
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Chih-Yeh Chen
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany
| | - Anchana Rathinasamy
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium, Essen, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signalling and Functional Genomics, Heidelberg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Dirk Hose
- Department of Hematology and Immunology, Myeloma Center Brussels, Jette, Belgium
| | - Hartmut Goldschmidt
- Department of Internal Medicine V and National Center of Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Mathias Witzens-Harig
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arpad Szoor
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany. .,German Cancer Research Center (DKFZ), Translational Immunology, Heidelberg, Germany.,Department of Hematology, Oncology, Internal Medicine 3, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Di Bacco A, Bahlis NJ, Munshi NC, Avet‐Loiseau H, Masszi T, Viterbo L, Pour L, Ganly P, Cavo M, Langer C, Kumar SK, Rajkumar SV, Keats JJ, Berg D, Lin J, Li B, Badola S, Shen L, Zhang J, Esseltine D, Luptakova K, van de Velde H, Richardson PG, Moreau P. c-MYC expression and maturity phenotypes are associated with outcome benefit from addition of ixazomib to lenalidomide-dexamethasone in myeloma. Eur J Haematol 2020; 105:35-46. [PMID: 32145111 PMCID: PMC7317705 DOI: 10.1111/ejh.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES In the TOURMALINE-MM1 phase 3 trial in relapsed/refractory multiple myeloma, ixazomib-lenalidomide-dexamethasone (IRd) showed different magnitudes of progression-free survival (PFS) benefit vs placebo-Rd according to number and type of prior therapies, with greater benefit seen in patients with >1 prior line of therapy or 1 prior line of therapy without stem cell transplantation (SCT). METHODS RNA sequencing data were used to investigate the basis of these differences. RESULTS The PFS benefit of IRd vs placebo-Rd was greater in patients with tumors expressing high c-MYC levels (median not reached vs 11.3 months; hazard ratio [HR] 0.42; 95% CI, 0.26, 0.66; P < .001) compared with in those expressing low c-MYC levels (median 20.6 vs 16.6 months; HR 0.75; 95% CI, 0.42, 1.2). Expression of c-MYC in tumors varied based on the number and type of prior therapy received, with the lowest levels observed in tumors of patients who had received 1 prior line of therapy including SCT. These tumors also had higher expression levels of CD19 and CD81. CONCLUSIONS PFS analyses suggest that lenalidomide and ixazomib target tumors with different levels of c-MYC, CD19, and CD81 expression, thus providing a potential rationale for the differential benefits observed in the TOURMALINE-MM1 study. This trial was registered at www.clinicaltrials.gov as: NCT01564537.
Collapse
Affiliation(s)
- Alessandra Di Bacco
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Nizar J. Bahlis
- Southern Alberta Cancer Research InstituteUniversity of CalgaryCalgaryABCanada
| | | | | | - Tamás Masszi
- Department of Haematology and Stem Cell TransplantationSt. István and St. László Hospital of BudapestBudapestHungary
- 3rd Department of Internal MedicineSemmelweis UniversityBudapestHungary
| | - Luísa Viterbo
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial (IPOPFG, EPE)PortoPortugal
| | - Ludek Pour
- Hematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Peter Ganly
- Department of HaematologyChristchurch HospitalChristchurchNew Zealand
| | - Michele Cavo
- Institute of Hematology and Medical Oncology "Seràgnoli"Bologna University School of MedicineS.Orsola's University HospitalBolognaItaly
| | | | | | | | | | - Deborah Berg
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Jianchang Lin
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Bin Li
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Sunita Badola
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Lei Shen
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Jacob Zhang
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Dixie‐Lee Esseltine
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Katarina Luptakova
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | - Helgi van de Velde
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited)CambridgeMAUSA
| | | | - Philippe Moreau
- Department of HematologyUniversity Hospital Hôtel DieuUniversity of NantesNantesFrance
| |
Collapse
|
5
|
Guan X, Jalil A, Khanal K, Liu B, Jain AG. Extramedullary Plasmacytoma Involving the Heart: A Case Report and Focused Literature Review. Cureus 2020; 12:e7418. [PMID: 32337142 PMCID: PMC7182159 DOI: 10.7759/cureus.7418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac tumors are extremely rare. Here, we report an unusual case of cardiac plasmacytoma that occurred 11 years after complete remission of the original multiple myeloma (MM). The tumor primarily manifested as a solitary extramedullary plasmacytoma (SEP) with extensive infiltration into the heart and large vessels. There was no evidence of systemic involvement. The relapsing tumor assumed a unique immunophenotype from CD138+/CD38+/CD56- to CD138-/CD38+/CD56-. The patient responded to chemotherapy consisting of carfilzomib, cyclophosphamide, and dexamethasone. This case highlights the importance of multimodal imaging evaluation and tissue diagnosis for accurately characterizing this rare disorder.
Collapse
Affiliation(s)
- Xuan Guan
- Internal Medicine, AdventHealth, Orlando, USA
| | - Anum Jalil
- Internal Medicine, AdventHealth, Orlando, USA
| | | | | | | |
Collapse
|
6
|
Yu J, Tan L, Wu Q, Rao Y, Ao J, Yang W, Zou B, Chen J. Multiple myeloma with CD138 changed from positive to negative: A case report. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:249-253. [PMID: 31967404 DOI: 10.1002/cyto.b.21869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a common malignant disease of the blood system, caused by the neoplastic proliferation of plasma cells that accumulate in bone marrow (BM). Here, we report a case of MM patient with CD138 marker changed from positive to negative. METHODS BM and peripheral blood samples from a 48-year-old patient with MM were examined and analyzed by conventional morphology, flow cytometry, and immunodetection. RESULTS Imaging examination and clinical manifestations fulfilled criteria for MM. On the first hospitalization, flow cytometry showed that the cells were CD138+ /CD38+ /CD19- /CD56+ . However, on the fifth hospitalization, flow cytometry revealed that the cells were CD138- /CD38+ /CD19- /CD56+ . CONCLUSIONS MM is diagnosed on imaging and clinical manifestations, immunophenotype of flow cytometry is also an important method of diagnosing MM. However, the discovery of atypical immunophenotypes cannot prevent the diagnosis of MM, even provide a clue of disease progression.
Collapse
Affiliation(s)
- Jianlin Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liming Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiong Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanfei Rao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianyun Ao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bei Zou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Grab AL, Seckinger A, Horn P, Hose D, Cavalcanti-Adam EA. Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2019; 96:258-270. [PMID: 31302300 DOI: 10.1016/j.actbio.2019.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing disease relapse. Here we report on a novel approach suitable for local treatment of multiple myeloma based on hyaluronic acid (HA) hydrogels mimicking the physical properties of the bone marrow. The HA hydrogels are complexed with heparin to achieve sustained presentation and controlled release of bone morphogenetic protein 6 (BMP-6). Others and we have shown that BMP-6 induces myeloma cell apoptosis and bone formation. Using quartz crystal microbalance and enzyme-linked immunosorbent assay, we measured an initial surface density of 400 ng BMP6/cm2, corresponding to two BMP-6 per heparin molecule, with 50% release within two weeks. HA-hydrogels presenting BMP-6 enhanced the phosphorylation of Smad 1/5 while reducing the activity of BMP-6 antagonist sclerostin. These materials induced osteogenic differentiation of mesenchymal stromal cells and decreased the viability of myeloma cell lines and primary myeloma cells. BMP-6 functionalized HA-hydrogels represent a promising material for local treatment of myeloma-induced bone disease and residual myeloma cells within lesions to minimize disease relapse or fractures. STATEMENT OF SIGNIFICANCE: Multiple myeloma is a hematological cancer characterized by the accumulation of clonal plasma cells in the bone marrow and local suppression of bone formation, resulting in osteolytic lesions and fractures. Despite recent advances in systemic treatment of multiple myeloma, it is rare to achieve a targeted suppression of myeloma cells and healing of bone lesions. Here we present hydrogels which mimic the physico-chemical properties of the bone marrow, consisting of hyaluronic acid with crosslinked heparin for the controlled presentation of bioactive BMP-6. The hydrogels decrease the viability of myeloma cell lines and primary myeloma cells and induces osteogenic differentiation of mesenchymal stromal cells. The presentation of BMP-6 in the hyaluronan hydrogels enhances the phosphorylation of Smad1/5 while reducing the activity of the BMP-6 antagonist sclerostin. As such, BMP-6 functionalized hyaluronan hydrogels represent a promising material for the localized eradication of myeloma cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Horn
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Dirk Hose
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Institute of Physical Chemistry, Department of Biophysical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany; Max Planck Institute for Medical Research, Department of Cellular Biophysics and Central Scientific Facility "Cellular Biotechnology", Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Vitale D, Kumar Katakam S, Greve B, Jang B, Oh ES, Alaniz L, Götte M. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J 2019; 286:2870-2882. [PMID: 31230410 DOI: 10.1111/febs.14967] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
In contrast to the bulk of the tumor, a subset of cancer cells called cancer stem cells (CSC; or tumor-initiating cells) is characterized by self-renewal, unlimited proliferative potential, expression of multidrug resistance proteins, active DNA repair capacity, apoptosis resistance, and a considerable developmental plasticity. Due to these properties, CSCs display increased resistance to chemo- and radiotherapy. Recent findings indicate that aberrant functions of proteoglycans (PGs) and glycosaminoglycans (GAGs) contribute substantially to the CSC phenotype and therapeutic resistance. In this review, we summarize how the diverse functions of the glycoproteins and carbohydrates facilitate acquisition and maintenance of the CSC phenotype, and how this knowledge can be exploited to develop novel anticancer therapies. For example, the large transmembrane chondroitin sulfate PG NG2/CSPG4 marks stem cell (SC) populations in brain tumors. Cell surface heparan sulfate PGs of the syndecan and glypican families modulate the stemness-associated Wnt, hedgehog, and notch signaling pathways, whereas the interplay of hyaluronan in the SC niche with CSC CD44 determines the maintenance of stemness and promotes therapeutic resistance. A better understanding of the molecular mechanisms by which PGs and GAGs regulate CSC function will aid the development of targeted therapeutic approaches which could avoid relapse after an otherwise successful conventional therapy. Chimeric antigen receptor T cells, PG-primed dendritic cells, PG-targeted antibody-drug conjugates, and inhibitory peptides and glycans have already shown highly promising results in preclinical models.
Collapse
Affiliation(s)
- Daiana Vitale
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Argentina
| | | | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, Münster University Hospital, Germany
| | - Bohee Jang
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Eok-Soo Oh
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Argentina
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| |
Collapse
|
9
|
Kellner J, Wallace C, Liu B, Li Z. Definition of a multiple myeloma progenitor population in mice driven by enforced expression of XBP1s. JCI Insight 2019; 4:124698. [PMID: 30944260 DOI: 10.1172/jci.insight.124698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy with frequent treatment failures and relapses, suggesting the existence of pathogenic myeloma stem/progenitor populations. However, the identity of MM stem cells remains elusive. We used a murine model of MM with transgenic overexpression of the unfolded protein response sensor X-box binding protein 1 (XBP1s) in the B cell compartment to define MM stem cells. We herein report that a post-germinal center, pre-plasma cell population significantly expands as MM develops. This population has the following characteristics: (a) cell surface phenotype of B220+CD19+IgM-IgD-CD138-CD80+sIgG-AA4.1+FSChi; (b) high expression levels of Pax5 and Bcl6 with intermediate levels of Blimp1 and XBP1s; (c) increased expression of aldehyde dehydrogenase, Notch1, and c-Kit; and (d) ability to efficiently reconstitute antibody-producing capacity in B cell-deficient mice in vivo. We thus have defined a plasma cell progenitor population that resembles myeloma stem cells in mice. These results provide potentially novel insights into MM stem cell biology and may contribute to the development of novel stem cell-targeted therapies for the eradication of MM.
Collapse
Affiliation(s)
| | | | - Bei Liu
- Department of Microbiology and Immunology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Microbiology and Immunology and.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou, China
| |
Collapse
|
10
|
Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells. PLoS One 2018; 13:e0206368. [PMID: 30383785 PMCID: PMC6211687 DOI: 10.1371/journal.pone.0206368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Multiple Myeloma (MM) is the second most common hematological malignancy with a median survival of 5–10 years. While current treatments initially cause remission, relapse almost always occurs, leading to the hypothesis that a chemotherapy-resistant cancer stem cell (CSC) remains dormant, and undergoes self-renewal and differentiation to reestablish disease. Our finding is that the mature cancer cell (CD138+, rapidly proliferating and chemosensitive) has developmental plasticity; namely, the ability to dedifferentiate back into its own chemoresistant CSC progenitor, the CD138–, quiescent pre-plasma cell. We observe multiple cycles of differentiation and dedifferentiation in the absence of niche or supportive accessory cells, suggesting that soluble cytokines secreted by the MM cells themselves are responsible for this bidirectional interconversion and that stemness and chemoresistance are dynamic characteristics that can be acquired or lost and thus may be targetable. By examining cytokine secretion of CD138- and CD138+ RPMI-8226 cells, we identified that concomitant with interconversion, Macrophage Migration Inhibitory Factor (MIF-1) is secreted. The addition of a small molecule MIF-1 inhibitor (4-IPP) or MIF-1 neutralizing antibodies to CD138+ cells accelerated dedifferentiation back into the CD138- progenitor, while addition of recombinant MIF-1 drove cells towards CD138+ differentiation. A similar increase in the CD138- population is seen when MM tumor cells isolated from primary bone marrow aspirates are cultured in the presence of 4-IPP. As the CD138+ MM cell is chemosensitive, targeting MIF-1 and/or the pathways that it regulates could be a viable way to modulate stemness and chemosensitivity, which could in turn transform the treatment of MM.
Collapse
|
11
|
Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 2018; 32:1500-1514. [PMID: 29535427 PMCID: PMC6035148 DOI: 10.1038/s41375-018-0061-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell (PC) disorder, characterized by a complex interactive network of tumour cells and the bone marrow (BM) stromal microenvironment, contributing to MM cell survival, proliferation and chemoresistance. Mesenchymal stem cells (MSCs) represent the predominant stem cell population of the bone marrow stroma, capable of differentiating into multiple cell lineages, including fibroblasts, adipocytes, chondrocytes and osteoblasts. MSCs can migrate towards primary tumours and metastatic sites, implying that these cells might modulate tumour growth and metastasis. However, this issue remains controversial and is not well understood. Interestingly, several recent studies have shown functional abnormalities of MM patient-derived MSCs indicating that MSCs are not just by-standers in the BM microenvironment but rather active players in the pathophysiology of this disease. It appears that the complex interaction of MSCs and MM cells is critical for MM development and disease outcome. This review will focus on the current understanding of the biological role of MSCs in MM as well as the potential utility of MSC-based therapies in this malignancy.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kim De Veirman
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ann De Becker
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium
| | - Ivan Van Riet
- Department Hematology- Stem Cell Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Research Group Hematology and Immunology-Vrije Universiteit Brussel (VUB), Myeloma Center Brussels, Brussels, Belgium.
| |
Collapse
|
12
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
13
|
Gao M, Kong Y, Yang G, Gao L, Shi J. Multiple myeloma cancer stem cells. Oncotarget 2018; 7:35466-77. [PMID: 27007154 PMCID: PMC5085244 DOI: 10.18632/oncotarget.8154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Schibler J, Tomanek-Chalkley AM, Reedy JL, Zhan F, Spitz DR, Schultz MK, Goel A. Mitochondrial-Targeted Decyl-Triphenylphosphonium Enhances 2-Deoxy-D-Glucose Mediated Oxidative Stress and Clonogenic Killing of Multiple Myeloma Cells. PLoS One 2016; 11:e0167323. [PMID: 27902770 PMCID: PMC5130279 DOI: 10.1371/journal.pone.0167323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022] Open
Abstract
Therapeutic advances have markedly prolonged overall survival in multiple myeloma (MM) but the disease currently remains incurable. In a panel of MM cell lines (MM.1S, OPM-2, H929, and U266), using CD138 immunophenotyping, side population staining, and stem cell-related gene expression, we demonstrate the presence of stem-like tumor cells. Hypoxic culture conditions further increased CD138low stem-like cells with upregulated expression of OCT4 and NANOG. Compared to MM cells, these stem-like cells maintained lower steady-state pro-oxidant levels with increased uptake of the fluorescent deoxyglucose analog. In primary human MM samples, increased glycolytic gene expression correlated with poorer overall and event-free survival outcomes. Notably, stem-like cells showed increased mitochondrial mass, rhodamine 123 accumulation, and orthodox mitochondrial configuration while more condensed mitochondria were noted in the CD138high cells. Glycolytic inhibitor 2-deoxyglucose (2-DG) induced ER stress as detected by qPCR (BiP, ATF4) and immunoblotting (BiP, CHOP) and increased dihydroethidium probe oxidation both CD138low and CD138high cells. Treatment with a mitochondrial-targeting agent decyl-triphenylphosphonium (10-TPP) increased intracellular steady-state pro-oxidant levels in stem-like and mature MM cells. Furthermore, 10-TPP mediated increases in mitochondrial oxidant production were suppressed by ectopic expression of manganese superoxide dismutase. Relative to 2-DG or 10-TPP alone, 2-DG plus 10-TPP combination showed increased caspase 3 activation in MM cells with minimal toxicity to the normal hematopoietic progenitor cells. Notably, treatment with polyethylene glycol conjugated catalase significantly reduced 2-DG and/or 10-TPP-induced apoptosis of MM cells. Also, the combination of 2-DG with 10-TPP decreased clonogenic survival of MM cells. Taken together, this study provides a novel strategy of metabolic oxidative stress-induced cytotoxicity of MM cells via 2-DG and 10-TPP combination therapy.
Collapse
Affiliation(s)
- Jeanine Schibler
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
| | - Ann M. Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Jessica L. Reedy
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Fenghuang Zhan
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Michael K. Schultz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Apollina Goel
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Scholma J, Fuhler GM, Joore J, Hulsman M, Schivo S, List AF, Reinders MJT, Peppelenbosch MP, Post JN. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots. Sci Rep 2016; 6:26695. [PMID: 27225531 PMCID: PMC4881024 DOI: 10.1038/srep26695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling.
Collapse
Affiliation(s)
- Jetse Scholma
- Department of Developmental BioEngineering, MIRA institute for biomedical technology and technical medicine, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Jos Joore
- Pepscope BV, Dantelaan 83, 3533 VB Utrecht, The Netherlands
| | - Marc Hulsman
- Department of Clinical Genetics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.,Delft Bioinformatics Lab. Delft University of Technology, Mekelweg 4, NL-2628 CD Delft, The Netherlands
| | - Stefano Schivo
- Department of Formal Methods and Tools, CTIT institute, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
| | - Alan F List
- Department of Malignant Hematology, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Marcel J T Reinders
- Delft Bioinformatics Lab. Delft University of Technology, Mekelweg 4, NL-2628 CD Delft, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology. Erasmus MC, University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Janine N Post
- Department of Developmental BioEngineering, MIRA institute for biomedical technology and technical medicine, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
| |
Collapse
|
16
|
Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, Zheng Z, Vogl DT, Cohen AD, Weiss BM, Dengel K, Kerr NDS, Bagg A, Levine BL, June CH, Stadtmauer EA. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N Engl J Med 2015; 373:1040-7. [PMID: 26352815 PMCID: PMC4646711 DOI: 10.1056/nejmoa1504542] [Citation(s) in RCA: 443] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient's neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.).
Collapse
Affiliation(s)
- Alfred L Garfall
- From the Division of Hematology-Oncology, Department of Medicine (A.L.G., M.V.M., D.T.V., A.D.C., B.M.W., E.A.S.), Department of Biostatistics and Epidemiology (W.-T.H.), Department of Pathology and Laboratory Medicine (S.F.L., Y.D.M., J.J.M., Z.Z., A.B., B.L.L., C.H.J.), and Abramson Cancer Center (A.L.G., M.V.M., W.-T.H., S.F.L., Y.D.M., J.J.M., Z.Z., D.T.V., A.D.C., B.M.W., K.D., N.D.S.K., A.B., B.L.L., C.H.J., E.A.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
[Emergence of cancer stem cells or tumor-initiating/propagating cells and relapse in multiple myeloma]. Bull Cancer 2014; 101:1074-9. [PMID: 25467977 DOI: 10.1684/bdc.2014.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Wu D, Guo X, Su J, Chen R, Berenzon D, Guthold M, Bonin K, Zhao W, Zhou X. CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:338-47. [PMID: 25450979 DOI: 10.1016/j.bbamcr.2014.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022]
Abstract
As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138⁻ myeloma cells, but not CD138⁺ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138⁻ myeloma subpopulation compared with that in CD138⁺ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138⁻ myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138⁻ myeloma cell-directed cross-talk with BMSCs and reveal that CD138⁻ myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xinyi Guo
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jing Su
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ruoying Chen
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dmitriy Berenzon
- Hematology & Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Weiling Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
19
|
Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 2014; 124:3250-9. [PMID: 25205118 DOI: 10.1182/blood-2014-02-558007] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clonal proliferation of plasma cells within the bone marrow (BM) affects local cells, such as mesenchymal stromal cells (MSCs), leading to osteolysis and fatality in multiple myeloma (MM). Consequently, there is an urgent need to find better mechanisms of inhibiting myeloma growth and osteolytic lesion development. To meet this need and accelerate clinical translation, better models of myeloma within the BM are required. Herein we have developed a clinically relevant, three-dimensional (3D) myeloma BM coculture model that mimics bone cell/cancer cell interactions within the bone microenvironment. The coculture model and clinical samples were used to investigate myeloma growth, osteogenesis inhibition, and myeloma-induced abnormalities in MM-MSCs. This platform demonstrated myeloma support of capillary-like assembly of endothelial cells and cell adhesion-mediated drug resistance (CAM-DR). Also, distinct normal donor (ND)- and MM-MSC miRNA (miR) signatures were identified and used to uncover osteogenic miRs of interest for osteoblast differentiation. More broadly, our 3D platform provides a simple, clinically relevant tool to model cancer growth within the bone-useful for investigating skeletal cancer biology, screening compounds, and exploring osteogenesis. Our identification and efficacy validation of novel bone anabolic miRs in MM opens more opportunities for novel approaches to cancer therapy via stromal miR modulation.
Collapse
|
20
|
De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, Frassanito MA, Di Marzo L, Vacca A, Vanderkerken K. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers (Basel) 2014; 6:1363-81. [PMID: 24978438 PMCID: PMC4190545 DOI: 10.3390/cancers6031363] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.
Collapse
Affiliation(s)
- Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Luigia Rao
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Ivan Van Riet
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124, Italy.
| | - Lucia Di Marzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124, Italy.
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124, Italy.
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| |
Collapse
|
21
|
Reghunathan R, Bi C, Liu SC, Loong KT, Chung TH, Huang G, Chng WJ. Clonogenic multiple myeloma cells have shared stemness signature associated with patient survival. Oncotarget 2014; 4:1230-40. [PMID: 23985559 PMCID: PMC3787153 DOI: 10.18632/oncotarget.1145] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple myeloma is the abnormal clonal expansion of post germinal B cells in the bone marrow. It was previously reported that clonogenic myeloma cells are CD138−. Human MM cell lines RPMI8226 and NCI H929 contained 2-5% of CD138− population. In this study, we showed that CD138− cells have increased ALDH1 activity, a hallmark of normal and neoplastic stem cells. CD138−ALDH+ cells were more clonogenic than CD138+ALDH− cells and only CD138− cells differentiated into CD138+ population. In vivo tumor initiation and clonogenic potentials of the CD138− population was confirmed using NOG mice. We derived a gene expression signature from functionally validated and enriched CD138− clonogenic population from MM cell lines and validated these in patient samples. This data showed that CD138− cells had an enriched expression of genes that are expressed in normal and malignant stem cells. Differentially expressed genes included components of the polycomb repressor complex (PRC) and their targets. Inhibition of PRC by DZNep showed differential effect on CD138− and CD138+ populations. The ‘stemness’ signature derived from clonogenic CD138− cells overlap significantly with signatures of common progenitor cells, hematopoietic stem cells, and Leukemic stem cells and is associated with poorer survival in different clinical datasets.
Collapse
|
22
|
Paíno T, Sarasquete ME, Paiva B, Krzeminski P, San-Segundo L, Corchete LA, Redondo A, Garayoa M, García-Sanz R, Gutiérrez NC, Ocio EM, San-Miguel JF. Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines. PLoS One 2014; 9:e92378. [PMID: 24658332 PMCID: PMC3962421 DOI: 10.1371/journal.pone.0092378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.
Collapse
Affiliation(s)
- Teresa Paíno
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María E. Sarasquete
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra; Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - Patryk Krzeminski
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | - Alba Redondo
- Hospital Universitario de Salamanca, Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Norma C. Gutiérrez
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Enrique M. Ocio
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Jesús F. San-Miguel
- Clínica Universidad de Navarra; Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| |
Collapse
|
23
|
Morgenroth A, Vogg ATJ, Zlatopolskiy BD, Siluschek M, Oedekoven C, Mottaghy FM. Breaking the invulnerability of cancer stem cells: two-step strategy to kill the stem-like cell subpopulation of multiple myeloma. Mol Cancer Ther 2013; 13:144-53. [PMID: 24174494 DOI: 10.1158/1535-7163.mct-13-0240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In multiple myeloma, the presence of highly resistant cancer stem cells (CSC) that are responsible for tumor metastasis and relapse has been proven. Evidently, for achieving complete response, new therapeutic paradigms that effectively eradicate both, CSCs and bulk cancer populations, need to be developed. For achieving that goal, an innovative two-step treatment combining targeting of thymidine de novo synthesis pathway and a nanoirradiation by the Auger electron emitting thymidine analogue (123/125)I-5-iodo-4'-thio-2'-deoxyuridine ((123/125)I-ITdU) could be a promising approach. The pretreatment with thymidylate synthase inhibitor 5-fluoro-2'-deoxyuridine (FdUrd, 1 μmol/L for 1 hour) efficiently induced proliferation and terminal differentiation of isolated myeloma stem-like cells. Moreover, FdUrd stimulation led to a decreased activity of a functional CSC marker, aldehyde dehydrogenase (ALDH). The metabolic conditioning by FdUrd emerged to be essential for enhanced incorporation of (125)I-ITdU (incubation with 50 kBq/2 × 10(4) cells for 4 days) and, consequently, for the induction of irreparable DNA damage. (125)I-ITdU showed a pronounced antimyeloma effect on isolated tumor stem-like cells. More than 85% of the treated cells were apoptotic, despite activation of DNA repair mechanisms. Most important, exposure of metabolically conditioned cells to (125)I-ITdU resulted in a complete inhibition of clonogenic recovery. This is the first report showing that pretreatment with FdUrd sensitizes the stem-like cell compartment in multiple myeloma to apoptosis induced by (125)I-ITdU-mediated nanoirradiation of DNA.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Corresponding Author: Agnieszka Morgenroth, Department for Nuclear Medicine, University Aachen, RWTH, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Kawano Y, Kikukawa Y, Fujiwara S, Wada N, Okuno Y, Mitsuya H, Hata H. Hypoxia reduces CD138 expression and induces an immature and stem cell-like transcriptional program in myeloma cells. Int J Oncol 2013; 43:1809-16. [PMID: 24126540 PMCID: PMC3834117 DOI: 10.3892/ijo.2013.2134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Although CD138 expression is a hallmark of plasma cells and myeloma cells, reduced CD138 expression is occasionally found. However, the mechanisms underlying CD138 downregulation in myeloma cells remain unclear. Previous reports suggest that the bone marrow microenvironment may contribute to CD138 downregulation. Among various factors in the tumor microenvironment, hypoxia is associated with tumor progression, poor clinical outcomes, dedifferentiation and the formation of cancer stem cell niches in solid tumors. Since recent findings showed that progression of multiple myeloma (MM) delivers hypoxia within the bone marrow, we hypothesized that CD138 expression may be regulated by hypoxia. In the present study, we examined whether the expression of CD138 and transcription factors occurred in myeloma cells under hypoxic conditions. MM cell lines (KMS-12BM and RPMI 8226) were cultured under normoxic or hypoxic conditions for up to 30 days. Changes in the phenotype and the expression of surface antigens and transcription factors were analyzed using flow cytometry, RT-PCR and western blotting. All-trans retinoic acid (ATRA) was used to examine the phenotypic changes under hypoxic conditions. The expression levels of CD138, CS1 and plasma cell-specific transcription factors decreased under hypoxic conditions, while those of CD20, CXCR4 and B cell-specific transcription factors increased compared with those under normoxic conditions. Stem cell-specific transcription factors were upregulated under hypoxic conditions, while no difference was observed in ALDH activity. The reduced CD138 expression under hypoxic conditions recovered when cells were treated with ATRA, even under hypoxic conditions, along with decreases in the expression of stem cell-specific transcription factor. Interestingly, ATRA treatment sensitized MM cells to bortezomib under hypoxia. We propose that hypoxia induces immature and stem cell-like transcription phenotypes in myeloma cells. Taken together with our previous observation that decreased CD138 expression is correlated with disease progression, the present data suggest that a hypoxic microenvironment affects the phenotype of MM cells, which may correlate with disease progression.
Collapse
Affiliation(s)
- Yawara Kawano
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Hosen N. Multiple myeloma-initiating cells. Int J Hematol 2013; 97:306-12. [PMID: 23420183 DOI: 10.1007/s12185-013-1293-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells. As in other cancers, MM plasma cells are thought to be derived from MM-initiating cells, although these remain unidentified. MM patients harbor phenotypic CD19(+) B cells expressing the immunoglobulin gene sequence and the idiotype unique to the individual myeloma clone. Some previous studies have reported that CD19(+) clonotypic B cells can serve as MM-initiating cells. However, we and another group have recently showed that CD19(+) B cells from many MM patients do not reconstitute MM disease upon transplantation into NOD/SCID IL2Rγc(-/-) mice. In the SCID-rab and SCID-hu models, which enable engraftment of human MM in vivo, CD19(-)CD38(++) plasma cells engrafted and rapidly propagated MM, while engraftment of CD19(+) B cells was not detected. Both CD138(-) and CD138(+) plasma cells have the potential to propagate MM clones in vivo in the absence of CD19(+) B cells. Distinct from acute myeloid leukemia-initiating cells, which are derived from undifferentiated stem or progenitor cells, MM-initiating cells are derived from plasma cells, which are terminally differentiated cells. An improved understanding of how the bone marrow microenvironment supports MM-initiating plasma cells, which can initiate MM disease in the SCID-hu (or rab) model, is thus now essential.
Collapse
Affiliation(s)
- Naoki Hosen
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Christensen JH, Jensen PV, Kristensen IB, Abildgaard N, Lodahl M, Rasmussen T. Characterization of potential CD138 negative myeloma "stem cells". Haematologica 2013; 97:e18-20. [PMID: 22665530 DOI: 10.3324/haematol.2011.043125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Queiroz KCS, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, Diks SH, Spek CA, Ferreira CV, Peppelenbosch MP. Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse. PLoS One 2012; 7:e45362. [PMID: 23071514 PMCID: PMC3469566 DOI: 10.1371/journal.pone.0045362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 08/20/2012] [Indexed: 12/20/2022] Open
Abstract
It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+)/c-Kit(+)/P-glycoprotein(+)/MRP1(+) TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.
Collapse
Affiliation(s)
- Karla C. S. Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Institute of Biology, University of Campinas, Brazil (UNICAMP), Campinas, São Paulo, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, University of Campinas, Brazil (UNICAMP), Campinas, São Paulo, Brazil
| | - Roberta R. Ruela-de-Sousa
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Institute of Biology, University of Campinas, Brazil (UNICAMP), Campinas, São Paulo, Brazil
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Giselle Z. Justo
- Department of Cell Biology and Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Willian F. Zambuzzi
- Multidisciplinary Lab in Dental Research, Heath Sciences School, University of Grande Rio (UNIGRANRIO), Rio de Janeiro, Brazil
- Biotechnology Lab, Bioengineering Sector, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Nelson Duran
- Biological Chemistry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sander H. Diks
- Beatrix Children's Hospital, Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen V. Ferreira
- Department of Biochemistry, Institute of Biology, University of Campinas, Brazil (UNICAMP), Campinas, São Paulo, Brazil
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One 2012; 7:e40521. [PMID: 22905093 PMCID: PMC3414492 DOI: 10.1371/journal.pone.0040521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/11/2012] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed, a multi-folate inhibitor combined with a platinum compound is the first-line treatment of malignant mesothelioma, but median survival is still one year. Intrinsic and acquired resistance to pemetrexed is common, but its biological basis is obscure. Here we report for the first time a genome-wide profile of acquired resistance in the tumour from an exceptional case with advanced pleural mesothelioma and almost six years survival after 39 cycles of second-line pemetrexed/carboplatin treatment. Methodology and Principal Findings Genome-wide analysis with Illumina BeadChip Kit of 25,000 genes was performed on mRNA from pre-treatment and post-resistance biopsies from this individual as well on case and control samples from our previously published study (in total 17 samples). Cell specific expression of proteins encoded by selected genes were analysed by immunohistochemistry. Serial serum levels of CA125, CYFRA21-1 and SMRP levels were examined. TS protein, the main target of pemetrexed was overexpressed. Proteins and genes related to DNA damage response, elongation and telomere extension and repair related directly and indirectly to platinum resistance were overexpressed, as the CHK1 protein and the genes CHEK2, LIG3, POLD1, POLA2, FANCD2, PRPF19, RECQ5 respectively, the last two not previously described in mesothelioma. We observed a down-regulation of leukocyte transendothelial migration and cell adhesion molecules pathways. Silencing of NT5C in two mesothelioma cell lines did not sensitize the cells to Pemetrexed. Proposed resistance markers are TS, KRT7/ CK7, TYMP/ thymidine phosphorylase and down-regulated SPARCL1 and CDKN1B. Moreover, comparison of the primary expression of the sensitive versus a primary resistant case showed multi-fold overexpressed DNA repair, cell cycle, cytokinesis, and spindle formation in the latter. Serum CA125 and SMRP reflected the clinical and radiological course and tumour burden. Conclusions Genome-wide microarray of mesothelioma pre- and post-resistance biopsies indicated a novel resistance signature to pemetrexed/carboplatin that deserve validation in a larger cohort.
Collapse
|
29
|
Kawano Y, Fujiwara S, Wada N, Izaki M, Yuki H, Okuno Y, Iyama K, Yamasaki H, Sakai A, Mitsuya H, Hata H. Multiple myeloma cells expressing low levels of CD138 have an immature phenotype and reduced sensitivity to lenalidomide. Int J Oncol 2012; 41:876-84. [PMID: 22766978 PMCID: PMC3582943 DOI: 10.3892/ijo.2012.1545] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022] Open
Abstract
CD138 expression is a hallmark of plasma cells and multiple myeloma cells. However, decreased expression of CD138 is frequently observed in plasma cells of myeloma patients, although the clinical significance of this is unclear. To evaluate the significance of low expression of CD138 in MM, we examined the phenotypes of MM cells expressing low levels of CD138. Flow cytometric analysis of primary MM cells revealed a significant decrease in CD138 expression in patients with relapsed/progressive disease compared with untreated MM patients. Patients with low levels of CD138 had a worse overall survival compared with patients with high levels of CD138, in newly diagnosed patients and patients receiving high-dose chemotherapy followed by autologous stem-cell transplantation. Two MM cell lines, KYMM-1 (CD138− low) and KYMM-2 (CD138− high), were established from a single MM patient with decreased CD138 expression. High expression of BCL6 and PAX5, and downregulation of IRF4, PRDM1 and XBP1 was observed in KYMM-1 compared with KYMM-2 cells, indicative of the immature phenotype of KYMM-1. KYMM-1 was less sensitive to lenalidomide than KYMM-2, while no difference in sensitivity to bortezomib was observed. KYMM-2 cells were further divided in CD138+ and CD138− fractions using anti-CD138-coated magnetic beads. CD138− cells sorted from the KYMM-2 cell line also showed high BCL6, low IRF4 expression and decreased sensitivity to lenalidomide compared with CD138+ cells. Our observations suggest that low CD138 expression relates to i) poor prognosis, ii) immature phenotype and iii) low sensitivity to lenalidomide. The observed distinct characteristics of CD138 low MM cells, suggest this should be recognized as a new clinical entity. Establishment of a treatment strategy for MM cells expressing low levels of CD138 is needed to improve their poor outcome.
Collapse
Affiliation(s)
- Yawara Kawano
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Annexin A2 (ANXA2) promotes myeloma cell growth, reduces apoptosis in myeloma cell lines, and increases osteoclast formation. ANXA2 has been described in small cohorts of samples as expressed by myeloma cells and cells of the BM microenvironment. To investigate its clinical role, we assessed 1148 samples including independent cohorts of 332 and 701 CD138-purified myeloma cell samples from previously untreated patients together with clinical prognostic factors, chromosomal aberrations, and gene expression-based high-risk scores, along with expression of ANXA2 in whole BM samples, stromal cells, osteoblasts, osteoclasts, and BM sera. ANXA2 is expressed in all normal and malignant plasma cell samples. Higher ANXA2 expression in myeloma cells is associated with significantly inferior event-free and overall survival independently of conventional prognostic factors and is associated with gene expression-determined high risk and high proliferation. Within the BM, all cell populations, including osteoblasts, osteoclasts, and stromal cells, express ANXA2. ANXA2 expression is increased significantly in myelomatous versus normal BM serum. ANXA2 exemplifies an interesting class of targetable bone-remodeling factors expressed by normal and malignant plasma cells and the BM microenvironment that have a significant impact on survival of myeloma patients.
Collapse
|
31
|
Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30:266-79. [PMID: 22102554 DOI: 10.1002/stem.787] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells that are predominantly localized in the bone marrow (BM). Mesenchymal stromal cells (MSCs) give rise to most BM stromal cells that interact with MM cells. However, the direct involvement of MSCs in the pathophysiology of MM has not been well addressed. In this study, in vitro and in vivo migration assays revealed that MSCs have tropism toward MM cells, and CCL25 was identified as a major MM cell-produced chemoattractant for MSCs. By coculture experiments, we found that MSCs favor the proliferation of stroma-dependent MM cells through soluble factors and cell to cell contact, which was confirmed by intrafemoral coengraftment experiments. We also demonstrated that MSCs protected MM cells against spontaneous and Bortezomib-induced apoptosis. The tumor-promoting effect of MSCs correlated with their capacity to enhance AKT and ERK activities in MM cells, accompanied with increased expression of CyclinD2, CDK4, and Bcl-XL and decreased cleaved caspase-3 and poly(ADP-ribose) polymerase expression. In turn, MM cells upregulated interleukin-6 (IL-6), IL-10, insulin growth factor-1, vascular endothelial growth factor, and dickkopf homolog 1 expression in MSCs. Finally, infusion of in vitro-expanded murine MSCs in 5T33MM mice resulted in a significantly shorter survival. MSC infusion is a promising way to support hematopoietic recovery and to control graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation. However, our data suggest that MSC-based cytotherapy has a potential risk for MM disease progression or relapse and should be considered with caution in MM patients.
Collapse
Affiliation(s)
- Song Xu
- Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia 2012; 26:2135-41. [PMID: 22430638 DOI: 10.1038/leu.2012.80] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clonogenic multiple myeloma (MM) cells reportedly lacked expression of plasma cell marker CD138. It was also shown that CD19(+) clonotypic B cells can serve as MM progenitor cells in some patients. However, it is unclear whether CD138-negative clonogenic MM plasma cells are identical to clonotypic CD19(+) B cells. We found that in vitro MM colony-forming cells were enriched in CD138(-)CD19(-)CD38(++) plasma cells, while CD19(+) B cells never formed MM colonies in 16 samples examined in this study. We next used the SCID-rab model, which enables engraftment of human MM in vivo. CD138(-)CD19(-)CD38(++) plasma cells engrafted in this model rapidly propagated MM in 3 out of 9 cases, while no engraftment of CD19(+) B cells was detected. In 4 out of 9 cases, CD138(+) plasma cells propagated MM, although more slowly than CD138(-) cells. Finally, we transplanted CD19(+) B cells from 13 MM patients into NOD/SCID IL2Rγc(-/-) mice, but MM did not develop. These results suggest that at least in some MM patients CD138-negative clonogenic cells are plasma cells rather than B cells, and that MM plasma cells including CD138(-) and CD138(+) cells have the potential to propagate MM clones in vivo in the absence of CD19(+) B cells.
Collapse
|
33
|
Tumor-initiating capacity of CD138- and CD138+ tumor cells in the 5T33 multiple myeloma model. Leukemia 2012; 26:1436-9. [PMID: 22289925 DOI: 10.1038/leu.2011.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 2011; 18:342-9. [PMID: 22065077 DOI: 10.1158/1078-0432.ccr-11-2212] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematologic malignancies rely heavily on support from host cells through a number of well-documented mechanisms. Host cells, specifically mesenchymal stem cells (MSC), support tumor cell growth, metastasis, survival, bone marrow colonization, and evasion of the immune system. In multiple myeloma, similar to solid tumors, supporting cells have typically been considered healthy host cells. However, recent evidence reveals that many MSCs derived from patients with multiple myeloma (MM-MSC) show significant defects compared with MSCs from nondiseased donors (ND-MSC). These abnormalities range from differences in gene and protein expression to allelic abnormalities and can initiate after less than 1 day of coculture with myeloma cells or persist for months, perhaps years, after removal from myeloma influence. Alterations in MM-MSC function contribute to disease progression and provide new therapeutic targets. However, before the scientific community can capitalize on the distinctions between MM-MSCs and ND-MSCs, a number of confusions must be clarified, as we have done in this review, including the origin(s) of MM-MSCs, identification and characterization of MM-MSCs, and downstream effects and feedback circuits that support cancer progression. Further advances require more genetic analysis of MM-MSCs and disease models that accurately represent MSC-MM cell interactions.
Collapse
Affiliation(s)
- Michaela R Reagan
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
35
|
Ozcan E, Rauter I, Garibyan L, Dillon SR, Geha RS. Toll-like receptor 9, transmembrane activator and calcium-modulating cyclophilin ligand interactor, and CD40 synergize in causing B-cell activation. J Allergy Clin Immunol 2011; 128:601-9.e1-4. [PMID: 21741080 DOI: 10.1016/j.jaci.2011.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 04/04/2011] [Accepted: 04/18/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND B cells receive activating signals from T cells through CD40, from microbial DNA through Toll-like receptor (TLR) 9, and from dendritic cells through transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI). TLR9 and CD40 ligation augment TACI-driven B-cell activation, but only the mechanism of synergy between CD40 and TACI has been explored. Synergy between CD40 and TLR9 in B-cell activation is controversial. OBJECTIVE We sought to examine the mechanisms by which TLR9 modulates CD40- and TACI-mediated activation of B cells and to determine whether all 3 receptors synergize to activate B cells. METHODS Naive murine B cells and human PBMCs were stimulated with combinations of anti-CD40, CpG, and a proliferation inducing ligand in the presence of IL-4. Proliferation was measured by means of tritiated thymidine incorporation. Immunoglobulin production was measured by means of ELISA. Class-switch recombination (CSR) was examined by measuring mRNA for germline transcripts, activation-induced cytidine deaminase (AICDA), and mature immunoglobulin transcripts. Plasma cell differentiation was examined by using syndecan-1/CD138 staining and mRNA expression of B lymphocyte-induced maturation protein 1 (Blimp-1). RESULTS TLR9 synergized with CD40 and TACI in driving CSR and inducing IgG(1) and IgE secretion by naive murine B cells and synergized with TACI in driving B-cell proliferation and plasma cell differentiation. All 3 receptors synergized together in driving murine B-cell proliferation, CSR, plasma cell differentiation, and IgG(1) and IgE secretion. TLR9 synergized with CD40 and TACI in driving IgG secretion in IL-4-stimulated human B cells. CONCLUSION Signals from TLR9, TACI, and CD40 are integrated to promote B-cell activation and differentiation.
Collapse
Affiliation(s)
- Esra Ozcan
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|