1
|
Zhao Y, Peng Y, Wei X, Wu G, Li B, Li X, Long L, Zeng J, Luo W, Tian Y, Wang Z, Peng X. N-Salicyloyl Tryptamine Derivatives as Potent Neuroinflammation Inhibitors by Constraining Microglia Activation via a STAT3 Pathway. ACS Chem Neurosci 2024; 15:2484-2503. [PMID: 38865609 DOI: 10.1021/acschemneuro.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.
Collapse
Affiliation(s)
- Yuting Zhao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiuzhen Wei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Genping Wu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bo Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Luo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ying Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC. Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Front Immunol 2022; 13:830169. [PMID: 35651620 PMCID: PMC9149656 DOI: 10.3389/fimmu.2022.830169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Katherine E Jones
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amy A Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Seth H Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Fangyuan Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Cecile Nasarre
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Zhanpeng Cen
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yi-Nan Gong
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C LaRue
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Simon Cancer Center, Indianapolis, IN, United States
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert M Gemmill
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| |
Collapse
|
3
|
Protective Mechanism of MIF Inhibitor ISO-1 on Intrahepatic Bile Duct Cells in Rats with Severe Acute Pancreatitis. Dig Dis Sci 2021; 66:3415-3426. [PMID: 33123939 DOI: 10.1007/s10620-020-06674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/10/2020] [Indexed: 01/30/2023]
Abstract
AIMS This study aimed to explore the protection mechanism of ISO-1 on severe acute pancreatitis-associated intrahepatic bile duct (IBD) injury in rats. METHODS Forty-eight specific-pathogen-free male Wistar rats were randomly divided into four groups (N = 12): a sham operation group (SO group), a severe acute pancreatitis model group (SAP group), a ISO-1 treatment group (ISO-1 + SAP group), and a ISO-1 control group (ISO-1 + SO group). All rats were killed after 12 h of being made models. Immunohistochemistry was used to detect the expression of MIF and P38 in IBD cells. MIF mRNA expression in IBD cells was observed using real-time fluorescent quantitative polymerase chain reaction (real-time PCR). In addition, Western blotting was performed to detect the protein expression of P38, phosphorylated P38 (P-P38), nuclear factor-κB (NF-κB p65), and tumor necrosis factor alpha (TNF-α). Enzyme-linked immunosorbent assays were used to analyze the levels of TNF-α, IL-1β, and IL-6 in the IBD of rats. RESULTS Compared with SAP, after treatment with ISO-1, the pathological injuries of pancreas, liver, and IBD cells in ISO-1 treatment group remarkably relieved. The expression of MIF in the IBD cells was significantly downregulated both at mRNA and at protein levels in ISO-1 treatment group. Besides, the protein expression levels of P38, P-P38, NF-κBp65, TNF-α, IL-1β, and IL-6 in the IBD in rats were also significantly decreased in ISO-1 treatment group (all P < 0.05). CONCLUSION ISO-1 may protect the IBD cells, reduce pathological injuries, and reduce the inflammatory response in SAP rats. Its mechanisms may be via inhibiting the expression of MIF and then blocking the activation of p38-MAPK and NF-κB signaling pathway.
Collapse
|
4
|
Cortés-Vieyra R, Silva-García O, Gómez-García A, Gutiérrez-Castellanos S, Álvarez-Aguilar C, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites. Front Immunol 2021; 12:675751. [PMID: 34017345 PMCID: PMC8129516 DOI: 10.3389/fimmu.2021.675751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Knowledge of glycogen synthase kinase 3β (GSK3β) activity and the molecules identified that regulate its function in infections caused by pathogenic microorganisms is crucial to understanding how the intensity of the inflammatory response can be controlled in the course of infections. In recent years many reports have described small molecular weight synthetic and natural compounds, proteins, and interference RNA with the potential to regulate the GSK3β activity and reduce the deleterious effects of the inflammatory response. Our goal in this review is to summarize the most recent advances on the role of GSK3β in the inflammatory response caused by bacteria, bacterial virulence factors (i.e. LPS and others), viruses, and parasites and how the regulation of its activity, mainly its inhibition by different type of molecules, modulates the inflammation.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Anel Gómez-García
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Sergio Gutiérrez-Castellanos
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Cleto Álvarez-Aguilar
- Coordinación Auxiliar Médica de Investigación en Salud, IMSS Michoacán, Morelia, Mexico
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
5
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
7
|
Zhang D, Yi W, Ge H, Zhang Z, Wu B. Bioactive Streptoglutarimides A-J from the Marine-Derived Streptomyces sp. ZZ741. JOURNAL OF NATURAL PRODUCTS 2019; 82:2800-2808. [PMID: 31584271 DOI: 10.1021/acs.jnatprod.9b00481] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The new streptoglutarimides A-J (1-10) and the known streptovitacin A (11) were isolated from a marine-derived actinomycete, Streptomyces sp. ZZ741. Structures of the isolated compounds were elucidated based on their HRESIMS data, extensive NMR spectroscopic analyses, ECD calculations, Mosher's method, and a single-crystal X-ray diffraction experiment. Streptoglutarimide H (8) and streptovitacin A (11) showed potent antiproliferative activity against human glioma U87MG and U251 cells with IC50 values of 1.5-3.8 μM for 8 and 0.05-0.22 μM for 11. All isolated compounds exhibited antimicrobial activity with MIC values of 9-11 μg/mL against methicillin-resistant Staphylococcus aureus, 8-12 μg/mL against Escherichia coli, and 8-20 μg/mL against Candida albicans.
Collapse
Affiliation(s)
- Di Zhang
- Ocean College, Zhoushan Campus , Zhejiang University , Zhoushan 316021 , People's Republic of China
| | - Wenwen Yi
- Ocean College, Zhoushan Campus , Zhejiang University , Zhoushan 316021 , People's Republic of China
| | - Hengju Ge
- Ocean College, Zhoushan Campus , Zhejiang University , Zhoushan 316021 , People's Republic of China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus , Zhejiang University , Zhoushan 316021 , People's Republic of China
| | - Bin Wu
- Ocean College, Zhoushan Campus , Zhejiang University , Zhoushan 316021 , People's Republic of China
| |
Collapse
|
8
|
Liu L, Liu Y, Liu X, Zhang N, Mao G, Zeng Q, Yin M, Song D, Deng H. Resibufogenin suppresses transforming growth factor-β-activated kinase 1-mediated nuclear factor-κB activity through protein kinase C-dependent inhibition of glycogen synthase kinase 3. Cancer Sci 2018; 109:3611-3622. [PMID: 30168902 PMCID: PMC6215888 DOI: 10.1111/cas.13788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Resibufogenin (RB), one of the major active compounds of the traditional Chinese medicine Chansu, has received considerable attention for its potency in cancer therapy. However, the anticancer effects and the underlying mechanisms of RB on pancreatic cancer remain elusive. Here, we found that RB inhibited the viability and induces caspase‐dependent apoptosis in human pancreatic cancer cells Panc‐1 and Aspc. Resibufogenin‐induced apoptosis was through inhibition of constitutive nuclear factor‐κB (NF‐κB) activity and its target genes’ expression, which was caused by downregulation of transforming growth factor‐β‐activated kinase 1 (TAK1) levels and suppression of IκB kinase activity in Panc‐1 and Aspc cells. This induction of TAK1‐mediated NF‐κB inactivation by RB was associated with increased glycogen synthase kinase‐3 (GSK‐3) phosphorylation and subsequent suppression of its activity. Moreover, RB‐induced GSK‐3 phosphorylation/inactivation acted through activation of protein kinase C but not Akt. Finally, RB suppressed human pancreatic tumor xenograft growth in athymic nude mice. Thus, our findings reveal a novel mechanism by which RB suppresses TAK1‐mediated NF‐κB activity through protein kinase C‐dependent inhibition of GSK‐3. Our findings provide a rationale for the potential application of RB in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zhao B, Guo H, Liu Y, Luo X, Yang S, Wang Y, Leng X, Mo C, Zou Q. K313, a novel benzoxazole derivative, exhibits anti‐inflammatory properties via inhibiting GSK3β activity in LPS‐induced RAW264.7 macrophages. J Cell Biochem 2018; 119:5382-5390. [DOI: 10.1002/jcb.26685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bo‐Bo Zhao
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
| | - Hui‐Jie Guo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yang Liu
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xing‐Yan Luo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Shu‐Xia Yang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yan‐Tang Wang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xiao Leng
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Chun‐Fen Mo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Qiang Zou
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| |
Collapse
|
10
|
Zhang N, Bi C, Liu L, Dou Y, Tang S, Pang W, Deng H, Song D. IMB-6G, a novel N-substituted sophoridinic acid derivative, induces endoplasmic reticulum stress-mediated apoptosis via activation of IRE1α and PERK signaling. Oncotarget 2018; 7:23860-73. [PMID: 27009865 PMCID: PMC5029669 DOI: 10.18632/oncotarget.8184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/04/2016] [Indexed: 12/31/2022] Open
Abstract
Sophoridinic acid derivatives have received considerable attentions for their potencies in cancer therapy. IMB-6G is a novel N-substituted sophoridinic acid derivative with potent cytotoxicity against tumor cells. In the present study, we explored the antitumor abilities of IMB-6G in human hepatocellular carcinoma (HCC) cells and investigated the underlying mechanisms. We found that IMB-6G inhibited cell growth and induced mitochondrial-dependent apoptosis in HepG2 and SMMC7721 cells. Analyses of the molecular mechanism of IMB-6G-induced apoptosis indicated IMB-6G induced endoplasmic reticulum (ER) stress activation. Incubation of HCC cells with IMB-6G induced increase in Bip and CHOP levels, which precede induction of apoptosis. Further study showed IMB-6G activated IRE1α and PERK pathways but did not stimulated ATF6 pathway in HCC cells. Moreover, silencing of IRE1α dramatically abrogated IMB-6G-induced pro-apoptotic ASK1-JNK signaling. Importantly, interruption of CHOP rendered HCC cells sensitive to IMB-6G-induced apoptosis via inactivation of Bim, PUMA and Bax. Thus, the IRE1α-ASK1 and PERK-CHOP pathways may be a novel molecular mechanism of IMB-6G-induced apoptosis. Collectively, our study demonstrates that IMB-6G induces ER stress-mediated apoptosis by activating IRE1α and PERK pathways. Our findings provide a rationale for the potential application of IMB-6G in HCC therapy.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chongwen Bi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yueying Dou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sheng Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqiang Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Zhang N, Liu X, Liu L, Deng Z, Zeng Q, Pang W, Liu Y, Song D, Deng H. Glycogen synthase kinase-3β inhibition promotes lysosome-dependent degradation of c-FLIP L in hepatocellular carcinoma. Cell Death Dis 2018; 9:230. [PMID: 29445085 PMCID: PMC5833564 DOI: 10.1038/s41419-018-0309-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a ubiquitously expressed serine/threonine kinase involved in a variety of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK-3β inhibition triggered ASK1-JNK-dependent apoptosis in human hepatocellular carcinoma (HCC) cells. However, the comprehensive picture of downstream GSK-3β-regulated pathways/functions remains elusive. In this study, we showed that GSK-3β was aberrantly activated in HCC. Pharmacological inhibition and genetic depletion of GSK-3β suppressed the growth and induced caspase-dependent apoptosis in HCC cells. In addition, GSK-3β inhibition-induced apoptosis through downregulation of c-FLIPL in HCC, which was caused by biogenesis of functional lysosomes and subsequently c-FLIPL translocated to lysosome for degradation. This induction of the lysosome-dependent c-FLIPL degradation was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Moreover, GSK-3β inhibition-induced TFEB translocation acts through activation of AMPK and subsequently suppression of mTOR activity. Thus our findings reveal a novel mechanism by which inhibition of GSK-3β promotes lysosome-dependent degradation of c-FLIPL. Our study shows that GSK-3β may become a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhesong Deng
- Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Weiqiang Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Bi C, Zhang N, Yang P, Ye C, Wang Y, Fan T, Shao R, Deng H, Song D. Synthesis, Biological Evaluation, and Autophagy Mechanism of 12 N-Substituted Sophoridinamines as Novel Anticancer Agents. ACS Med Chem Lett 2017; 8:245-250. [PMID: 28197320 DOI: 10.1021/acsmedchemlett.6b00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
A series of 12N-substituted sophoridinamine derivatives were synthesized and evaluated for their cytotoxic activities in human HepG2 hepatoma cells. Structure-activity relationship revealed that introduction of a suitable arylidene or arylethyl at the N'-end could greatly enhance antiproliferation potency. Among them, compound 6b possessing a N'-trimethoxyphenyl methylene exhibited potent antiproliferation effect against three human tumor cell lines including HepG2, leukemia (K562), and breast cancer (HMLE), with IC50 between 0.55 and 1.7 μM. The underlying mechanism of 6b against tumor cells is to block autophagic flux, mainly through neutralizing lysosomal acidity. Our results indicated that compound 6b is a potent lysosomal deacidification agent and is accordingly able to block autophagic flux and inhibit tumor cell growth.
Collapse
Affiliation(s)
- Chongwen Bi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Peng Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Cheng Ye
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Zhang N, Liu L, Dou Y, Song D, Deng H. Glycogen synthase kinase-3β antagonizes ROS-induced hepatocellular carcinoma cell death through suppression of the apoptosis signal-regulating kinase 1. Med Oncol 2016; 33:60. [DOI: 10.1007/s12032-016-0776-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/14/2016] [Indexed: 02/06/2023]
|
14
|
Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep 2016; 13:3715-23. [PMID: 27035868 PMCID: PMC4838136 DOI: 10.3892/mmr.2016.5005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
During development of disease, complex intracellular signaling pathways regulate an intricate series of events, including resistance to external toxins, the secretion of cytokines and the production of pathological phenomena. Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression. This review aimed to provide an understanding of the effects of the cAMP signaling pathway and the associated factors on disease occurrence and development by examining the information from a new perspective. These novel insights aimed to promote the development of novel therapeutic approaches and aid in the development of new drugs.
Collapse
Affiliation(s)
- Kuo Yan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yi Zhang
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xin Zhou
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
15
|
Inhibition of glycogen synthase kinase-3β attenuates acute kidney injury in sodium taurocholate‑induced severe acute pancreatitis in rats. Mol Med Rep 2014; 10:3185-92. [PMID: 25323773 DOI: 10.3892/mmr.2014.2650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/11/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the efficacy of 4‑benzyl‑2‑methyl‑1,2,4‑thiadiazolidine‑3,5‑dione (TDZD‑8), the selective inhibitor of glycogen synthase kinase‑3β (GSK‑3β), on the development of acute kidney injury in an experimental model of sodium taurocholate‑induced severe acute pancreatitis (SAP) in rats. The serum amylase, lipase, interleukin‑1β and interleukin‑6 levels, and the pancreatic pathological score were examined to determine the magnitude of pancreatitis injury. The serum creatinine and blood urea nitrogen levels, myeloperoxidase (MPO) activity and renal histological grading were measured to assess the magnitude of SAP‑induced acute kidney injury. The activation of nuclear factor‑κB (NF‑κB) was examined using an immunohistochemistry assay. The expression of GSK‑3β, phospho‑GSK‑3β (Ser9), tumour necrosis factor‑α (TNF‑α), intercellular adhesion molecule‑1 (ICAM‑1) and inducible nitric oxide synthase (iNOS) protein in the kidney was characterised using western blot analysis. TDZD‑8 attenuated (i) serum amylase, lipase and renal dysfunction; (ii) the serum concentrations of proinflammatory cytokines; (iii) pancreatic and renal pathological injury; (iv) renal MPO activity and (v) NF‑κB activation and TNF‑α, ICAM‑1 and iNOS protein expression in the kidney. The results obtained in the present study suggest that the inhibition of GSK‑3β attenuates renal disorders associated with SAP through the inhibition of NF‑κB activation and the downregulation of the expression of proinflammatory cytokines, TNF‑α, ICAM‑1 and iNOS in rats. Blocking GSK‑3β protein kinase activity may be a novel approach to the treatment of this inflammatory condition.
Collapse
|
16
|
Wang H, Kumar A, Lamont RJ, Scott DA. GSK3β and the control of infectious bacterial diseases. Trends Microbiol 2014; 22:208-17. [PMID: 24618402 DOI: 10.1016/j.tim.2014.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) has been shown to be a crucial mediator of the intensity and direction of the innate immune system response to bacterial stimuli. This review focuses on: (i) the central role of GSK3β in the regulation of pathogen-induced inflammatory responses through the regulation of pro- and anti-inflammatory cytokine production, (ii) the extensive ongoing efforts to exploit GSK3β for its therapeutic potential in the control of infectious diseases, and (iii) the increasing evidence that specific pathogens target GSK3β-related pathways for immune evasion. A better understanding of complex bacteria-GSK3β interactions is likely to lead to more effective anti-inflammatory interventions and novel targets to circumvent pathogen colonization and survival.
Collapse
Affiliation(s)
- Huizhi Wang
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Akhilesh Kumar
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA
| | - Richard J Lamont
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - David A Scott
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY 40292, USA; Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|