1
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
2
|
Zhu K, Kazim N, Yue J, Yen A. Vacuolin-1 enhances RA-induced differentiation of human myeloblastic leukemia cells: evidence for involvement of a CD11b/FAK/LYN/SLP-76 axis subject to endosomal regulation that drives late differentiation steps. Cell Biosci 2022; 12:179. [PMID: 36329484 PMCID: PMC9635152 DOI: 10.1186/s13578-022-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Retinoic acid(RA), an embryonic morphogen, regulates cell differentiation. Endocytosis regulates receptor signaling that governs such RA-directed cellular processes. Vacuolin-1 is a small molecule that disrupts endocytosis, motivating interest in its effect on RA-induced differentiation/arrest. In HL-60 myeloblastic-leukemia cells, RA causes differentiation evidenced by a progression of cell-surface and functional markers, CD38, CD11b, and finally reactive oxygen species(ROS) production and G1/0 cell cycle arrest in mature cells. RESULTS We found that Vacuolin-1 enhanced RA-induced CD11b, ROS and G1/0 arrest, albeit not CD38. Enhanced CD11b expression was associated with enhanced activation of Focal Adhesion Kinase(FAK). Adding vacuolin-1 enhanced RA-induced tyrosine phosphorylation of FAK, Src Family Kinases(SFKs), and the adaptor protein, SLP-76, expression of which is known to drive RA-induced differentiation. Depleting CD11b cripples late stages of progressive myeloid differentiation, namely G1/0 arrest and inducible ROS production, but not expression of CD38. Loss of NUMB, a protein that supports early endosome maturation, affected RA-induced ROS and G1/0 arrest, but not CD38 expression. CONCLUSION Hence there appears to be a novel CD11b/FAK/LYN/SLP-76 axis subject to endosome regulation which contributes to later stages of RA-induced differentiation. The effects of vacuolin-1 thus suggest a model where RA-induced differentiation consists of progressive stages driven by expression of sequentially-induced receptors.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- grid.448631.c0000 0004 5903 2808Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan, China ,grid.464255.4City University of Hong Kong Shenzhen Research Institute, ShenZhen, China
| | - Noor Kazim
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA
| | - Jianbo Yue
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China ,grid.464255.4City University of Hong Kong Shenzhen Research Institute, ShenZhen, China
| | - Andrew Yen
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA
| |
Collapse
|
3
|
Novikova S, Tikhonova O, Kurbatov L, Farafonova T, Vakhrushev I, Lupatov A, Yarygin K, Zgoda V. Omics Technologies to Decipher Regulatory Networks in Granulocytic Cell Differentiation. Biomolecules 2021; 11:907. [PMID: 34207065 PMCID: PMC8233756 DOI: 10.3390/biom11060907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the regulation of this process it is possible to identify potential targets for antileukemic drugs and develop novel approaches to differentiation therapy. In this study, we have performed transcriptomic and proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course experiments. Using data on differentially expressed transcripts and proteins we have applied upstream regulator search and obtained transcriptome- and proteome-based regulatory networks of induced granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM) using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system and the MAPK kinase cascade as well as show the balance between the processes of the cell survival and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins, predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be considered as potential targets for differentiation therapy of acute myeloid leukemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia; (S.N.); (O.T.); (L.K.); (T.F.); (I.V.); (A.L.); (K.Y.)
| |
Collapse
|
4
|
Rashid A, Wang R, Zhang L, Yue J, Yang M, Yen A. Dissecting the novel partners of nuclear c-Raf and its role in all-trans retinoic acid (ATRA)-induced myeloblastic leukemia cells differentiation. Exp Cell Res 2020; 394:111989. [PMID: 32283065 PMCID: PMC10656057 DOI: 10.1016/j.yexcr.2020.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
Abstract
All-trans retinoic acid (ATRA) is an anti-cancer differentiation therapy agent effective for acute promyelocytic leukemia (APL) but not acute myeloid leukemia (AML) in general. Using the HL-60 human non-APL AML model where ATRA causes nuclear enrichment of c-Raf that drives differentiation and G1/G0 cell cycle arrest, we now observe that c-Raf in the nucleus showed novel interactions with several prominent regulators of the cell cycle and cell differentiation. One is cyclin-dependent kinase 2 (Cdk2). ATRA treatment caused c-Raf to dissociate from Cdk2. This was associated with enhanced binding of Cdk2 with retinoic acid receptor α (RARα). Consistent with this novel Raf/CDK2/RARα axis contributing to differentiation, CD38 expression per cell, which is transcriptionally regulated by a retinoic acid response element (RARE), is enhanced. The RB tumor suppressor, a fundamental regulator of G1 cell cycle progression or arrest, was also targeted by c-Raf in the nucleus. RB and specifically the S608 phosphorylated form (pS608RB) complexed with c-Raf. ATRA treatment induced S608RB-hypophosphorylation associated with G1/G0 cell cycle arrest and release of c-Raf from RB. We also found that nuclear c-Raf interacted with SMARCD1, a pioneering component of the SWI/SNF chromatin remodeling complex. ATRA treatment diminished the amount of this protein bound to c-Raf. The data suggest that ATRA treatment to HL-60 human cells re-directed c-Raf from its historically pro-proliferation functions in the cytoplasm to pro-differentiation functions in the nucleus.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Zhu K, Yue J, Yen A. Depleting interferon regulatory factor-1(IRF-1) with CRISPR/Cas9 attenuates inducible oxidative metabolism without affecting RA-induced differentiation in HL-60 human AML cells. FASEB Bioadv 2020; 2:354-364. [PMID: 32617521 PMCID: PMC7325585 DOI: 10.1096/fba.2020-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
The known collaboration between all-transretinoic acid and interferon motivates this study of the dependence of RA-induced leukemic cell differentiation on interferon regulatory factor-1 (IRF-1), a transcription factor that is the main mediator of interferon effects. In the HL-60 acute myeloid leukemia (AML) model that represents a rare RA-responsive subtype of AML, IRF-1 is not expressed until RA induces its prominent expression, and ectopic IRF-1 expression enhances RA-induced differentiation, motivating interest in how IRF-1 is putatively needed for RA response. Accordingly, we created CRISPR/Cas9-mediated IRF-1 knockout HL-60 cells. Contrary to expectation, loss of IRF-1 did not diminish RA-induced cellular signaling that propels differentiation, and RA-induced cell differentiation markers, including CD38 and CD11b expression and G1/G0cell cycle arrest, were unaffected. However, elimination of IRF-1 inhibited RA-induced p47phox expression and inducible oxidative metabolism detected by reactive oxygen species (ROS), suggesting IRF-1 is essential for mature granulocytic inducible oxidative metabolism. In the case of 1,25-Dihydroxyvitamin D3-induced differentiation to monocytes, IRF-1 loss did not affect D3-induced expression of CD38, CD11b, and CD14, and G1/0 arrest; but inhibited ROS production. Our data suggest that IRF-1 is inessential for differentiation but upregulates p47phox expression for mature-cell ROS production.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- Department of Biomedical SciencesCornell UniversityIthacaNYUSA
- City University of Hong Kong ShenZhen Research InstituteShenZhenChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Jianbo Yue
- City University of Hong Kong ShenZhen Research InstituteShenZhenChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Andrew Yen
- Department of Biomedical SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
6
|
Mottahedeh J, Haffner MC, Grogan TR, Hashimoto T, Crowell PD, Beltran H, Sboner A, Bareja R, Esopi D, Isaacs WB, Yegnasubramanian S, Rettig MB, Elashoff DA, Platz EA, De Marzo AM, Teitell MA, Goldstein AS. CD38 is methylated in prostate cancer and regulates extracellular NAD . Cancer Metab 2018; 6:13. [PMID: 30258629 PMCID: PMC6150989 DOI: 10.1186/s40170-018-0186-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cell metabolism requires sustained pools of intracellular nicotinamide adenine dinucleotide (NAD+) which is maintained by a balance of NAD+ hydrolase activity and NAD+ salvage activity. We recently reported that human prostate cancer can be initiated following oncogene expression in progenitor-like luminal cells marked by low expression of the NAD+-consuming enzyme CD38. CD38 expression is reduced in prostate cancer compared to benign prostate, suggesting that tumor cells may reduce CD38 expression in order to enhance pools of NAD+. However, little is known about how CD38 expression is repressed in advanced prostate cancer and whether CD38 plays a role in regulating NAD+ levels in prostate epithelial cells. METHODS CD38 expression, its association with recurrence after prostatectomy for clinically localized prostate cancer, and DNA methylation of the CD38 promoter were evaluated in human prostate tissues representing various stages of disease progression. CD38 was inducibly over-expressed in benign and malignant human prostate cell lines in order to determine the effects on cell proliferation and levels of NAD+ and NADH. NAD+ and NADH were also measured in urogenital tissues from wild-type and CD38 knockout mice. RESULTS CD38 mRNA expression was reduced in metastatic castration-resistant prostate cancer compared to localized prostate cancer. In a large cohort of men undergoing radical prostatectomy, CD38 protein expression was inversely correlated with recurrence. We identified methylation of the CD38 promoter in primary and metastatic prostate cancer. Over-expression of wild-type CD38, but not an NAD+ hydrolase-deficient mutant, depleted extracellular NAD+ levels in benign and malignant prostate cell lines. However, expression of CD38 did not significantly alter intracellular NAD+ levels in human prostate cell lines grown in vitro and in urogenital tissues isolated from wild-type and CD38 knockout mice. CONCLUSIONS CD38 protein expression in prostate cancer is associated with risk of recurrence. Methylation results suggest that CD38 is epigenetically regulated in localized and metastatic prostate cancer tissues. Our study provides support for CD38 as a regulator of extracellular, but not intracellular, NAD+ in epithelial cells. These findings suggest that repression of CD38 by methylation may serve to increase the availability of extracellular NAD+ in prostate cancer tissues.
Collapse
Affiliation(s)
- Jack Mottahedeh
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Michael C. Haffner
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tristan R. Grogan
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA USA
| | - Takao Hashimoto
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Preston D. Crowell
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA USA
| | - Himisha Beltran
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA
| | - David Esopi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
| | - William B. Isaacs
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Departments of Oncology, Pathology, and Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Matthew B. Rettig
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA USA
| | - David A. Elashoff
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
| | - Elizabeth A. Platz
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Urology and the James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michael A. Teitell
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|
7
|
MacDonald RJ, Shrimp JH, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep 2017; 7:17406. [PMID: 29234114 PMCID: PMC5727258 DOI: 10.1038/s41598-017-17720-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
CD38 is an ectoenzyme and receptor with key physiological roles. It metabolizes NAD+ to adenosine diphosphate ribose (ADPR) and cyclic ADPR, regulating several processes including calcium signalling. CD38 is both a positive and negative prognostic indicator in leukaemia. In all-trans retinoic acid (RA)-induced differentiation of acute promyelocytic leukaemia and HL-60 cells, CD38 is one of the earliest and most prominently upregulated proteins known. CD38 overexpression enhances differentiation, while morpholino- and siRNA-induced knockdown diminishes it. CD38, via Src family kinases and adapters, interacts with a MAPK signalling axis that propels differentiation. Motivated by evidence suggesting the importance of CD38, we sought to determine whether it functions via dimerization. We created a linker based on the suicide substrate arabinosyl-2′-fluoro-2′-deoxy NAD+ (F-araNAD+), dimeric F-araNAD+, to induce homodimerization. CD38 homodimerization did not affect RA-induced differentiation. Probing the importance of CD38 further, we created HL-60 cell lines with CRISPR/Cas9-mediated CD38 truncations. Deletion of its enzymatic domain did not affect differentiation. Apart from increased RA-induced CD11b expression, ablation of all but the first six amino acids of CD38 affected neither RA-induced differentiation nor associated signalling. Although we cannot discount the importance of this peptide, our study indicates that CD38 is not necessary for RA-induced differentiation.
Collapse
Affiliation(s)
- Robert J MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017; 7:14327. [PMID: 29085021 PMCID: PMC5662654 DOI: 10.1038/s41598-017-14523-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Collapse
|
9
|
Huang B, Ling Y, Lin J, Fang Y, Wu J. Mechanical regulation of calcium signaling of HL-60 on P-selectin under flow. Biomed Eng Online 2016; 15:153. [PMID: 28155729 PMCID: PMC5260098 DOI: 10.1186/s12938-016-0271-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Binding of P-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) makes neutrophils roll on and adhere to inflammatory site. Intracellular calcium bursting of adhered neutrophils is a key event for subsequent arresting firmly at and migrating into the injured tissue. But, it remains unclear how the cytoplasmic calcium signaling of the cells were modulated by the fluid shear stress. Here, we focus on mechanical regulation of P-selectin-induced calcium signaling of neutrophil-like HL-60 cells under flow. Methods HL-60 cells were loaded with Fluo-4 AM for fluorescent detection of intracellular calcium ion, and then perfused over P-selectin-coated bottom of parallel-plate flow chamber. The intracellular calcium concentration of firmly adhered cell under flow was observed in real time by fluorescence microscopy. Results Force triggered, enhanced and quickened cytoplasmic calcium bursting of HL-60 on P-selectin. This force-dependent calcium signaling was induced by the immobilized P-selectin coated on substrates in absence of chemokine. Increasing of both shear stress and P-selectin concentration made the calcium signaling intensive, through quickening the cytosolic calcium release and upregulating both probability and peak level of calcium signaling. Conclusions Immobilized P-selectin-induced calcium signaling of HL-60 cells is P-selectin concentration- and mechanical force-dependent. The higher both the P-selectin concentration and the external force on cell, the more intensive the calcium signaling. It might provide a novel insight into the mechano-chemical regulation mechanism for intracellular signaling pathways induced by adhesion molecules.
Collapse
Affiliation(s)
- Bing Huang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yingchen Ling
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiangguo Lin
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Ying Fang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jianhua Wu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Teimourian S, Moghanloo E. Thwarting PTEN Expression by siRNA Augments HL-60 Cell Differentiation to Neutrophil-Like Cells by DMSO and ATRA. DNA Cell Biol 2016; 35:591-598. [PMID: 27617494 DOI: 10.1089/dna.2016.3317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal cell differentiation, in particular suppression of terminal cell differentiation, exists in all tumors. Therapeutic interventions to restore terminal differentiation ("differentiation therapy") are a very attractive way to treat cancer, especially leukemia. A variety of chemicals stimulates differentiation of leukemic cells, such as dimethyl sulfoxide (DMSO) and all-trans retinoic acid (ATRA). Tumor suppressor genes have a vital role in the gateway to terminal cell differentiation. In this study, we inhibited PTEN tumor suppressor gene expression by siRNA to investigate the effect of potentiating cell survival and inhibiting apoptosis on HL-60 cell differentiation by DMSO and ATRA. Our results show that PTEN siRNA increases HL-60 cell differentiation in the presence of DMSO and ATRA. At the same time, the presence of siRNA hampers accumulation of apoptotic cells during incubation. Our study suggests that manipulation of PTEN could hold promise for enhancing efficacy of differentiation therapy of acute myelogenous leukemia.
Collapse
Affiliation(s)
- Shahram Teimourian
- 1 Department of Medical Genetics, Iran University of Medical Sciences , Tehran, Iran .,2 Department of Human Genetics, Tehran University of Medical Sciences , Tehran, Iran .,3 Department of Infectious Diseases, Pediatrics Infectious Diseases Research Center, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Ehsan Moghanloo
- 2 Department of Human Genetics, Tehran University of Medical Sciences , Tehran, Iran .,3 Department of Infectious Diseases, Pediatrics Infectious Diseases Research Center, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran .,4 Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences , Kashan, Iran
| |
Collapse
|
11
|
Li B, Gao MH, Chu XM, Teng L, Lv CY, Yang P, Yin QF. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol 2015; 749:107-14. [PMID: 25617793 DOI: 10.1016/j.ejphar.2015.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
Abstract
The anticancer effects and mechanism of all-trans retinoic acid (ATRA), C-phycocyanin (C-PC) or ATRA+C-PC on the growth of A549 cells were studied in in vitro and in vivo experiments. The effects of C-PC and ATRA on the growth of A549 cells were determined. The expression of CDK-4 and caspase-3, and the cellular apoptosis levels were detected. The tumor model was established by subcutaneous injection of A549 cells to the left axilla of the NU/NU mice. The weights of tumor and the spleen were tested. The viabilities of T-cells and spleen cells, TNF levels, the expression of Bcl-2 protein and Cyclin D1 gene were examined. Results showed both C-PC and ATRA could inhibit the growth of tumor cells in vivo and in vitro. ATRA+C-PC cooperatively showed a higher antitumor activity. The dosage of ATRA was reduced when it was administered with C-PC together, and the toxicity was reduced as well. ATRA+C-PC could decrease CDK-4 but increase caspase-3 protein expression level and induce cell apoptosis. ATRA alone could lower the activities of T lymphocytes and spleen weights, but the combination with C-PC could effectively promote viability of T cells and spleen. C-PC+ATRA could up-regulate TNF, and down-regulate Bcl-2 and Cyclin D1 gene. The combination might inhibit tumor growth by inhibiting the progress of cell cycle, inducing cell apoptosis and enhancing the body immunity.
Collapse
Affiliation(s)
- Bing Li
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China.
| | - Lei Teng
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Cong-Yi Lv
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Peng Yang
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| | - Qi-Feng Yin
- Department of Biology, Medical College of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
12
|
Congleton J, Shen M, MacDonald R, Malavasi F, Yen A. Phosphorylation of c-Cbl and p85 PI3K driven by all-trans retinoic acid and CD38 depends on Lyn kinase activity. Cell Signal 2014; 26:1589-97. [PMID: 24686085 DOI: 10.1016/j.cellsig.2014.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/30/2022]
Abstract
The leukocyte antigen CD38 is expressed after all-trans retinoic acid (ATRA) treatment in HL-60 myelogenous leukemia cells and promotes induced myeloid differentiation when overexpressed. We found that Vav1 and SLP-76 associate with CD38 in two cell lines, and that these proteins complex with Lyn, a Src family kinase (SFK) upregulated by ATRA. SFK inhibitors PP2 and dasatinib, which enhance ATRA-induced differentiation, were used to evaluate the involvement of Lyn kinase activity in CD38-driven signaling. Cells treated with ATRA for 48h followed by one hour of PP2 incubation show SFK/Lyn kinase inhibition. We observed that Lyn inhibition blocked c-Cbl and p85/p55 PI3K phosphorylation driven by the anti-CD38 agonistic mAb IB4 in ATRA-treated HL-60 cells and untreated CD38+ transfectants. In contrast, cells cultured for 48h following concurrent ATRA and PP2 treatment did not show Lyn inhibition, suggesting ATRA regulates the effects on Lyn. 48h of co-treatment preserved CD38-stimulated c-Cbl and p85/p55 PI3K phosphorylation indicating Lyn kinase activity is necessary for these events. In contrast another SFK inhibitor (dasatinib) which blocks Lyn activity with ATRA co-treatment prevented ATRA-induced c-Cbl phosphorylation and crippled p85 PI3K phosphorylation, indicating Lyn kinase activity is important for ATRA-propelled events potentially regulated by CD38. We found that loss of Lyn activity coincided with a decrease in Vav1/Lyn/CD38 and SLP-76/Lyn/CD38 interaction, suggesting these molecules form a complex that regulates CD38 signaling. Lyn inhibition also reduced Lyn and CD38 binding to p85 PI3K, indicating CD38 facilitates a complex responsible for PI3K phosphorylation. Therefore, Lyn kinase activity is important for CD38-associated signaling that may drive ATRA-induced differentiation.
Collapse
Affiliation(s)
- Johanna Congleton
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Miaoqing Shen
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | - Robert MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino Medical School, Via Santena 19, 10126 Torino, Italy
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Yang F, Li B, Chu XM, Lv CY, Xu YJ, Yang P. Molecular mechanism of inhibitory effects of C-phycocyanin combined with all-trans-retinoic acid on the growth of HeLa cells in vitro. Tumour Biol 2014; 35:5619-28. [PMID: 24563337 DOI: 10.1007/s13277-014-1744-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
We studied the effects of all-trans-retinoic acid (ATRA), C-phycocyanin (C-PC), or ATRA+C-PC on the growth of cervical cells (HeLa cells), cell cycle distribution, and apoptosis. The anticancer mechanism of the drug combination was revealed. MTT assay was adopted to determine the effects of C-PC and ATRA on the growth of HeLa cells. The expression quantities of cyclin-dependent kinase (CDK) 4, cyclin D1, Bcl-2, caspase-3, and CD59 were determined by in situ hybridization, immunofluorescence, immunohistochemistry staining, Western blot, and RT-PCR. TUNEL assay was adopted to determine the cellular apoptosis levels. Both C-PC and ATRA could inhibit the growth of HeLa cells, and the combination of ATRA+C-PC functioned cooperatively to induce apoptosis in HeLa cells. The dosage of ATRA was reduced when it cooperated with C-PC to reduce the toxicity. ATRA treated with C-PC could induce more cell cycle arrests than the single drug used by decrease in cyclin D1 and CDK4 expression. The combination of the two drugs could upregulate caspase-3 and downregulate the Bcl-2 gene and induce cell apoptosis. Moreover, the combination therapy has an important immunological significance in decreased expression of the CD59 protein. Singly, C-PC or ATRA could inhibit the growth of HeLa cells, and the effects of treatment were further enhanced in the combination group. In combination with C-PC, the dosage of ATRA was effectively reduced. The C-PC + ATRA combination might take effect by inhibiting the progress of the cell cycle, inducing cell apoptosis and promoting complement-mediated cytolysis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biology, Medical College of Qingdao University, 38 Dengzhou Road, Qingdao, 266021, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
14
|
Jiang H, Sherwood R, Zhang S, Zhu X, Liu Q, Graeff R, Kriksunov IA, Lee HC, Hao Q, Lin H. Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry. Anal Biochem 2012; 433:218-26. [PMID: 23123429 DOI: 10.1016/j.ab.2012.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/16/2022]
Abstract
Protein ADP-ribosylation, including mono- and poly-ADP-ribosylation, is increasingly recognized to play important roles in various biological pathways. Molecular understanding of the functions of ADP-ribosylation requires the identification of the sites of modification. Although tandem mass spectrometry (MS/MS) is widely recognized as an effective means for determining protein modifications, identification of ADP-ribosylation sites has been challenging due to the labile and hydrophilic nature of the modification. Here we applied precursor ion scanning-triggered MS/MS analysis on a hybrid quadrupole linear ion trap mass spectrometer for selectively detecting ADP-ribosylated peptides and determining the auto-ADP-ribosylation sites of CD38 (cluster of differentiation 38) E226D and E226Q mutants. CD38 is an enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to ADP-ribose. Here we show that NAD can covalently label CD38 E226D and E226Q mutants but not wild-type CD38. In this study, we have successfully identified the D226/Q226 and K129 residues of the two CD38 mutants being the ADP-ribosylation sites using precursor ion scanning hybrid quadrupole linear ion trap mass spectrometry. The results offer insights about the CD38 enzymatic reaction mechanism. The precursor ion scanning method should be useful for identifying the modification sites of other ADP-ribosyltransferases such as poly(ADP-ribose) polymerases.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen X, Liu Y, Zhang CY, Zen K. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One 2012; 7:e46957. [PMID: 23077538 PMCID: PMC3471944 DOI: 10.1371/journal.pone.0046957] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022] Open
Abstract
Cell-secreted miRNAs are highly stable and can serve as biomarkers for various diseases and signaling molecules in intercellular communication. The mechanism underlying the stability of circulating miRNAs, however, remains incompletely understood. Here we show that Argonaute 2 (Ago2) complexes and microvesicles (MVs) provide specific and non-specific protection for miRNA in cell-secreted MVs, respectively. First, the resistance of MV-encapsulated miRNAs to RNaseA was both depended on intact vesicular structure of MVs and protease-sensitive. Second, an immunoprecipitation assay using a probe complementary to human miR-16, a miRNA primarily located in the MVs and showed a strong, protease-sensitive resistance to RNaseA, identified Ago2 as a major miR-16-associated protein. Compared with protein-free miR-16, Ago2-associated miR-16 was resistant to RNaseA in a dose- and time-dependent fashion. Third, when the miR-16/Ago2 complex was disrupted by trypaflavine, the resistance of miR-16 to RNaseA was decreased. In contrast, when the association of miR-16 with the Ago2 complexes was increased during cell apoptosis, although the total amount of miR-16 and Ago2 remained unchanged, the resistance of miR-16 to RNaseA in the MVs was enhanced. A similar correlation between the increase of miR-223/Ago2 association and the resistance of miR-223 against RNaseA was observed during all trans retinoic acid (ATRA)-induced cell differentiation of promyelocytic HL60 cells. In conclusion, the association of miRNAs with Ago2 complexes, an event that is linked to cell functional status, plays a critical role in stabilizing the circulating miRNAs in cell-secreted MVs.
Collapse
Affiliation(s)
- Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dihan Zhu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Huang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Bian
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- CMBP, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuan Liu
- CMBP, Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (C-YZ); (KZ)
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (C-YZ); (KZ)
| |
Collapse
|
16
|
Misirlic Dencic S, Poljarevic J, Vilimanovich U, Bogdanovic A, Isakovic AJ, Kravic Stevovic T, Dulovic M, Zogovic N, Isakovic AM, Grguric-Sipka S, Bumbasirevic V, Sabo T, Trajkovic V, Markovic I. Cyclohexyl Analogues of Ethylenediamine Dipropanoic Acid Induce Caspase-Independent Mitochondrial Apoptosis in Human Leukemic Cells. Chem Res Toxicol 2012; 25:931-9. [DOI: 10.1021/tx3000329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sonja Misirlic Dencic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Urosh Vilimanovich
- Institute of Histology and Embryology,
Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic
of Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra J. Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic Stevovic
- Institute of Histology and Embryology,
Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Dulovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena Zogovic
- Institute for Biological Research
“Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Andjelka M. Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Vladimir Bumbasirevic
- Institute of Histology and Embryology,
Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tibor Sabo
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia,
| | - Vladimir Trajkovic
- Institute
of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivanka Markovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012; 26:1301-12. [PMID: 22289918 DOI: 10.1038/leu.2011.369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD49d and CD38 are independent negative prognostic markers in chronic lymphocytic leukemia (CLL). Their associated expression marks a disease subset with a highly aggressive clinical course. Here, we demonstrate a constitutive physical association between the CD49d/CD29 integrin complex and CD38 in primary CLL cells and B-cell lines by (i) cocapping, (ii) coimmunoprecipitation and (iii) cell adhesion experiments using CD49d-specific substrates (vascular-cell adhesion molecule-1 or CS-1/H89 fibronectin fragments). The role of CD38 in CD49d-mediated cell adhesion was studied in CD49d(+)CD38(+) and CD49d(+)CD38(-) primary CLL cells, and confirmed using CD38 transfectants of the originally CD49d(+)CD38(-) CLL-derived cell line Mec-1. Results indicate that CD49d(+)CD38(+) cells adhered more efficiently onto CD49d-specific substrates than CD49d(+)CD38(-) cells (P < 0.001). Upon adhesion, CD49d(+)CD38(+) cells underwent distinctive changes in cell shape and morphology, with higher levels of phosphorylated Vav-1 than CD49d(+)CD38(-) cells (P = 0.0006) and a more complex distribution of F-actin to the adhesion sites. Lastly, adherent CD49d(+)CD38(+) cells were more resistant to serum-deprivation-induced (P < 0.001) and spontaneous (P = 0.03) apoptosis than the CD49d(+)CD38(-) counterpart. Altogether, our results point to a direct role for CD38 in enhancing CD49d-mediated adhesion processes in CLL, thus providing an explanation for the negative clinical impact exerted by these molecules when coexpressed in neoplastic cells.
Collapse
|
18
|
Src inhibitors, PP2 and dasatinib, increase retinoic acid-induced association of Lyn and c-Raf (S259) and enhance MAPK-dependent differentiation of myeloid leukemia cells. Leukemia 2011; 26:1180-8. [PMID: 22182854 PMCID: PMC3310950 DOI: 10.1038/leu.2011.390] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All-trans-retinoic-acid (ATRA)-induced differentiation of human myeloid leukemia cells is characterized by persistent MAPK signaling. Fragmentary data suggests Src family kinase (SFK) inhibitors enhance differentiation and thus have potential therapeutic value. The present study shows that SFK inhibitors PP2 and dasatinib enhance aspects of MAPK signaling and regulate a panel of differentiation markers including CD11b and p47phox. HL-60 and NB4 myeloid leukemia cells show accelerated ATRA-induced G1/0 arrest/differentiation with inhibitor co-treatment. We also identified components of a Lyn- and c-Raf-containing MAPK signaling complex augmented by the inhibitors. PP2 and dasatinib increased ATRA-induced expression of Lyn and c-Raf (total and c-RafpS259) and their interaction. The Lyn-associated serine/threonine kinase CK2 also complexed with c-Raf and c-RafpS259, and the KSR1 scaffold protein bound c-Raf, Lyn, and ERK. c-Raf/ERK association was increased by the inhibitors, which is significant since ERK may cause c-Raf C-terminal domain (CTD) phosphorylation in a putative feedback mechanism. Consistent with this, inhibitor treatment caused more CTD phosphorylation. Lyn knockdown decreased c-Raf CTD and S259 phosphorylation. This is the first evidence suggesting SFK inhibitors enhance ATRA-induced differentiation through a possible feedback loop involving KSR1-scaffolded c-Raf and ERK complexed with Lyn and CK2.
Collapse
|
19
|
Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S. Vav1 in differentiation of tumoral promyelocytes. Cell Signal 2011; 24:612-20. [PMID: 22133616 DOI: 10.1016/j.cellsig.2011.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
The multidomain protein Vav1, in addition to promote the acquisition of maturation related properties by normal hematopoietic cells, is a key player in the ATRA- and PMA-induced completion of the differentiation program of tumoral myeloid precursors derived from APL. This review is focussed on the role of Vav1 in differentiating promyelocytes, as part of interconnected networks of functionally related proteins ended to regulate different aspects of myeloid maturation. The role of Vav1 in determining actin cytoskeleton reorganization alternative to the best known function as a GEF for small G proteins is discussed, as well as the binding of Vav1 with cytoplasmic and nuclear signaling molecules which provides a new perspective in the modulation of nuclear architecture and activity. In particular, new hints are provided on the ability of Vav1 to determine the nuclear amount of proteins implicated in modulating mRNA production and stability and in regulating the ATRA-dependent protein expression also by direct interaction with transcription factors known to drive the ATRA-induced maturation of myeloid cells. The reviewed findings summarize the major advances in the understanding of additional, non conventional functions connected with the vast interactive potential of Vav1.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
20
|
Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118:3470-8. [PMID: 21765022 PMCID: PMC3574275 DOI: 10.1182/blood-2011-06-275610] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the host's microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/physiology
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Research/trends
- Time Factors
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Fabio Malavasi
- Department of Genetics, Biology and Biochemistry, University of Torino School of Medicine, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Park SH, Lim JS, Jang KL. All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27. Cancer Lett 2011; 310:232-9. [PMID: 21803488 DOI: 10.1016/j.canlet.2011.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
We here present a new anti-tumor mechanism of all-trans retinoic acid (ATRA). ATRA induced several biomarkers of cellular senescence including irreversible G1 arrest, morphological changes, senescence-associated β-galactosidase, and heterochromatin foci in HepG2 cells. ATRA also upregulated levels of p16, p21, and p27 which lead to activation of Rb and subsequent inactivation of E2F1. These effects were abolished by the RNA interference-mediated silencing of p16, p21, and p27. Moreover, ATRA failed to induce cellular senescence in Huh7 and HCT116, in which p16, p21, and p27 were not upregulated by ATRA, confirming that ATRA induces cellular senescence via upregulation of p16, p21, and p27.
Collapse
Affiliation(s)
- Sun-Hye Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|