1
|
Shirakawa J, Ntege EH, Takemura M, Miyamoto S, Kawano T, Sampei C, Kawabata H, Nakamura H, Sunami H, Hayata T, Shimizu Y. Exploring SSEA3 as an emerging biomarker for assessing the regenerative potential of dental pulp-derived stem cells. Regen Ther 2024; 26:71-79. [PMID: 38828011 PMCID: PMC11139766 DOI: 10.1016/j.reth.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Background Human dental pulp-derived stem cells (hDPSCs) have emerged as a promising source for adult stem cell-based regenerative medicine. Stage-specific embryonic antigen 3 (SSEA3) is a cell surface marker associated with Multilineage-differentiating stress-enduring (Muse) cells, a subpopulation of human bone marrow-derived stem cells (hBMSCs), known for their potent regenerative potential and safety profile. In this study, we investigated the influence of the prolonged culture period and the number of culture passages on the regenerative capacity of hDPSCs and explored the association between SSEA3 expression and their regenerative abilities. Methods hDPSCs were isolated and cultured for up to 20 passages. Cell proliferation, migration, and osteogenic, adipogenic and neurogenic differentiation potential were assessed at passages 5, 10, and 20. Flow cytometry and immunofluorescence were employed to analyze SSEA3 expression. RNA sequencing (RNA-seq) was performed on SSEA3-positive and SSEA3-negative hDPSCs to identify differentially expressed genes and associated pathways. Results Our findings demonstrated a progressive decline in hDPSCs proliferation and migration capacity with increasing passage number. Conversely, cell size exhibited a positive correlation with passage number. Early passage hDPSCs displayed superior osteogenic and adipogenic differentiation potential. Notably, SSEA3 expression exhibited a significant negative correlation with passage numbers, reflecting the observed decline in differentiation capacity. RNA-seq analysis revealed distinct transcriptional profiles between SSEA3-positive and SSEA3-negative hDPSCs. SSEA3-positive cells displayed upregulation of genes associated with ectodermal differentiation and downregulation of genes involved in cell adhesion. Conclusions This study elucidates the impact of passaging on hDPSC behavior and suggests SSEA3 as a valuable biomarker for evaluating stemness and regenerative potential. SSEA3-positive hDPSCs, functionally analogous to Muse cells, represent a promising cell population for developing targeted regenerative therapies with potentially improved clinical outcomes.
Collapse
Affiliation(s)
- Jumpei Shirakawa
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Edward H. Ntege
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Masuo Takemura
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiro Kawano
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Hayato Kawabata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
2
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
3
|
Smolinska A, Chodkowska M, Kominek A, Janiec J, Piwocka K, Sulejczak D, Sarnowska A. Stemness properties of SSEA-4+ subpopulation isolated from heterogenous Wharton's jelly mesenchymal stem/stromal cells. Front Cell Dev Biol 2024; 12:1227034. [PMID: 38455073 PMCID: PMC10917976 DOI: 10.3389/fcell.2024.1227034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
Background: High heterogeneity of mesenchymal stem/stromal cells (MSCs) due to different degrees of differentiation of cell subpopulations poses a considerable challenge in preclinical studies. The cells at a pluripotent-like stage represent a stem cell population of interest for many researchers worldwide, which is worthy of identification, isolation, and functional characterization. In the current study, we asked whether Wharton's jelly-derived MSCs (WJ-MSCs) which express stage-specific embryonic antigen-4 (SSEA-4) can be considered as a pluripotent-like stem cell population. Methods: SSEA-4 expression in different culture conditions was compared and the efficiency of two cell separation methods were assessed: Magnetic Activated Cell Sorting (MACS) and Fluorescence Activated Cell Sorting (FACS). After isolation, SSEA-4+ cells were analyzed for the following parameters: the maintenance of the SSEA-4 antigen expression after cell sorting, stem cell-related gene expression, proliferation potential, clonogenicity, secretome profiling, and the ability to form spheres under 3D culture conditions. Results: FACS allowed for the enrichment of SSEA-4+ cell content in the population that lasted for six passages after sorting. Despite the elevated expression of stemness-related genes, SSEA-4+ cells neither differed in their proliferation and clonogenicity potential from initial and negative populations nor exhibited pluripotent differentiation repertoire. SSEA-4+ cells were observed to form smaller spheroids and exhibited increased survival under 3D conditions. Conclusion: Despite the transient expression of stemness-related genes, our findings could not fully confirm the undifferentiated pluripotent-like nature of the SSEA-4+ WJ-MSC population cultured in vitro.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Janiec
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Tanaka A, Hayano S, Nagata M, Kosami T, Wang Z, Kamioka H. Ruxolitinib altered IFN-β induced necroptosis of human dental pulp stem cells during osteoblast differentiation. Arch Oral Biol 2023; 155:105797. [PMID: 37633030 DOI: 10.1016/j.archoralbio.2023.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE This study aimed to evaluate the role of ruxolitinib in the interferon beta (IFN-β) mediated osteoblast differentiation using human dental pulp stem cells (hDPSCs). DESIGN hDPSCs from five deciduous teeth of healthy patients were stimulated by adding human recombinant IFN-β protein (1 or 2 ng/ml) to the osteogenic differentiation induction medium. Substrate formation was determined using Alizarin Red staining, calcium concentration, and osteoblast marker expression levels. Ruxolitinib was used to inhibit the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway. Apoptosis was detected using terminal deoxynucleotidyl nick-end labeling (TUNEL) staining, and necroptosis was detected using propidium iodide staining and phosphorylated mixed lineage kinase domain-like protein (pMLKL) expression. RESULTS In the IFN-β-treated group, substrate formation was inhibited by a reduction in alkaline phosphatase (ALP) expression in a concentration-dependent manner. Although the proliferation potency was unchanged between the IFN-β-treated and control groups, the cell number was significantly reduced in the experimental group. TUNEL-positive cell number was not significantly different; however, the protein level of necroptosis markers, interleukin-6 (IL-6) and pMLKL were significantly increased in the substrate formation. Cell number and ALP expression level were improved in the group administered ruxolitinib, a JAK-STAT inhibitor. Additionally, ruxolitinib significantly suppressed IL-6 and pMLKL levels. CONCLUSION Ruxolitinib interfered with the IFN-β-mediated necroptosis and osteogenic differentiation via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Atsuko Tanaka
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan.
| | - Masayo Nagata
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takahiro Kosami
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Namjoynik A, Islam MA, Islam M. Evaluating the efficacy of human dental pulp stem cells and scaffold combination for bone regeneration in animal models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:132. [PMID: 37189187 DOI: 10.1186/s13287-023-03357-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth (SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteogenic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for bone regeneration in animal bone defect models. METHODOLOGY This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also extracted for meta-analysis. RESULTS Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis. 90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p < 0.0001) in experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% CI 1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% CI 2.612-5.246) while % BV/TV (SMD: 2.693, 95% CI - 0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The funnel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also indicated that the results generated in this meta-analysis are robust and reliable. CONCLUSION This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.
Collapse
Affiliation(s)
- Amin Namjoynik
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK
| | - Md Asiful Islam
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad Islam
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK.
| |
Collapse
|
6
|
Lopez-Lozano AP, Arevalo-Niño K, Gutierrez-Puente Y, Montiel-Hernandez JL, Urrutia-Baca VH, Del Angel-Mosqueda C, De la Garza-Ramos MA. SSEA-4 positive dental pulp stem cells from deciduous teeth and their induction to neural precursor cells. Head Face Med 2022; 18:9. [PMID: 35236383 PMCID: PMC8889676 DOI: 10.1186/s13005-022-00313-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stage-specific embryonic antigen-4 (SSEA-4) is a marker for the identification of multipotent embryonic cells. It is also positive in neuroepithelial cells, precursor neural cells (NPC), and human dental pulp cells. The aim of this study was to evaluate the potential morphodifferentiation and histodifferentiation to NPC of SSEA-4 positive stem cells from human exfoliated deciduous teeth (SHED). METHODS A SHED population in culture, positive to SSEA-4, was obtained by magnetic cell separation. The cells were characterized by immunohistochemistry and flow cytometry. Subsequently, a neurosphere assay was performed in a medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF); afterward, cells were neurodifferenciated with a neurobasal medium. Finally, indirect immunohistochemistry was performed to identify neuronal markers. RESULTS The morphological and histological changes in the SSEA-4 positive SHEDs were observed after induction with epidermal and fibroblast growth factors in neurobasal culture medium. At the end of induction, the markers Nestin, TuJ-1, and GFAP were identified. CONCLUSIONS The findings show that SSEA-4 positive SHEDs have a behavior similar to neuronal precursor cells. Our findings indicate that the dental pulp of deciduous teeth is a promising source for regeneration therapies associated with neurodegenerative diseases or peripheral nerve alterations.
Collapse
Affiliation(s)
- Ada Pricila Lopez-Lozano
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Nuevo Leon, San Nicolas de los Garza, Mexico.,Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Monterrey, Mexico
| | - Katiushka Arevalo-Niño
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Yolanda Gutierrez-Puente
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Jose Luis Montiel-Hernandez
- Facultad De Farmacia, Coordinacion De Posgrado, Universidad Autonoma del Estado de Morelos, Morelos, Cuernavaca, Mexico
| | - Victor Hugo Urrutia-Baca
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Monterrey, Mexico
| | | | - Myriam Angelica De la Garza-Ramos
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Nuevo Leon, San Nicolas de los Garza, Mexico. .,Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Monterrey, Mexico. .,Facultad de Odontología, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Monterrey, Mexico. .,Facultad de Odontología/CIDICS, Universidad Autonoma de Nuevo Leon Monterrey, San Nicolás de los Garza, Mexico.
| |
Collapse
|
7
|
Dental Pulp Stem Cell Heterogeneity: Finding Superior Quality "Needles" in a Dental Pulpal "Haystack" for Regenerative Medicine-Based Applications. Stem Cells Int 2022; 2022:9127074. [PMID: 35027930 PMCID: PMC8752304 DOI: 10.1155/2022/9127074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.
Collapse
|
8
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs’ heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
9
|
Dentinal Lesions in Dogs with Dental Calculus. J Comp Pathol 2021; 185:8-17. [PMID: 34119235 DOI: 10.1016/j.jcpa.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Histopathological changes in tooth structures in dogs with calculus have not been described. The aim of this study was to evaluate the frequency of various histopathological changes in the dentine of teeth that had been surgically extracted from dogs with calculus. Data including breed, sex, age, reason for tooth extraction and dental history were obtained for each animal. A total of 158 teeth (45 incisors, 31 canines, 35 premolars and 47 molars) with calculus were extracted from 74 dogs of various ages and breeds. The teeth were decalcified, processed in paraffin wax and stained with haematoxylin and eosin for histopathological analysis. Of the 158 analysed teeth, 71 had dentinal changes, including 45 with external resorption cavities, 11 with osteodentine, six with internal resorption cavities, four with tertiary dentine, four with dentinal degeneration or fragmentation, and one with predentine degeneration or fragmentation. Canine teeth were the least commonly affected. Areas of dentinal degeneration or fragmentation unrelated to resorption cavities were only seen in the incisor and molar teeth. Dentinal changes and their frequencies were similar among the incisor, premolar and molar teeth. The presence or extension of dental calculus was not associated with the type or frequency of dentinal changes.
Collapse
|
10
|
Alaidaroos NYA, Alraies A, Waddington RJ, Sloan AJ, Moseley R. Differential SOD2 and GSTZ1 profiles contribute to contrasting dental pulp stem cell susceptibilities to oxidative damage and premature senescence. Stem Cell Res Ther 2021; 12:142. [PMID: 33596998 PMCID: PMC7890809 DOI: 10.1186/s13287-021-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being advocated as viable cell sources for regenerative medicine-based therapies. However, significant heterogeneity in DPSC expansion and multi-potency capabilities are well-established, attributed to contrasting telomere profiles and susceptibilities to replicative senescence. As DPSCs possess negligible human telomerase (hTERT) expression, we examined whether intrinsic differences in the susceptibilities of DPSC sub-populations to oxidative stress-induced biomolecular damage and premature senescence further contributed to this heterogeneity, via differential enzymic antioxidant capabilities between DPSCs. Methods DPSCs were isolated from human third molars by differential fibronectin adhesion, and positive mesenchymal (CD73/CD90/CD105) and negative hematopoietic (CD45) stem cell marker expression confirmed. Isolated sub-populations were expanded in H2O2 (0–200 μM) and established as high or low proliferative DPSCs, based on population doublings (PDs) and senescence (telomere lengths, SA-β-galactosidase, p53/p16INK4a/p21waf1/hTERT) marker detection. The impact of DPSC expansion on mesenchymal, embryonic, and neural crest marker expression was assessed, as were the susceptibilities of high and low proliferative DPSCs to oxidative DNA and protein damage by immunocytochemistry. Expression profiles for superoxide dismutases (SODs), catalase, and glutathione-related antioxidants were further compared between DPSC sub-populations by qRT-PCR, Western blotting and activity assays. Results High proliferative DPSCs underwent > 80PDs in culture and resisted H2O2−induced senescence (50–76PDs). In contrast, low proliferative sub-populations exhibited accelerated senescence (4–32PDs), even in untreated controls (11-34PDs). While telomere lengths were largely unaffected, certain stem cell marker expression declined with H2O2 treatment and expansion. Elevated senescence susceptibilities in low proliferative DPSC (2–10PDs) were accompanied by increased oxidative damage, absent in high proliferative DPSCs until 45–60PDs. Increased SOD2/glutathione S-transferase ζ1 (GSTZ1) expression and SOD activities were identified in high proliferative DPSCs (10–25PDs), which declined during expansion. Low proliferative DPSCs (2–10PDs) exhibited inferior SOD, catalase and glutathione-related antioxidant expression/activities. Conclusions Significant variations exist in the susceptibilities of DPSC sub-populations to oxidative damage and premature senescence, contributed to by differential SOD2 and GSTZ1 profiles which maintain senescence-resistance/stemness properties in high proliferative DPSCs. Identification of superior antioxidant properties in high proliferative DPSCs enhances our understanding of DPSC biology and senescence, which may be exploited for selective sub-population screening/isolation from dental pulp tissues for regenerative medicine-based applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02209-9.
Collapse
Affiliation(s)
- Nadia Y A Alaidaroos
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Amr Alraies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Rachel J Waddington
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Alastair J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Ryan Moseley
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
11
|
Jamal M, Bashir A, Al-Sayegh M, Huang GTJ. Oral tissues as sources for induced pluripotent stem cell derivation and their applications for neural, craniofacial, and dental tissue regeneration. CELL SOURCES FOR IPSCS 2021:71-106. [DOI: 10.1016/b978-0-12-822135-8.00007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Three-dimensional tissue engineering-based Dentin/Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2019; 36:229-248. [PMID: 31791732 DOI: 10.1016/j.dental.2019.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Two-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool). METHODS DentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1-8mM; TEGDMA: 0.5-5mM) and bacterial components (LPS: 1μg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers. RESULTS DentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2-4mM)- HEMA-induced cytotoxicity. SIGNIFICANCE DentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.
Collapse
Affiliation(s)
- Christina Hadjichristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Ioannis Bonovolias
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece.
| |
Collapse
|
13
|
Schertl P, Volk J, Perduns R, Adam K, Leyhausen G, Bakopoulou A, Geurtsen W. Impaired angiogenic differentiation of dental pulp stem cells during exposure to the resinous monomer triethylene glycol dimethacrylate. Dent Mater 2018; 35:144-155. [PMID: 30502225 DOI: 10.1016/j.dental.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) can differentiate into tissue specific lineages to support dental pulp regeneration after injuries. Triethylene glycol dimethacrylate (TEGDMA) is a widely used co-monomer in restorative dentistry with adverse effects on cellular metabolism. Aim of this study was to analyze the impact of TEGDMA on the angiogenic differentiation potential of DPSCs. METHODS DPSCs were characterized by flow cytometry. Short-term (max. 72h) cytotoxicity of TEGDMA was assessed by MTT assay. To evaluate TEGDMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of short-term non-toxic TEGDMA concentrations (0.1mM and 0.25mM). Subsequently, angiogenic differentiation was analyzed by qRT-PCR analysis of mRNA markers and in vitro spheroid sprouting assays. RESULTS DPSCs treated with 0.25mM TEGDMA revealed downregulation of angiogenesis-related marker genes PECAM1 (max. 3.8-fold), VEGF-A (max. 2.4-fold) and FLT1 (max. 2.9-fold) compared to respective untreated control. In addition, a reduction of the sprouting potential of DPSCs cultured in the presence of 0.25mM TEGDMA was detectable. Larger spheroidal structures were detectable in the untreated control in comparison to cells treated with 0.25mM TEGDMA. In contrast, TEGDMA at 0.1mM was not affecting angiogenic potential in the investigated time period (up to 28 days). SIGNIFICANCE The results of the present study show that TEGDMA concentration dependently impair the angiogenic differentiation potential of DPSCs and may affect wound healing and the formation of granulation tissue.
Collapse
Affiliation(s)
- Peter Schertl
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Knut Adam
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Gabriele Leyhausen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Athina Bakopoulou
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
14
|
Aghajani F, Kazemnejad S, Hooshmand T, Ghaempanah Z, Zarnani AH. Evaluation of immunophenotyping, proliferation and osteogenic differentiation potential of SSEA-4 positive stem cells derived from pulp of deciduous teeth. Arch Oral Biol 2018; 96:201-207. [PMID: 30296654 DOI: 10.1016/j.archoralbio.2018.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Despite the increased interest in stem cells isolated from remnant pulp of deciduous teeth, no specific marker has been yet established for them. The present study aimed to investigate whether SSEA-4 (stage-specific embryonic antigen) would be a suitable marker to isolate stem cells from Human Exfoliated Deciduous teeth (SHEDs) in order to increase its differentiation potential toward osseous tissue. DESIGN The SHEDs were isolated and the expression patterns of mesenchymal, hematopoietic and embryonic stem cell markers were assessed. The cells were then divided into two groups of SSEA-4(+) and unsorted SHEDs and the cell proliferation rate and population-doubling-time (PDT) were calculated. Subsequently, the differentiation potentials were examined through alizarin-red staining and Quantitative real time-PCR (qRT-PCR). RESULTS Isolated cells were spindle-shaped with a high expression of mesenchymal stem cell markers and weak expression of hematopoietic markers. The mean expression of Oct-4 was 68.77%±1.28. Despite similar proliferation rates between SSEA-4(+) and unsorted SHEDs, because of differences in the shape of the growth curves, PDT was lower in unsorted SHEDs (P = 0.2 × 10-4). Alizarin-red staining showed similar calcium deposition in both groups. Upon differentiation, the expression of osteocalcin was higher in unsorted SHEDs (P = 0.043), while, the expression of alkaline phosphatase was lower (P<0.001). The parathyroid hormone receptor (PTHR) expression was not significantly different (P = 0.0625). CONCLUSIONS The results of the present study revealed that SHEDs have high differentiation potentials even in the unsorted cells. Although the SSEA-4-positive SHEDs showed slightly better osteogenic potential, the differences were not abundant to link SSEA-4 expression with superior differentiation potency.
Collapse
Affiliation(s)
- Farzaneh Aghajani
- Dental Research Center, Dentistry Research Institute/Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Tabassom Hooshmand
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Ghaempanah
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Hayano S, Fukui Y, Kawanabe N, Kono K, Nakamura M, Ishihara Y, Kamioka H. Role of the Inferior Alveolar Nerve in Rodent Lower Incisor Stem Cells. J Dent Res 2018. [DOI: 10.1177/0022034518758244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In developing teeth, the sequential and reciprocal interactions between epithelial and mesenchymal tissues promote stem/progenitor cell differentiation. However, the origin of the stem/progenitor cells has been the subject of considerable debate. According to recent studies, mesenchymal stem cells originate from periarterial cells and are regulated by neurons in various organs. The present study examined the role of innervation in tooth development and rodent incisor stem/progenitor cell homeostasis. Rodent incisors continuously grow throughout their lives, and the lower incisors are innervated by the inferior alveolar nerve (IAN). In this study, we resected the IAN in adult rats, and the intact contralateral side served as a nonsurgical control. Sham control rats received the same treatment as the resected rats, except for the resection process. The extent of incisor eruption was measured, and both mesenchymal and epithelial stem/progenitor cells were visualized and compared between the IAN-resected and sham-operated groups. One week after surgery, the IAN-resected incisors exhibited a chalky consistency, and the eruption rate was decreased. Micro–computed tomography and histological analyses performed 4 wk after surgery revealed osteodentin formation, disorganized ameloblast layers, and reduced enamel thickness in the IAN-resected incisors. Immunohistochemical analysis revealed a reduction in the CD90- and LRIG1-positive mesenchymal cell ratio in the IAN-resected incisors. However, the p40-positive epithelial stem/progenitor cell ratio was comparable between the 2 groups. Thus, mesenchymal stem/progenitor cell homeostasis is more related to IAN innervation than to epithelial stem/progenitor cells. Furthermore, sensory nerve innervation influences subsequent incisor growth and formation.
Collapse
Affiliation(s)
- S. Hayano
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Y. Fukui
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - N. Kawanabe
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - K. Kono
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - M. Nakamura
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Y. Ishihara
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - H. Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
16
|
Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco Bueno D. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng 2018; 9:2041731417752766. [PMID: 29375756 PMCID: PMC5777558 DOI: 10.1177/2041731417752766] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.
Collapse
|
17
|
Zhang M, Jiang F, Zhang X, Wang S, Jin Y, Zhang W, Jiang X. The Effects of Platelet-Derived Growth Factor-BB on Human Dental Pulp Stem Cells Mediated Dentin-Pulp Complex Regeneration. Stem Cells Transl Med 2017; 6:2126-2134. [PMID: 29064632 PMCID: PMC5702518 DOI: 10.1002/sctm.17-0033] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Dentin‐pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin‐pulp tissue formation. Platelet‐derived growth factor (PDGF), a well‐known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin‐pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF‐BB on dentin‐pulp tissue regeneration by establishing PDGF‐BB gene‐modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF‐BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF‐BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF‐BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF‐BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM‐DiI‐labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF‐BB gene‐modified hDPSCs. Finally, the tissue‐engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti‐PDGF group generated more dentin‐like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp‐like connective tissue. Taken together, our data demonstrated that the PDGF‐BB possesses a powerful function in prompting stem cell‐based dentin‐pulp tissue regeneration. Stem Cells Translational Medicine2017;6:2126–2134
Collapse
Affiliation(s)
- Maolin Zhang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Fei Jiang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing, People's Republic of China
| | - Xiaochen Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Shaoyi Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Yuqin Jin
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Jung JK, Gwon GJ, Neupane S, Sohn WJ, Kim KR, Kim JY, An SY, Kwon TY, An CH, Lee Y, Kim JY, Ha JH. Bortezomib Facilitates Reparative Dentin Formation after Pulp Access Cavity Preparation in Mouse Molar. J Endod 2017; 43:2041-2047. [PMID: 29032823 DOI: 10.1016/j.joen.2017.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate in vitro and ex vivo roles of bortezomib, a proteasome inhibitor that binds to the active site of the 26S proteasome, in tertiary dentin formation. METHODS We established pulpal access cavity preparation that was treated with or without bortezomib before direct pulp capping with a calcium hydroxide-based material. We also analyzed bone morphogenetic protein (Bmp)- and Wnt-related signaling molecules using quantitative real-time polymerase chain reaction. RESULTS In the short-term observation period, the bortezomib-treated pulp specimens showed the period-altered immunolocalization patterns of nestin, CD31, and myeloperoxidase, whereas the control specimens did not. The bortezomib-treated group showed a complete dentin bridge with very few irregular tubules after 42 days. The micro-computed tomographic images showed more apparent dentin bridge structures in the treated specimens than were in the controls. Quantitative real-time polymerase chain reaction analysis showed up-regulated Bmp and Wnt. CONCLUSIONS These findings revealed that treatment with 1 μmol/L bortezomib induced reparative dentin formation that facilitated the maintenance of the integrity of the remaining pulpal tissue via early vascularization and regulation of Bmp and Wnt signaling.
Collapse
Affiliation(s)
- Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Gi-Jeong Gwon
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Ki-Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University College of Health Science, Incheon, Seoul, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, Kyungpook National University, Daegu, Korea
| | - Tae-Yub Kwon
- Department of Dental Materials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea.
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
19
|
Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 2017; 18:12. [PMID: 28148303 PMCID: PMC5288874 DOI: 10.1186/s12860-017-0128-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being recognized as a viable cell source for regenerative medicine. Although significant variations in their ex vivo expansion are well-established, DPSC proliferative heterogeneity remains poorly understood, despite such characteristics influencing their regenerative and therapeutic potential. This study assessed clonal human DPSC regenerative potential and the impact of cellular senescence on these responses, to better understand DPSC functional behaviour. Results All DPSCs were negative for hTERT. Whilst one DPSC population reached >80 PDs before senescence, other populations only achieved <40 PDs, correlating with DPSCs with high proliferative capacities possessing longer telomeres (18.9 kb) than less proliferative populations (5–13 kb). High proliferative capacity DPSCs exhibited prolonged stem cell marker expression, but lacked CD271. Early-onset senescence, stem cell marker loss and positive CD271 expression in DPSCs with low proliferative capacities were associated with impaired osteogenic and chondrogenic differentiation, favouring adipogenesis. DPSCs with high proliferative capacities only demonstrated impaired differentiation following prolonged expansion (>60 PDs). Conclusions This study has identified that proliferative and regenerative heterogeneity is related to contrasting telomere lengths and CD271 expression between DPSC populations. These characteristics may ultimately be used to selectively screen and isolate high proliferative capacity/multi-potent DPSCs for regenerative medicine exploitation.
Collapse
|
20
|
Kim HJ, Cho YA, Lee YM, Lee SY, Bae WJ, Kim EC. PIN1 Suppresses the Hepatic Differentiation of Pulp Stem Cells via Wnt3a. J Dent Res 2016; 95:1415-1424. [PMID: 27439725 DOI: 10.1177/0022034516659642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of PIN1 on the hepatic differentiation of human dental pulp stem cells (hDPSCs) and its signaling pathway, as well as the potential therapeutic effects of hDPSC transplantation and PIN1 inhibition on CCl4 (carbon tetrachloride)-induced liver fibrosis in mice. The in vitro results showed that hepatic differentiation was suppressed by infection with adenovirus-PIN1 and promoted by PIN1 inhibitor juglone via the downregulation of Wnt3a and β-catenin. Compared with treatment with either hDPSC transplantation or juglone alone, the combination of hDPSCs and juglone into CCl4-injured mice significantly suppressed liver fibrosis and restored serum levels of alanine transaminase, aspartate transaminase, and ammonia. Collectively, the present study shows for the first time that PIN1 inhibition promotes hepatic differentiation of hDPSCs through the Wnt/β-catenin pathway. Furthermore, juglone in combination with hDPSC transplantation effectively treats liver fibrosis, suggesting that hDPSC transplantation with PIN1 inhibition may be a novel therapeutic candidate for the treatment of liver injury.
Collapse
Affiliation(s)
- H J Kim
- 1 Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Y A Cho
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Y M Lee
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - S Y Lee
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - W J Bae
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - E C Kim
- 2 Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, and School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
|
22
|
Demirci S, Doğan A, Şahin F. Dental Stem Cells vs. Other Mesenchymal Stem Cells: Their Pluripotency and Role in Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Zhou PY, Peng GH, Xu H, Yin ZQ. c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J Cell Sci 2015; 128:2169-78. [PMID: 25918122 DOI: 10.1242/jcs.169086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Definitive surface markers for retinal progenitor cells (RPCs) are still lacking. Therefore, we sorted c-Kit+ and stage-specific embryonic antigen-4− (SSEA4−) retinal cells for further biological characterization. RPCs were isolated from human fetal retinas (gestational age of 12–14 weeks). c-Kit+/SSEA4− RPCs were sorted by fluorescence-activated cell sorting, and their proliferation and differentiation capabilities were evaluated by using immunocytochemistry and flow cytometry. The effectiveness and safety were assessed following injection of c-Kit+/SSEA4− cells into the subretina of Royal College of Surgeons (RCS) rats. c-Kit+ cells were found in the inner part of the fetal retina. Sorted c-Kit+/SSEA4− cells expressed retinal stem cell markers. Our results clearly demonstrate the proliferative potential of these cells. Moreover, c-Kit+/SSEA4− cells differentiated into retinal cells that expressed markers of photoreceptor cells, ganglion cells and glial cells. These cells survived for at least 3 months after transplantation into the host subretinal space. Teratomas were not observed in the c-Kit+/SSEA4−-cell group. Thus, c-Kit can be used as a surface marker for RPCs, and c-Kit+/SSEA4− RPCs exhibit the ability to self-renew and differentiate into retinal cells.
Collapse
Affiliation(s)
- Peng-Yi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
| | - Guang-Hua Peng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
- Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China
| |
Collapse
|
24
|
Ishimoto K, Hayano S, Yanagita T, Kurosaka H, Kawanabe N, Itoh S, Ono M, Kuboki T, Kamioka H, Yamashiro T. Topical application of lithium chloride on the pulp induces dentin regeneration. PLoS One 2015; 10:e0121938. [PMID: 25812134 PMCID: PMC4374937 DOI: 10.1371/journal.pone.0121938] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/06/2015] [Indexed: 12/23/2022] Open
Abstract
We herein describe a novel procedure for dentin regeneration that mimics the biological processes of tooth development in nature. The canonical Wnt signaling pathway is an important regulator of the Dentin sialophosphoprotein (Dspp) expression. Our approach mimics the biological processes underlying tooth development in nature and focuses on the activation of canonical Wnt signaling to trigger the natural process of dentinogenesis. The coronal portion of the dentin and the underlying pulp was removed from the first molars. We applied lithium chloride (LiCl), an activator of canonical Wnt signaling, on the amputated pulp surface to achieve transdifferentiation toward odontoblasts from the surrounding pulpal cells. MicroCT and microscopic analyses demonstrated that the topical application of LiCl induced dentin repair, including the formation of a complete dentin bridge. LiCl-induced dentin is a tubular dentin in which the pulp cells are not embedded within the matrix, as in primary dentin. In contrast, a dentin bridge was not induced in the control group treated with pulp capping with material carriers alone, although osteodentin without tubular formation was induced at a comparatively deeper position from the pulp exposure site. We also evaluated the influence of LiCl on differentiation toward odontoblasts in vitro. In the mDP odontoblast cell line, LiCl activated the mRNA expression of Dspp, Axin2 and Kallikrein 4 (Klk4) and downregulated the Osteopontin (Osp) expression. These results provide a scientific basis for the biomimetic regeneration of dentin using LiCl as a new capping material to activate dentine regeneration.
Collapse
Affiliation(s)
- Kazuya Ishimoto
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Takeshi Yanagita
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Noriaki Kawanabe
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Shinsuke Itoh
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
25
|
Pan S, Chen W, Liu X, Xiao J, Wang Y, Liu J, Du Y, Wang Y, Zhang Y. Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT. PLoS One 2015; 10:e0114423. [PMID: 25602959 PMCID: PMC4300223 DOI: 10.1371/journal.pone.0114423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/10/2014] [Indexed: 01/26/2023] Open
Abstract
Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.
Collapse
Affiliation(s)
- Shaohui Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wuju Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajia Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YW); (YZ)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YW); (YZ)
| |
Collapse
|
26
|
Lv FJ, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2015; 32:1408-19. [PMID: 24578244 DOI: 10.1002/stem.1681] [Citation(s) in RCA: 732] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/09/2014] [Indexed: 12/13/2022]
Abstract
The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo.
Collapse
Affiliation(s)
- Feng-Juan Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong SAR, People's Republic of China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
27
|
An B, Na S, Lee S, Kim WJ, Yang SR, Woo HM, Kook S, Hong Y, Song H, Hong SH. Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord. Cell Tissue Res 2014; 359:767-77. [DOI: 10.1007/s00441-014-2066-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
|
28
|
Kawanabe N, Fukushima H, Ishihara Y, Yanagita T, Kurosaka H, Yamashiro T. Isolation and characterization of SSEA-4-positive subpopulation of human deciduous dental pulp cells. Clin Oral Investig 2014; 19:363-71. [DOI: 10.1007/s00784-014-1260-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/13/2014] [Indexed: 01/07/2023]
|
29
|
Can arthroscopically harvested synovial stem cells be preferentially sorted using stage-specific embryonic antigen 4 antibody for cartilage, bone, and adipose regeneration? Arthroscopy 2014; 30:352-61. [PMID: 24581260 DOI: 10.1016/j.arthro.2013.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to investigate the relation between stage-specific embryonic antigen 4 (SSEA4) expression and synovium-derived stem cell (SDSC) lineage differentiation. METHODS Human SDSCs were collected during arthroscopic surgery from 4 young patients with anterior cruciate ligament injuries. Passage 2 SDSCs were sorted by fluorescence-activated cell sorting using phycoerythrin-conjugated monoclonal antibody against SSEA4 into 3 groups: SSEA4(+) cells, SSEA4(-) cells, and unsorted control cells. After 1 more passage, expanded cells from each group were evaluated for SSEA4 expression by use of flow cytometry as well as multilineage differentiation capacities, including chondrogenesis, adipogenesis, and osteogenesis, using biochemical analysis, histologic analysis, immunostaining, and real-time polymerase chain reaction. RESULTS After cell sorting, 1 more passage expansion decreased SSEA4(+) cells from 99.8% to 79.2% and increased SSEA4(-) cells from 4.4% to 53.3% compared with 70.3% in the unsorted cell population. SSEA4(-) SDSCs with a lower cell proliferation exhibited higher chondrogenic potential (in terms of the ratio of glycosaminoglycan to DNA [P < .001] and COL2A1 [type II collagen] messenger RNA [mRNA] [P < .001]) and adipogenic potential (in terms of oil red O staining and quantitative assay [P = .007], LPL [lipoprotein lipase] mRNA [P = .005], and CEBP [CCAAT/enhancer-binding protein alpha] mRNA [P = .010]). In contrast, SSEA4(+) SDSCs retained cell expansion and enhanced osteogenic capacity, as evidenced by intense calcium deposition stained by alizarin red S and a significantly elevated expression of OPN (osteopontin) mRNA (P = .007). CONCLUSIONS In this study, for the first time, we showed the benefit of using the surface marker SSEA4 in SDSCs to preferentially sort a mixed population of cells. SSEA4(+) SDSCs indicated a strong potential for osteogenesis rather than chondrogenesis and adipogenesis. CLINICAL RELEVANCE SDSC-based mesenchymal tissue regeneration can be easily achieved by arthroscopic harvesting followed by quick cell sorting.
Collapse
|
30
|
A short-term treatment with tumor necrosis factor-alpha enhances stem cell phenotype of human dental pulp cells. Stem Cell Res Ther 2014; 5:31. [PMID: 24580841 PMCID: PMC4055131 DOI: 10.1186/scrt420] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/17/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction During normal pulp tissue healing, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) or interleukins, act in the initial 48 hours (inflammatory phase) and play important roles not only as chemo-attractants of inflammatory cells and stem/progenitor cells but also in inducing a cascade of reactions toward tissue regeneration or reparative dentin formation or both. Previous reports have shown that inflammatory cytokines regulate the differentiation capacity of dental pulp stem/progenitor cells (DPCs), but none has interrogated the impact of these cytokines on the stem cell phenotype of stem/progenitor cells. This study investigated the effects of a short-term treatment with TNF-α on the stem cell phenotype and differentiation ability of human DPCs. Methods An in vivo mouse model of pulp exposure was performed for analysis of expression of the mesenchymal stem cell marker CD146 in DPCs during the initial stage of inflammatory response. For in vitro studies, human DPCs were isolated and incubated with TNF-α for 2 days and passaged to eliminate TNF-α completely. Analysis of stem cell phenotype was performed by quantification of cells positive for mesenchymal stem cell markers SSEA-4 (stage-specific embryonic antigen 4) and CD146 by flow cytometry as well as by quantitative analysis of telomerase activity and mRNA levels of OCT-4 and NANOG. Cell migration, colony-forming ability, and differentiation toward odontogenesis and adipogenesis were also investigated. Results The pulp exposure model revealed a strong staining for CD146 during the initial inflammatory response, at 2 days after pulp exposure. In vitro experiments demonstrated that a short-term (2-day) treatment of TNF-α increased by twofold the percentage of SSEA-4+ cells. Accordingly, STRO-1, CD146, and SSEA-4 protein levels as well as OCT-4 and NANOG mRNA levels were also significantly upregulated upon TNF-α treatment. A short-term TNF-α treatment also enhanced DPC function, including the ability to form cell colonies, to migrate, and to differentiate into odontogenic and adipogenic lineages. Conclusions A short-term treatment with TNF-α enhanced the stem cell phenotype, migration, and differentiation ability of DPCs.
Collapse
|
31
|
Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK, Kuboki T. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One 2013; 8:e83545. [PMID: 24386225 PMCID: PMC3875457 DOI: 10.1371/journal.pone.0083545] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
Dental pulp cells (DPCs) are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs) have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP) cells from human DPCs and periodontal ligament cells (PDLCs), and performed a locked nucleic acid (LNA)-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP) cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs), which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Takanori Eguchi
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Wataru Sonoyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| |
Collapse
|
32
|
Lee YM, Shin SY, Jue SS, Kwon IK, Cho EH, Cho ES, Park SH, Kim EC. The role of PIN1 on odontogenic and adipogenic differentiation in human dental pulp stem cells. Stem Cells Dev 2013; 23:618-30. [PMID: 24219242 DOI: 10.1089/scd.2013.0339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the involvement of PIN1, a peptidyl-prolyl cis/trans isomerase, has been reported in age-related bone homeostasis and adipogenesis. However, the role of PIN1 during odontogenic and adipogenic differentiation remains to be fully understood, particularly regarding human dental pulp stem cells (HDPSCs). Thus, in the present study, we have investigated the role of PIN1 in odontogenic and adipogenic differentiation of HDPSCs and signaling pathways possibly involved. PIN1 mRNA and protein level were upregulated in a time-dependent manner during adipogenic differentiation, increasing until 1 day of odontogenic induction and then steadily declined during odontogenic differentiation. Treatment of a known PIN1 inhibitor, juglone, significantly increased odontogenic differentiation as confirmed by alkaline phosphatase (ALP) activity, calcium deposition, and mRNAs induction of odontogenic markers [ALP, osteopontin (OPN), osteocalcin (OCN), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1 (DMP-1)]. On the contrary, adipogenic differentiation was dramatically reduced upon juglone treatment, with concomitant downregulation of lipid droplet accumulation and adipogenic marker genes [peroxisome proliferation-activated receptor gamma (PPARγ), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (AP2)]. In contrast to PIN1 inhibition, the overexpression of PIN1 via adenoviral infection (Ad-PIN1) in HDPSCs inhibited odontogenic differentiation but increased adipogenic differentiation, in which stem cell property markers such as stage-specific embryonic antigen-4 (SSEA-4) and STRO-1 were upregulated during odontogenic differentiation but downregulated in adiopogenic differentiation. Consistently, juglone-mediated inhibition of PIN1 augmented the osteogenic medium (OM)-induced activation of bone morphogenetic protein (BMP), Wnt/β-catenin, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF-κB) pathway, which response was reversed by Ad-PIN1. Moreover, juglone blocked the adipogenic induction medium-induced activation of PPARγ, C/EBPα, C/EBPβ, ERK, and NF-κB pathways, which was rescued by Ad-PIN1 infection. In summary, the present study shows for the first time that PIN1 acts as an important modulator of odontogenic and adipogenic differentiation of HDPSCs and may have clinical implications for regenerative dentistry.
Collapse
Affiliation(s)
- Young-Man Lee
- 1 Department of Maxillofacial Tissue Regeneration, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH, Resende RR. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2013; 85:43-77. [DOI: 10.1002/cyto.a.22402] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna R. Sousa
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Ricardo C. Parreira
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Emerson A Fonseca
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Maria J. Amaya
- Department of Internal Medicine, Section of Digestive Diseases; Yale University School of Medicine; New Haven Connecticut
| | - Fernanda M. P. Tonelli
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Samyra M. S. N. Lacerda
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Pritesh Lalwani
- Faculdade de Ciências Farmacêuticas; Universidade Federal do Amazonas; Manaus AM Brazil
| | - Anderson K. Santos
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Katia N. Gomes
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre H. Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição; Universidade Federal do ABC; Santo André SP Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
34
|
|
35
|
Gay I, Cavender A, Peto D, Sun Z, Speer A, Cao H, Amendt BA. Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 2013; 49:110-20. [PMID: 23662917 DOI: 10.1111/jre.12086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Regeneration of lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data are available on micro-RNA (miRNA) activity behind human-derived dental stem cells (DSCs). MATERIAL AND METHODS In this study, we isolated periodontal ligament stem cells, dental pulp stem cells and gingival stem cells from extracted third molars; human bone marrow stem cells were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. The miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. RESULTS The expression of RUNX2 demonstrated successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression that occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human DSCs. DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. CONCLUSION These data reveal a miRNA-regulated pathway for the differentiation of human DSCs and a select network of human miRNAs that control DSC osteogenic differentiation.
Collapse
Affiliation(s)
- I Gay
- Dental School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Lindenmair A, Hatlapatka T, Kollwig G, Hennerbichler S, Gabriel C, Wolbank S, Redl H, Kasper C. Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 2012; 1:1061-88. [PMID: 24710543 PMCID: PMC3901122 DOI: 10.3390/cells1041061] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns.
Collapse
Affiliation(s)
- Andrea Lindenmair
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Tim Hatlapatka
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | - Gregor Kollwig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | | | | | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| |
Collapse
|
37
|
Fukushima H, Kawanabe N, Murata S, Ishihara Y, Yanagita T, Balam TA, Yamashiro T. SSEA-4 is a marker of human deciduous periodontal ligament stem cells. J Dent Res 2012; 91:955-60. [PMID: 22895512 DOI: 10.1177/0022034512458123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although human deciduous teeth are an ideal source of adult stem cells, no method for identifying deciduous periodontal ligament (D-PDL) stem cells has so far been developed. In the present study, we investigated whether stage-specific embryonic antigen (SSEA)-4 is a marker that could be used to isolate D-PDL stem cells. The isolated D-PDL cells met the minimum criteria for mesenchymal stem cells (MSCs): They showed plastic adherence, specific-surface antigen expression, and multipotent differentiation potential. SSEA-4+ D-PDL cells were detected in vitro and in vivo. A flow cytometric analysis demonstrated that 22.7% of the D-PDL cells were positive for SSEA-4. SSEA-4+ clonal D-PDL cells displayed multilineage differentiation potential: They were able to differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. A clonal assay demonstrated that 61.5% of the SSEA-4+ D-PDL cells had adipogenic, osteogenic, and chondrogenic potential. Our present study demonstrated that SSEA-4+ D-PDL cells are a subset of multipotent stem cells. Hence, SSEA-4 is a specific marker that can be used to identify D-PDL stem cells.
Collapse
Affiliation(s)
- H Fukushima
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|