1
|
Liu X, Xi C, Li W, Su H, Yang H, Bai Z, Tian Y, Song S. Moringa oleifera Leaves Protein Enhances Intestinal Permeability by Activating TLR4 Upstream Signaling and Disrupting Tight Junctions. Int J Mol Sci 2023; 24:16425. [PMID: 38003615 PMCID: PMC10671199 DOI: 10.3390/ijms242216425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Changes in intestinal mucosal barrier permeability lead to antigen sensitization and mast cell-mediated allergic reactions, which are considered to play important roles in the occurrence and development of food allergies. It has been suggested that protein causes increased intestinal permeability via mast cell degranulation, and we investigated the effect of camellia Moringa oleifera leaves protein on intestinal permeability and explored its role in the development of food allergies. The current study investigated the effect of M. oleifera leaves protein on intestinal permeability through assessments of transepithelial electrical resistance (TEER) and transmembrane transport of FITC-dextran by Caco-2 cells. The expression levels of Toll-like receptor 4 (TLR4), IL-8, Occludin, Claudin-1, and perimembrane protein family (ZO-1) were detected by real-time PCR and Western blotting. The effect of M. oleifera leaves protein on intestinal permeability was verified in mice in vivo. The serum fluorescence intensity was measured using the FITC-dextran tracer method, and the expression of tight junction proteins was detected using Western blotting. The results showed that M. oleifera leaves protein widened the gaps between Caco-2 cells, reduced transmembrane resistance, and increased permeability. This protein also reduced the mRNA and protein levels of Occludin, Claudin-1, and ZO-1. Animal experiments showed that intestinal permeability was increased, and that the expression of the tight junction proteins Occludin and Claudin-1 were downregulated in mice. This study shows that M. oleifera leaves protein has components that increase intestinal permeability, decrease tight junction protein expression, promote transmembrane transport in Caco-2 cells, and increase intestinal permeability in experimental animals. The finding that M. oleifera leaves active protein increases intestinal permeability suggests that this protein may be valuable for the prevention, diagnosis, and treatment of M. oleifera leaves allergy.
Collapse
Affiliation(s)
- Xiaoxue Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hairan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Hao Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
| | - Zhongbin Bai
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (C.X.); (W.L.); (H.S.); (H.Y.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China;
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Kaur H, Moreau R. Raptor knockdown concurrently increases the electrical resistance and paracellular permeability of Caco-2 cell monolayers. Life Sci 2022; 308:120989. [PMID: 36152680 DOI: 10.1016/j.lfs.2022.120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
AIMS As a critical regulatory point of nutrient sensing, growth and metabolism, the mechanistic target of rapamycin complex 1 (mTORC1) is poised to influence intestinal homeostasis under basal conditions and in disease state. Intestinal barrier integrity ensures tissue homeostasis by closely regulating the permeability of the epithelium to lumenal contents. The role of mTORC1 in the regulation of intestinal barrier function and permeability remains to be fully elucidated. MATERIALS AND METHODS In this study, we employed lentivirus-mediated knockdown of mTORC1 signaling-associated proteins Raptor (regulatory-associated protein of mTOR) and TSC2 (tuberin) to ascertain the effects of constitutive activation or repression of mTORC1 activity on barrier function in Caco-2 cell monolayers. KEY FINDINGS Results showed that the loss of Raptor concomitantly raised the transepithelial electrical resistance (TEER) and para/transcellular permeability leading to a cell monolayer that is leaky for dextran yet electrically resistant to the movement of ions. Paracellular permeability was linked to the downregulation of tight junction protein expression and enhanced autophagy. Raptor-depleted cells had the highest abundance of myosin binding subunit MYPT1 concomitantly with the lowest abundance of p-MYPT1 (Thr696) and phosphorylated myosin light chain (p-MLC, Ser19) implying that MLC phosphatase activity was increased resulting in MLC relaxation. Although rapamycin suppressed mTORC1 activity and decreased the abundance of tight junction proteins in control cells, rapamycin caused a modest increase of TEER compared to Raptor knockdown. SIGNIFICANCE The study showed that epithelium paracellular permeability of small molecular weight dextran is dissociated from TEER.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
3
|
Beneficial Effect of Kidney Bean Resistant Starch on Hyperlipidemia-Induced Acute Pancreatitis and Related Intestinal Barrier Damage in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092783. [PMID: 35566136 PMCID: PMC9100041 DOI: 10.3390/molecules27092783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1β, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.
Collapse
|
4
|
Yang Y, Li L, He H, Shi M, He L, Liang S, Qi J, Chen W. Numb inhibits migration and promotes proliferation of colon cancer cells via RhoA/ROCK signaling pathway repression. Exp Cell Res 2022; 411:113004. [PMID: 34990618 DOI: 10.1016/j.yexcr.2021.113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Numb regulates cell proliferation and differentiation through endocytosis and ubiquitination of signaling molecules. Besides, Numb controls the migration of epithelial cells by regulating intercellular junctions. Studies have shown that Numb promotes or inhibits tumor progression in different tumors. However, its role and mechanism in colorectal cancer remain unclear. We found that the expression level of Numb in colon tumor tissues has a great variety in different patients. Numb expression was negatively correlated with TNM stage and lymph node metastasis but positively correlated with tumor size. Elevated expression of Numb was associated with a good prognosis. Inhibiting Numb expression promoted the migration and invasion of colon cancer cells induced by TGF-β, up-regulated the expression of EMT-related molecule Snail, and prevented the expression of E-cadherin. We also found that Numb promoted the proliferation and clones formation while inhibiting colon cancer cells' late apoptosis. In addition, Numb inhibited the RhoA activation and ROCK inhibitor Y-27632 or interfered with ROCK expression, partially inhibiting Numb-regulated cell proliferation and migration. In vivo tumorigenesis assay in nude mice also found that Numb promoted the proliferation of colon cancer cells, inhibited the expression of E-cadherin, and strengthened the expression of Snail. In conclusion, our study found that Numb plays multiple roles in the occurrence and progression of colon cancer by regulating the RhoA/ROCK signaling pathway, which provides a new theoretical molecular basis for the pathogenesis of colon cancer.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Lianyong Li
- Department of Gastroenterology, PLA Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Huan He
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Mengyang Shi
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Lanying He
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Shuwen Liang
- Department of Gastroenterology, PLA Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Jun Qi
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Zhu L, Chen P, Wang Y, Yang G, Zhou G, Li L, Feng R, Qiu Y, Han J, Chen B, He Y, Zeng Z, Chen M, Zhang S. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn's Disease via the miR-146b-5p-CLDN11/NUMB Pathway. J Crohns Colitis 2021; 15:1542-1557. [PMID: 33677577 DOI: 10.1093/ecco-jcc/jjab040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal homeostasis disorder is critical for developing Crohn's disease [CD]. Maintaining mucosal barrier integrity is essential for intestinal homeostasis, preventing intestinal injury and complications. Among the remarkably altered long non-coding RNAs [lncRNAs] in CD, we aimed to investigate whether metastasis-associated lung adenocarcinoma transcript 1 [MALAT1] modulated CD and consequent disruption of intestinal homeostasis. METHODS Microarray analyses on intestinal mucosa of CD patients and controls were performed to identify dysregulated lncRNAs. MALAT1 expression was investigated via qRT-PCR and its distribution in intestinal tissues was detected using BaseScope. Intestines from MALAT1 knockout mice with colitis were investigated using histological, molecular, and biochemical approaches. Effects of intestinal epithelial cells, transfected with MALAT1 lentiviruses and Smart Silencer, on monolayer permeability and apical junction complex [AJC] proteins were analysed. MiR-146b-5p was confirmed as a critical MALAT1 mediator in cells transfected with miR-146b-5p mimic/inhibitor and in colitis mice administered agomir-146b-5p/antagomir-146b-5p. Interaction between MALAT1 and miR-146b-5p was predicted via bioinformatics and validated using Dual-luciferase reporter assay and Ago2-RIP. RESULTS MALAT1 was aberrantly downregulated in the intestine mucosa of CD patients and mice with experimental colitis. MALAT1 knockout mice were hypersensitive to DSS-induced experimental colitis. MALAT1 regulated the intestinal mucosal barrier and regained intestinal homeostasis by sequestering miR-146b-5p and maintaining the expression of the AJC proteins NUMB and CLDN11. CONCLUSIONS Downregulation of MALAT1 contributed to the pathogenesis of CD by disrupting AJC. Thus, a specific MALAT1-miR-146b-5p-NUMB/CLDN11 pathway that plays a vital role in maintaining intestinal mucosal homeostasis may serve as a novel target for CD treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liguo Zhu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peng Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Wang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guang Yang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaoshi Zhou
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Li
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jing Han
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin Beyond Structure: A Signaling Hub in Colon Homeostasis and Disease. Int J Mol Sci 2019; 20:E2756. [PMID: 31195621 PMCID: PMC6600153 DOI: 10.3390/ijms20112756] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.
Collapse
Affiliation(s)
- Amanda C Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
7
|
Maria-Ferreira D, Nascimento AM, Cipriani TR, Santana-Filho AP, Watanabe PDS, Sant Ana DDMG, Luciano FB, Bocate KCP, van den Wijngaard RM, Werner MFDP, Baggio CH. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep 2018; 8:12261. [PMID: 30115942 PMCID: PMC6095889 DOI: 10.1038/s41598-018-30526-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Natural polysaccharides have emerged as an important class of bioactive compounds due their beneficial biological effects. Here we investigated the protective and healing effects of rhamnogalacturonan (RGal) isolated from Acmella oleracea (L.) R.K. Jansen leaves in an experimental model of intestinal inflammation in mice and in heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2). The findings demonstrated that RGal treatment for 7 days reduced the severity of DSS-induced colitis by protecting mice from weight loss, macroscopic damage and reduction of colon length. When compared to the DSS group, RGal also protected the colon epithelium and promoted the maintenance of mucosal enterocytes and mucus secreting goblet cells, in addition to conserving collagen homeostasis and increasing cell proliferation. In an in vitro barrier function assay, RGal reduced the cellular permeability after exposure to IL-1β, while decreasing IL-8 secretion and claudin-1 expression and preserving the distribution of occludin. Furthermore, we also observed that RGal accelerated the wound healing in Caco-2 epithelial cell line. In conclusion, RGal ameliorates intestinal barrier function in vivo and in vitro and may represent an attractive and promising molecule for the therapeutic management of ulcerative colitis.
Collapse
Affiliation(s)
- Daniele Maria-Ferreira
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Thales Ricardo Cipriani
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Paulo da Silva Watanabe
- Department of Biosciences and Physiopathology, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Fernando Bittencourt Luciano
- Department of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Karla Carolina Paiva Bocate
- Department of Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Zeolite-Containing Mixture Supplementation Ameliorated Dextran Sodium Sulfate-Induced Colitis in Mice by Suppressing the Inflammatory Bowel Disease Pathway and Improving Apoptosis in Colon Mucosa. Nutrients 2017; 9:nu9050467. [PMID: 28481231 PMCID: PMC5452197 DOI: 10.3390/nu9050467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is induced by multiple environmental factors, and there is still no known treatment capable of curing the disease completely. We propose a zeolite-containing mixture (Hydryeast®, HY)-a multi-component nutraceutical of which the main ingredients are Azumaceramics (mixture of zeolite and oyster shell burned under high temperature), citric acid, red rice yeast (monascus) and calcium stearate-as a nutraceutical intervention in IBD to ameliorate dextran sodium sulfate (DSS)-induced colitis. We show the mechanism through integrated omics using transcriptomics and proteomics. C57BL6 mice were given an AIN-93G basal diet or a 0.8% HY containing diet and sterilized tap water for 11 days. Colitis was then induced by 1.5% (w/v) DSS-containing water for 9 days. HY fed mice showed significantly improved disease activity index and colon length compared to DSS mice. Colonic mucosa microarray analysis plus RT-PCR results indicate HY supplementation may ameliorate inflammation by inhibiting the intestinal inflammatory pathway and suppress apoptosis by curbing the expression of genes like tumor protein 53 and epidermal growth factor receptor and by upregulating epithelial protection-related proteins such as epithelial cell adhesion molecule and tenascin C, thus maintaining mucosal immune homeostasis and epithelial integrity, mirroring the proteome analysis results. HY appears to have a suppressive effect on colitis.
Collapse
|
9
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Chiba T, Nakahara T, Hashimoto-Hachiya A, Yokomizo T, Uchi H, Furue M. The leukotriene B4receptor BLT2 protects barrier function via actin polymerization with phosphorylation of myosin phosphatase target subunit 1 in human keratinocytes. Exp Dermatol 2016; 25:532-6. [DOI: 10.1111/exd.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Takahito Chiba
- Department of Dermatology; Kyushu University School of Medicine; Fukuoka Japan
| | - Takeshi Nakahara
- Department of Dermatology; Kyushu University School of Medicine; Fukuoka Japan
| | | | - Takehiko Yokomizo
- Department of Biochemistry; Juntendo University School of Medicine; Tokyo Japan
| | - Hiroshi Uchi
- Department of Dermatology; Kyushu University School of Medicine; Fukuoka Japan
| | - Masutaka Furue
- Department of Dermatology; Kyushu University School of Medicine; Fukuoka Japan
| |
Collapse
|
11
|
Ye J, Song L, Liu Y, Pan Q, Zhong X, Li S, Shang Y, Tian Y, He Y, Chen L, Chen W, Peng Z, Wang R. Core 2 Mucin-Type O-Glycan Is Related to EPEC and EHEC O157:H7 Adherence to Human Colon Carcinoma HT-29 Epithelial Cells. Dig Dis Sci 2015; 60:1977-90. [PMID: 25701318 DOI: 10.1007/s10620-015-3548-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The roles of host glycosylation in interactions with EPEC and EHEC O157:H7 are largely unclear; this study examined whether O-glycans are involved in EPEC and EHEC O157:H7 adherence to HT-29 cells. METHODS Bacterial adherence to the cultured cells was determined using the direct co-staining of adherent bacteria and host cells, the adherent bacteria plating, and/or the direct fluorescent observation of the adherent GFP-labeled bacteria. RESULTS A comparison of the adherence of EPEC and EHEC O157:H7 to HT-29-Gal and HT-29 cells indicated that the differentiation of HT-29 cells led to a reduction in the adherence of EPEC and EHEC O157:H7. EPEC and EHEC O157:H7 adhesion decreased after the abrogation of O-glycan biosynthesis mediated by benzyl-α-GalNAc treatment. Core 2 O-glycan-deficient HT-29 cells induced by C2GnT2 knockdown had a significant reduction in EPEC and EHEC O157:H7 adhesion in C2GnT2-sh2/HT-29 cells compared with HT-29 and shRNA-Ctr/HT-29 cells. MUC2 expression in benzyl-α-GalNAc-treated HT-29 cells was significantly reduced but unchanged in C2GnT2-deficient HT-29 cells. EPEC or EHEC O157:H7 infection in C2GnT2-deficient HT-29 cells deteriorated the epithelial barrier function. The occludin expression in the shRNA-Ctr/HT-29 and C2GnT2-sh2/HT-29 cells after infection with EPEC or EHEC O157:H7 was pyknic and discontinuous at the cell surface compared with its continuous distribution of control cells. These data indicate that EPEC and EHEC O157:H7 adherence to HT-29 cells is related to mucin-type core 2 O-glycan. CONCLUSIONS This study provides the concepts toward the design of carbohydrate-dependent inhibition of EPEC and EHEC O157:H7 adhesion to human intestinal epithelial cells.
Collapse
Affiliation(s)
- Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Myosin light chain kinase (MLCK) dependent myosin light chain (MLC) phosphorylation plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Cytoskeletal contraction induced by the phosphorylation of MLC is essential for the destruction of the intestinal epithelial barrier, and increased expression of MLCK can mediate epithelial barrier dysfunction. Currently studies focused mainly on the mechanism of MLCK in the intestinal epithelial barrier. This review discusses the role of MLCK in IBD.
Collapse
|