1
|
Chen Y, Liu N, Yang Y, Yang L, Li Y, Qiao Z, Zhang Y, Li A, Xiang R, Wen L, Huang W. NCAM1 modulates the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary hypertension. Respir Res 2024; 25:435. [PMID: 39696429 DOI: 10.1186/s12931-024-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a malignant vascular disease characterized by pulmonary arterial remodeling. Neural cell adhesion molecule 1 (NCAM1) is a cell surface glycoprotein that is involved in a variety of diseases, including cardiovascular disease. However, the role of NCAM1 in PH remains underexplored. METHODS Pulmonary hypertension models were established using monocrotaline in rats and hypoxia in mice. NCAM1 protein levels in plasma from patients and rats were measured by ELISA. Expression of NCAM1 in rat lung tissues were evaluated using qRT-PCR, Western blotting, and immunofluorescence. The effects of NCAM1 on rat pulmonary artery smooth muscle cells were studied by stimulating these cells with PDGF-BB. RESULTS Elevated levels of NCAM1 protein and mRNA were observed in both PH patients and monocrotaline-induced PH rats. NCAM1 knockdown ameliorated hypoxia-induced PH, highlighting its role in pulmonary artery remodeling. In PASMCs, NCAM1 expression was upregulated by PDGF-BB stimulation, enhancing cell proliferation and migration. This effect was attenuated by NCAM1 knockdown but partially restored by an ERK1/2 pathway activator (tert-butylhydroquinone, TBHQ), suggesting NCAM1's involvement in PASMC dynamics through the ERK1/2 signaling pathway. CONCLUSION Our findings confirm the role of NCAM1 in pulmonary arterial hypertension and demonstrate its promotion of PASMC proliferation and migration through the ERK1/2 signaling pathway.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Rats
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Cell Proliferation/physiology
- Cell Movement/physiology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Male
- Humans
- Mice
- Rats, Sprague-Dawley
- CD56 Antigen/metabolism
- Cells, Cultured
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Female
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Yunwei Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ningxin Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunjing Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingzhi Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Zhuo Qiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yumin Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ailing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
3
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
4
|
Jindal K, Adil MT, Yamaguchi N, Yang X, Wang HC, Kamimoto K, Rivera-Gonzalez GC, Morris SA. Single-cell lineage capture across genomic modalities with CellTag-multi reveals fate-specific gene regulatory changes. Nat Biotechnol 2024; 42:946-959. [PMID: 37749269 PMCID: PMC11180607 DOI: 10.1038/s41587-023-01931-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage-tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics. However, reliance on transcriptional profiling limits adaptation to other single-cell assays. With CellTag-multi, we present an approach that enables direct capture of heritable random barcodes expressed as polyadenylated transcripts, in both single-cell RNA sequencing and single-cell Assay for Transposase Accessible Chromatin using sequencing assays, allowing for independent clonal tracking of transcriptional and epigenomic cell states. We validate CellTag-multi to characterize progenitor cell lineage priming during mouse hematopoiesis. Additionally, in direct reprogramming of fibroblasts to endoderm progenitors, we identify core regulatory programs underlying on-target and off-target fates. Furthermore, we reveal the transcription factor Zfp281 as a regulator of reprogramming outcome, biasing cells toward an off-target mesenchymal fate. Our results establish CellTag-multi as a lineage-tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.
Collapse
Affiliation(s)
- Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohd Tayyab Adil
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Naoto Yamaguchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Vosbeck K, Förster S, Mayr T, Sahu A, Haddouti EM, Al-Adilee O, Körber RM, Bisht S, Muders MH, Nesic S, Buness A, Kristiansen G, Schildberg FA, Gütgemann I. Neuropilin2 in Mesenchymal Stromal Cells as a Potential Novel Therapeutic Target in Myelofibrosis. Cancers (Basel) 2024; 16:1924. [PMID: 38792002 PMCID: PMC11119673 DOI: 10.3390/cancers16101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid and fiber-producing stromal cells. We demonstrate NRP2 and osteolineage marker NCAM1 (neural cell adhesion molecule 1) expression within the endosteal niche in normal bone marrow and aberrantly in MPN, MDS MPN/MDS overlap syndromes and AML (n = 99), as assessed by immunohistochemistry. Increased and diffuse expression in mesenchymal stromal cells and osteoblasts correlates with high MF grade in MPN (p < 0.05 for NRP2 and NCAM1). Single cell RNA sequencing (scRNAseq) re-analysis demonstrated NRP2 expression in endothelial cells and partial co-expression of NRP2 and NCAM1 in normal MSC and osteoblasts. Potential ligands included transforming growth factor β1 (TGFB1) from osteoblasts and megakaryocytes. Murine ThPO and JAK2V617F myelofibrosis models showed co-expression of Nrp2 and Ncam1 in osteolineage cells, while fibrosis-promoting MSC only express Nrp2. In vitro experiments with MC3T3-E1 pre-osteoblasts and analysis of Nrp2-/- mouse femurs suggest that Nrp2 is functionally involved in osteogenesis. In summary, NRP2 represents a potential novel druggable target in patients with myelofibrosis.
Collapse
Affiliation(s)
- Karla Vosbeck
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Sarah Förster
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Thomas Mayr
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Anshupa Sahu
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany;
| | - El-Mustapha Haddouti
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (E.-M.H.)
| | - Osamah Al-Adilee
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Ruth-Miriam Körber
- Department of Medicine III, University Hospital Bonn, 53127 Bonn, Germany; (R.-M.K.); (S.B.)
| | - Savita Bisht
- Department of Medicine III, University Hospital Bonn, 53127 Bonn, Germany; (R.-M.K.); (S.B.)
| | - Michael H. Muders
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Svetozar Nesic
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.N.); (A.B.)
| | - Andreas Buness
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.N.); (A.B.)
| | - Glen Kristiansen
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (E.-M.H.)
| | - Ines Gütgemann
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| |
Collapse
|
6
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
7
|
Sadovskaya A, Petinati N, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Belyavsky A, Vasilieva A, Aleshina O, Parovichnikova E. Acute Myeloid Leukemia Causes Serious and Partially Irreversible Changes in Secretomes of Bone Marrow Multipotent Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108953. [PMID: 37240298 DOI: 10.3390/ijms24108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, 125167 Moscow, Russia
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Nina Drize
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria Lagarkova
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Olga Aleshina
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | | |
Collapse
|
8
|
Chen W, Wang C, Yang ZX, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023; 6:393. [PMID: 37041280 PMCID: PMC10090171 DOI: 10.1038/s42003-023-04737-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.
Collapse
Affiliation(s)
- Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chenguang Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Xue Yang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Feng Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Wei Wen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Matthew Bock
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, University of Arizona - College of Medicine at Phoenix, Phoenix, AZ, USA.
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Division of Microbiology & Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
9
|
Vitronectin acts as a key regulator of adhesion and migration in human umbilical cord-derived MSCs under different stress conditions. Exp Cell Res 2023; 423:113467. [PMID: 36634744 DOI: 10.1016/j.yexcr.2023.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κβ was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.
Collapse
|
10
|
Testa C, Oliveto S, Jacchetti E, Donnaloja F, Martinelli C, Pinoli P, Osellame R, Cerullo G, Ceri S, Biffo S, Raimondi MT. Whole transcriptomic analysis of mesenchymal stem cells cultured in Nichoid micro-scaffolds. Front Bioeng Biotechnol 2023; 10:945474. [PMID: 36686258 PMCID: PMC9852851 DOI: 10.3389/fbioe.2022.945474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.
Collapse
Affiliation(s)
- Carolina Testa
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Oliveto
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Stefano Biffo
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| |
Collapse
|
11
|
Ubiquitous Neural Cell Adhesion Molecule (NCAM): Potential Mechanism and Valorisation in Cancer Pathophysiology, Drug Targeting and Molecular Transductions. Mol Neurobiol 2022; 59:5902-5924. [PMID: 35831555 DOI: 10.1007/s12035-022-02954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.
Collapse
|
12
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
de Pedro MÁ, Gómez-Serrano M, Marinaro F, López E, Pulido M, Preußer C, Pogge von Strandmann E, Sánchez-Margallo FM, Álvarez V, Casado JG. IFN-Gamma and TNF-Alpha as a Priming Strategy to Enhance the Immunomodulatory Capacity of Secretomes from Menstrual Blood-Derived Stromal Cells. Int J Mol Sci 2021; 22:12177. [PMID: 34830067 PMCID: PMC8618369 DOI: 10.3390/ijms222212177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs. Our results revealed that the optimal condition for priming MenSCs was the combination of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) that produced a synergistic and additive effect on IDO1 release and immune-related molecule expression. The analyses of MenSC-derived secretomes after IFNγ and TNFα priming also revealed an increase in EV release and in the differentially expressed miRNAs involved in the immune response and inflammation. Proliferation assays on lymphocyte subsets demonstrated a decrease in CD4+ T cells and CD8+ T cells co-cultured with secretomes, especially in the lymphocytes co-cultured with secretomes from primed cells. Additionally, the expression of immune checkpoints (PD-1 and CTLA-4) was increased in the CD4+ T cells co-cultured with MenSC-derived secretomes. These findings demonstrate that the combination of IFNγ and TNFα represents an excellent priming strategy to enhance the immunomodulatory capacity of MenSCs. Moreover, the secretome derived from primed MenSCs may be postulated as a therapeutic option for the regulation of adverse inflammatory reactions.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany; (M.G.-S.); (C.P.); (E.P.v.S.)
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (M.Á.d.P.); (F.M.); (M.P.); (V.Á.)
| | - Javier G. Casado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| |
Collapse
|
14
|
Deak D, Gorcea-Andronic N, Sas V, Teodorescu P, Constantinescu C, Iluta S, Pasca S, Hotea I, Turcas C, Moisoiu V, Zimta AA, Galdean S, Steinheber J, Rus I, Rauch S, Richlitzki C, Munteanu R, Jurj A, Petrushev B, Selicean C, Marian M, Soritau O, Andries A, Roman A, Dima D, Tanase A, Sigurjonsson O, Tomuleasa C. A narrative review of central nervous system involvement in acute leukemias. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:68. [PMID: 33553361 PMCID: PMC7859772 DOI: 10.21037/atm-20-3140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called “sticky cells” which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Gorcea-Andronic
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Sas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Intensive Care Unit, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ionut Hotea
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Galdean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Rus
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Mirela Marian
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alexandra Andries
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Andrei Roman
- Department of Radiology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Çelik H, Kucukler S, Çomaklı S, Caglayan C, Özdemir S, Yardım A, Karaman M, Kandemir FM. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology 2020; 81:197-208. [PMID: 33121995 DOI: 10.1016/j.neuro.2020.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Isoniazid (INH) is among the most important anti-tuberculosis agents widely prescribed. However, its clinical use is restricted due to its severe side effects associated with neurotoxicity. The aim of the present study was to investigate the neuroprotective effects of chrysin (CR), a natural antioxidant, against INH-induced neurotoxicity in rats. The rats were treated orally with INH (400 mg/kg body weight) alone or with CR (25 and 50 mg/kg body weight) for 7 consecutive days. INH administration significantly increased brain lipid peroxidation and resulted in a significant decrease in antioxidant biomarkers including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH). INH treatment also increased levels of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), glial fibrillary acidic protein (GFAP) and activities of p38α mitogen-activated protein kinase (p38α MAPK) while decreasing levels of neural cell adhesion molecule (NCAM). Double immunofluorescence expressions of c-Jun N-terminal kinase (JNK) and Bcl-2 associated X protein (Bax) in brain tissues were increased after INH administration. Furthermore, INH increased mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (Gclm), glutamate cysteine ligase catalytic subunit (Gclc), NF-κB, TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6) and GFAP in rat brain tissues. Co-treatment with CR increased anti-oxidant capacity as well as regulated inflammation and apoptosis in brain. Additionally, molecular docking results showed that CR had the potential to interact with the active sites of TNF-α and NFκ-B. In conclusion, CR improved INH-induced brain oxidative damage, inflammation and apoptosis, possibly through their antioxidant properties.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, 79000, Kilis, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
16
|
Nagasundaram M, Horstkorte R, Gnanapragassam VS. Sialic Acid Metabolic Engineering of Breast Cancer Cells Interferes with Adhesion and Migration. Molecules 2020; 25:molecules25112632. [PMID: 32517035 PMCID: PMC7321191 DOI: 10.3390/molecules25112632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most frequent cancer diagnosed in women and the second most common cancer-causing death worldwide. The major problem around the management of breast cancer is its high heterogeneity and the development of therapeutic resistance. Therefore, understanding the fundamental breast cancer biology is crucial for better diagnosis and therapy. Protein sialylation is a key posttranslational modification of glycoproteins, which is also involved in tumor progression and metastasis. Increased expression of sialic acids (Sia) can interfere in receptor–ligand interactions and might protect tumor cells from the immune system. Furthermore, Sia content on the cell membrane plays a role in cancer resistance towards chemo- and radiation therapy. In this study, we glycoengineered MCF-7 breast cancer cells using a series of non-natural Sia precursors, which are prolonged in their acyl side chain. We observed a significant reduction in the natural Sia (N-Acetylneuraminic acid) expression after cultivation of MCF-7 cells with these Sia precursors. In addition, the expression of polySia, a unique glycosylation of the neural cell adhesion molecule NCAM, which interferes with cell adhesion, was decreased. We conclude that sialic acid engineering i) opens up novel opportunities to study the biological role of Sia in breast cancer and ii) provides a toolbox to examine the sialic acid-dependent complex cellular alterations in breast cancer cell biology.
Collapse
|
17
|
Cheng BF, Lian JJ, Yang HJ, Wang L, Yu HH, Bi JJ, Gao YX, Chen SJ, Wang M, Feng ZW. Neural cell adhesion molecule regulates chondrocyte hypertrophy in chondrogenic differentiation and experimental osteoarthritis. Stem Cells Transl Med 2019; 9:273-283. [PMID: 31742919 PMCID: PMC6988767 DOI: 10.1002/sctm.19-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Chondrocyte hypertrophy-like change is an important pathological process of osteoarthritis (OA), but the mechanism remains largely unknown. Neural cell adhesion molecule (NCAM) is highly expressed and involved in the chondrocyte differentiation of mesenchymal stem cells (MSCs). In this study, we found that NCAM deficiency accelerates chondrocyte hypertrophy in articular cartilage and growth plate of OA mice. NCAM deficiency leads to hypertrophic chondrocyte differentiation in both murine MSCs and chondrogenic cells, in which extracellular signal-regulated kinase (ERK) signaling plays an important role. Moreover, NCAM expression is downregulated in an interleukin-1β-stimulated OA cellular model and monosodium iodoacetate-induced OA rats. Overexpression of NCAM substantially inhibits hypertrophic differentiation in the OA cellular model. In conclusion, NCAM could inhibit hypertrophic chondrocyte differentiation of MSCs by inhibiting ERK signaling and reduce chondrocyte hypertrophy in experimental OA model, suggesting the potential utility of NCAM as a novel therapeutic target for alleviating chondrocyte hypertrophy of OA.
Collapse
Affiliation(s)
- Bin-Feng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Jun-Jiang Lian
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.,Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Hai-Jie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Hao-Heng Yu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Jia-Jia Bi
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Yao-Xin Gao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Su-Juan Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Mian Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Zhi-Wei Feng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| |
Collapse
|
18
|
Inhibitory Effects of Helianthus tuberosus Ethanol Extract on Dermatophagoides farina body-induced Atopic Dermatitis Mouse Model and Human Keratinocytes. Nutrients 2018; 10:nu10111657. [PMID: 30400334 PMCID: PMC6265995 DOI: 10.3390/nu10111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by complex symptoms. To treat AD without adverse effects, alternative therapeutic agents are required. The tubers of Helianthus tuberosus L. (Jerusalem artichoke) have been used in folk remedies for diabetes and rheumatism. However, its effect on AD development remains unknown. Therefore, this study examined the inhibitory effect of H. tuberosus (HT) on AD skin symptoms using an NC/Nga mouse model and HaCaT keratinocytes. The effect of HT and associated molecular mechanisms were evaluated in Dermatophagoides farina body (Dfb)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes by ELISA, western blot, and histological analysis. Topical HT administration attenuated AD skin symptoms in Dfb-induced AD mice, with a significant reduction in the dermatitis score and production of inflammatory mediators. HT also decreased epidermal thickness and mast cell infiltration. Moreover, HT restored filaggrin expression and inhibited adhesion molecules in the mice. These effects were confirmed in vitro. Furthermore, HT suppressed the activation of NF-κB, Akt, and mitogen-activated protein kinase (MAPK) signaling pathways induced by TNF-α/IFN-γ. These results suggest that HT is a potential therapeutic agent or supplement for skin allergic inflammatory diseases such as AD.
Collapse
|
19
|
Icariin Promotes the Migration of BMSCs In Vitro and In Vivo via the MAPK Signaling Pathway. Stem Cells Int 2018; 2018:2562105. [PMID: 30319696 PMCID: PMC6167584 DOI: 10.1155/2018/2562105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in tissue engineering for regenerative medicine due to their multipotent differentiation potential. However, their poor migration ability limits repair effects. Icariin (ICA), a major component of the Chinese medical herb Herba Epimedii, has been reported to accelerate the proliferation, osteogenic, and chondrogenic differentiation of BMSCs. However, it remains unknown whether ICA can enhance BMSC migration, and the possible underlying mechanisms need to be elucidated. In this study, we found that ICA significantly increased the migration capacity of BMSCs, with an optimal concentration of 1 μmol/L. Moreover, we found that ICA stimulated actin stress fiber formation in BMSCs. Our work revealed that activation of the MAPK signaling pathway was required for ICA-induced migration and actin stress fiber formation. In vivo, ICA promoted the recruitment of BMSCs to the cartilage defect region. Taken together, these results show that ICA promotes BMSC migration in vivo and in vitro by inducing actin stress fiber formation via the MAPK signaling pathway. Thus, combined administration of ICA with BMSCs has great potential in cartilage defect therapy.
Collapse
|
20
|
Medeiros Tavares Marques JC, Cornélio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 2017; 7:17837. [PMID: 29259202 PMCID: PMC5736717 DOI: 10.1038/s41598-017-16224-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although human mesenchymal stem cells (hMSCs) are a powerful tool for cell therapy, prolonged culture times result in replicative senescence or acquisition of tumorigenic features. To identify a molecular signature for senescence, we compared the transcriptome of senescent and young hMSCs with normal karyotype (hMSCs/n) and with a constitutional inversion of chromosome 3 (hMSC/inv). Senescent and young cells from both lineages showed differentially expressed genes (DEGs), with higher levels in senescent hMSCs/inv. Among the 30 DEGs in senescent hMSC/inv, 11 are new candidates for biomarkers of cellular senescence. The functional categories most represented in senescent hMSCs were related to cellular development, cell growth/proliferation, cell death, cell signaling/interaction, and cell movement. Mapping of DEGs onto biological networks revealed matrix metalloproteinase-1, thrombospondin 1, and epidermal growth factor acting as topological bottlenecks. In the comparison between senescent hMSCs/n and senescent hMSCs/inv, other functional annotations such as segregation of chromosomes, mitotic spindle formation, and mitosis and proliferation of tumor lines were most represented. We found that many genes categorized into functional annotations related to tumors in both comparisons, with relation to tumors being highest in senescent hMSCs/inv. The data presented here improves our understanding of the molecular mechanisms underlying the onset of cellular senescence as well as tumorigenesis.
Collapse
Affiliation(s)
- Joana Cristina Medeiros Tavares Marques
- Faculdade de Ciências da Saúde do Trairi (FACISA), Universidade Federal do Rio Grande do Norte (UFRN), Rua Traíri, S/N, Centro, Santa Cruz, Rio Grande do Norte (RN), 59200-000, Brazil
| | - Déborah Afonso Cornélio
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil
| | - Vivian Nogueira Silbiger
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - Sandro de Souza
- Instituto do Cérebro, Instituto de Metrópole Digital, UFRN, Av. Nascimento de Castro, 2155, UFRN, 59056-450, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
21
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
22
|
Xiaoguang L, Yizhu W, Bin G. [Tumor necrosis factor-α regulates the osteogenic differentiation of bone marrow mesenchymal stem cells in chronic periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:334-338. [PMID: 28675022 DOI: 10.7518/hxkq.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) and ideal adult stem cells for alveolar bone regeneration considerably help restore the structure and function of the periodontium and promote the healing of periodontal disease. Thus, BMSC features, especially the mechanism of osteogenic differentiation, has recently become a research hotspot. Tumor necrosis factor-α (TNF-α), which is the main factor in the periodontal inflammatory microenvironment, is directly related to the osteogenic differentiation of BMSCs. Exploring the TNF-α-regulated differentiation mechanism of BMSCs aids in the search for new treatment targets. Such investigation also promotes the development of stem cell therapy for periodontal diseases. This article aims to describe the potential of TNF-α in regulating the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Li Xiaoguang
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| | - Wang Yizhu
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| | - Guo Bin
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| |
Collapse
|
23
|
Bi JJ, Li J, Cheng BF, Yang HJ, Ding QQ, Wang RF, Chen SJ, Feng ZW. NCAM affects directional lamellipodia formation of BMSCs via β1 integrin signal-mediated cofilin activity. Mol Cell Biochem 2017; 435:175-183. [PMID: 28536952 DOI: 10.1007/s11010-017-3066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of β1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of β1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of β1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through β1 integrin signal-mediated cofilin activity.
Collapse
Affiliation(s)
- Jia-Jia Bi
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Jing Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Bin-Feng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Hai-Jie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Qiong-Qiong Ding
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Rui-Fei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Su-Juan Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| | - Zhi-Wei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
24
|
Zubkova ES, Beloglazova IB, Makarevich PI, Boldyreva MA, Sukhareva OY, Shestakova MV, Dergilev KV, Parfyonova YV, Menshikov MY. Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factor-Alpha. J Cell Biochem 2016; 117:180-96. [PMID: 26096299 DOI: 10.1002/jcb.25263] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1β, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential.
Collapse
Affiliation(s)
- Ekaterina S Zubkova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Irina B Beloglazova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Pavel I Makarevich
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria A Boldyreva
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | | | - Marina V Shestakova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Yelena V Parfyonova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | | |
Collapse
|
25
|
Dülk M, Kudlik G, Fekete A, Ernszt D, Kvell K, Pongrácz JE, Merő BL, Szeder B, Radnai L, Geiszt M, Csécsy DE, Kovács T, Uher F, Lányi Á, Vas V, Buday L. The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages. Sci Rep 2016; 6:34280. [PMID: 27711054 PMCID: PMC5053279 DOI: 10.1038/srep34280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/08/2016] [Indexed: 12/27/2022] Open
Abstract
The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4-/- mice to evaluate their differentiation. Tks4-/- BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4-/- BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation.
Collapse
Affiliation(s)
- Metta Dülk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Ernszt
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Krisztián Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Judit E Pongrácz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Balázs L Merő
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Radnai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary.,"Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dalma E Csécsy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Kovács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Uher
- Stem Cell Biology, National Blood Service, Budapest, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Virag Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
26
|
Skog MS, Nystedt J, Korhonen M, Anderson H, Lehti TA, Pajunen MI, Finne J. Expression of neural cell adhesion molecule and polysialic acid in human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:113. [PMID: 27528376 PMCID: PMC4986182 DOI: 10.1186/s13287-016-0373-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In order to develop novel clinical applications and to gain insights into possible therapeutic mechanisms, detailed molecular characterization of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) is needed. Neural cell adhesion molecule (NCAM, CD56) is a transmembrane glycoprotein modulating cell-cell and cell-matrix interactions. An additional post-translational modification of NCAM is the α2,8-linked polysialic acid (polySia). Because of its background, NCAM is often considered a marker of neural lineage commitment. Generally, hBM-MSCs are considered to be devoid of NCAM expression, but more rigorous characterization is needed. METHODS We have studied NCAM and polySia expression in five hBM-MSC lines at mRNA and protein levels. Cell surface localization was confirmed by immunofluorescence staining and expression frequency in the donor-specific lines by flow cytometry. For the detection of poorly immunogenic polySia, a fluorochrome-tagged catalytically defective enzyme was employed. RESULTS All five known NCAM isoforms are expressed in these cells at mRNA level and the three main isoforms are present at protein level. Both polysialyltransferases, generally responsible for NCAM polysialylation, are expressed at mRNA level, but only very few cells express polySia at the cell surface. CONCLUSIONS Our results underline the need for a careful control of methods and conditions in the characterization of MSCs. This study shows that, against the generally held view, clinical-grade hBM-MSCs do express NCAM. In contrast, although both polysialyltransferase genes are transcribed in these cells, very few express polySia at the cell surface. NCAM and polySia represent new candidate molecules for influencing MSC interactions.
Collapse
Affiliation(s)
- Maria S Skog
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Johanna Nystedt
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Matti Korhonen
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Heidi Anderson
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Genoscoper Laboratories Oy, P.O. Box 1040, FI-00251, Helsinki, Finland
| | - Timo A Lehti
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Maria I Pajunen
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Jukka Finne
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
27
|
Takase N, Koma YI, Urakawa N, Nishio M, Arai N, Akiyama H, Shigeoka M, Kakeji Y, Yokozaki H. NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of esophageal cancer regulates the survival and migration of tumor-associated macrophages and cancer cells. Cancer Lett 2016; 380:47-58. [PMID: 27317650 DOI: 10.1016/j.canlet.2016.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022]
Abstract
Tumor-associated macrophages (TAMs) have important roles in the angiogenesis and tumor immunosuppression of various cancers, including esophageal squamous cell carcinomas (ESCCs). To elucidate the roles of TAMs in ESCCs, we compared the gene expression profiles between human peripheral blood monocyte-derived macrophage-like cells (Macrophage_Ls) and Macrophage_Ls stimulated with conditioned medium of the TE series human ESCC cell line (TECM) (TAM_Ls) using cDNA microarray analysis. Among the highly expressed genes in TAM_Ls, we focused on neural cell adhesion molecule (NCAM). NCAM knockdown in TAM_Ls revealed a significant decrease of migration and survival via a suppression of PI3K-Akt and fibroblast growth factor receptor 1 (FGFR1) signaling. Stimulation by TECM up-regulated the level of FGFR1 in Macrophage_Ls. Recombinant human fibroblast growth factor-2 (rhFGF-2) promoted the migration and survival of TAM_Ls and TE-cells through FGFR1 signaling. Our immunohistochemical analysis of 70 surgically resected ESCC samples revealed that the up-regulated FGF-2 in stromal cells, including macrophages, was associated with more aggressive phenotypes and a high number of infiltrating M2 macrophages. These findings may indicate a novel role of NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of ESCCs.
Collapse
Affiliation(s)
- Nobuhisa Takase
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Naoki Urakawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Noriaki Arai
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroaki Akiyama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
28
|
Niu X, Zhang K. Dysregulated expression of inflammation-related genes in psoriatic dermis mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:587-8. [PMID: 27151294 DOI: 10.1093/abbs/gmw036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xuping Niu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan 030009, China
| | - Kaiming Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan 030009, China
| |
Collapse
|
29
|
Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, He S, Hall A, Wong RJ. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 2016; 126:1538-54. [PMID: 26999607 DOI: 10.1172/jci82658] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022] Open
Abstract
Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.
Collapse
|
30
|
Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep 2016; 6:23241. [PMID: 26988030 PMCID: PMC4796790 DOI: 10.1038/srep23241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na(+)/K(+)-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel "receptor" for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS.
Collapse
|
31
|
Schneider G, Sellers ZP, Abdel-Latif A, Morris AJ, Ratajczak MZ. Bioactive lipids, LPC and LPA, are novel prometastatic factors and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2014; 12:1560-73. [PMID: 25033840 DOI: 10.1158/1541-7786.mcr-14-0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Bioactive lipids are fundamental mediators of a number of critical biologic processes such as inflammation, proliferation, and apoptosis. Rhabdomyosarcoma (RMS) is common in adolescence with histologic subtypes that favor metastasis. However, the factors that influence metastasis are not well appreciated. Here, it is shown that lysophosphatidylcholine (LPC) and its derivative, lysophosphatidic acid (LPA), strongly enhance motility and adhesion of human RMS cells. Importantly, these metastatic-associated phenotypes were observed at physiologic concentrations of these lipids, which naturally occur in biologic fluids. Moreover, the effects of these bioactive lipids were much stronger as compared with known peptide-based prometastatic factors in RMS, such as stromal-derived factor-1 or hepatocyte growth factor/scatter factor. Finally, both LPC and LPA levels were increased in several organs after γ-irradiation or chemotherapy, supporting the hypothesis that radio/chemotherapy induces an unwanted prometastatic environment in these organs. IMPLICATIONS LPC and LPA play a previously underappreciated role in dissemination of RMS and suggest that antimetastatic treatment with specific molecules blocking LPC/LPA activity should be part of standard radio/chemotherapy arsenal.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Zachariah Payne Sellers
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| | - Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky. Department of Physiology Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
32
|
Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. Eur J Histochem 2014; 58:2415. [PMID: 25308847 PMCID: PMC4194395 DOI: 10.4081/ejh.2014.2415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/25/2022] Open
Abstract
Mechanical stimulation is known to regulate the calcification of endplate chondrocytes. The Ank protein has a strong influence on anti-calcification by transports intracellular inorganic pyrophosphate (PPi) to the extracellular matrix. It is known that TGF-β1 is able to induce Ank gene expression and protect chondrocyte calcification. Intermittent cyclic mechanical tension (ICMT) could induce calcification of endplate chondrocytes by decrease the expression of Ank gene. In this study, we investigated the relation of intermittent cyclic mechanical unconfined compression (ICMC) and Ank gene expression. We found that ICMC decreased the Ank gene expression in the endplate chondrocytes, and there was an decreased in the TGF-β1 expression after ICMC stimulation. The Ank gene expression significantly increased when treated by transforming growth factor alpha 1 (TGF-β1) in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our results implicate that ICMC-induced downregulation of Ank gene expression may be regulated by TGF-β1 in end-plate chondrocytes.
Collapse
|
33
|
Zou C, Luo Q, Qin J, Shi Y, Yang L, Ju B, Song G. Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via integrin β1, FAK, and ERK pathways. Cell Biochem Biophys 2013; 65:455-62. [PMID: 23086356 DOI: 10.1007/s12013-012-9449-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of mesenchymal stem cells (MSCs) for therapeutic applications has attracted great attention because MSCs home to and engraft to injured tissues after in vivo administration. The expression of osteopontin (OPN) is elevated in response to injury and inflammation, and its role on rat bone marrow-derived mesenchymal stem cells (rMSCs)-directed migration has been elucidated. However, the signaling pathways through the activation of which OPN promotes rMSCs migration and the involvement of cell mechanics during OPN-mediating rMSCs migration have not been well studied. In this study, we found that OPN activated focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) signaling pathways by the ligation of integrin β1 in rMSCs. Inhibitors of FAK and ERK pathways inhibited OPN-induced rMSCs migration, indicating the possible involvement of FAK and ERK activation in OPN-induced migration in rMSCs. In addition, atomic force microscopy analysis showed that OPN reduced cell stiffness in rMSCs via integrin β1, FAK, and ERK pathways, suggesting that the promotion of rMSCs migration might partially be contributing to the decrease in cell stiffness stimulated by OPN. To further examine the role of OPN on cell motility and stiffness, actin cytoskeleton of rMSCs was observed. The reduced well-defined F-actin filaments and the promoted formation of pseudopodia in rMSCs induced by OPN explained the reduction in cell stiffness and the increase in cell migration. The current study data have shown for the first time that OPN binding to integrin β1 promotes rMSCs migration through the activation of FAK and ERK pathways, which may be attributed to the change in cell stiffness caused by the reduction in the amount of organized actin cytoskeleton.
Collapse
Affiliation(s)
- Chengyu Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Y, Yan F, Yang WL, Lu XF, Wang WB. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Biol Trace Elem Res 2013; 154:234-43. [PMID: 23775599 DOI: 10.1007/s12011-013-9683-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.
Collapse
Affiliation(s)
- Yang Liu
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | | | | | | | | |
Collapse
|
35
|
LU JING, BAI RUIHUA, QIN ZHENZHU, ZHANG YANYAN, ZHANG XIAOYAN, JIANG YANAN, YANG HONGYAN, HUANG YOUTIAN, LI GANG, ZHAO MINGYAO, DONG ZIMING. Differentiation of immature DCs into endothelial-like cells in human esophageal carcinoma tissue homogenates. Oncol Rep 2013; 30:739-44. [DOI: 10.3892/or.2013.2491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/02/2013] [Indexed: 11/06/2022] Open
|
36
|
Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, Klyachkin YM, Houghton P, Morris AJ, Vater A, Klussmann S, Kucia M, Ratajczak MZ. Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2013; 11:793-807. [PMID: 23615526 DOI: 10.1158/1541-7786.mcr-12-0600] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
CXCL12-Mediated Murine Neural Progenitor Cell Movement Requires PI3Kβ Activation. Mol Neurobiol 2013; 48:217-31. [DOI: 10.1007/s12035-013-8451-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/25/2013] [Indexed: 11/26/2022]
|