1
|
Hou Z, Ding Q, Li Y, Zhao Z, Yan F, Li Y, Wang X, Xu J, Chen W, Wu G, Ruan X, Zhao L. Intestinal epithelial β Klotho is a critical protective factor in alcohol-induced intestinal barrier dysfunction and liver injury. EBioMedicine 2022; 82:104181. [PMID: 35908416 PMCID: PMC9352463 DOI: 10.1016/j.ebiom.2022.104181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/26/2022] Open
|
2
|
Mamtilahun M, Wei Z, Qin C, Wang Y, Tang Y, Shen FX, Tian HL, Zhang Z, Yang GY. DL-3n-Butylphthalide Improves Blood-Brain Barrier Integrity in Rat After Middle Cerebral Artery Occlusion. Front Cell Neurosci 2021; 14:610714. [PMID: 33510620 PMCID: PMC7835508 DOI: 10.3389/fncel.2020.610714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: DL-3n-butylphthalide (NBP) has beneficial effects in different stages of ischemic stroke. Our previous studies have demonstrated that NBP promoted angiogenesis in the perifocal region of the ischemic brain. However, the molecular mechanism of NBP for blood–brain barrier protection in acute ischemic stroke was unclear. Here, we explored the neuroprotective effects of NBP on blood–brain barrier integrity in the acute phase of ischemic stroke in a rat model. Methods: Adult male Sprague–Dawley rats (n = 82) underwent 2 h of transient middle cerebral artery occlusion and received 90 mg/kg of NBP for 3 days. Brain edema, infarct volume, surface blood flow, and neurological severity score were evaluated. Blood–brain barrier integrity was evaluated by Evans blue leakage and changes in tight junction proteins. We further examined AQP4 and eNOS expression, MMP-9 enzyme activity, and possible signaling pathways for the role of NBP after ischemic stroke. Results: NBP treatment significantly increased eNOS expression and surface blood flow in the brain, reduced brain edema and infarct volume, and improved neurological severity score compared to the control group (p < 0.05). Furthermore, NBP attenuated Evans blue and IgG leakage and increased tight junction protein expression compared to the control after 1 and 3 days of ischemic stroke (p < 0.05). Finally, NBP decreased AQP4 expression, MMP-9 enzyme activity, and increased MAPK expression during acute ischemic stroke. Conclusion: NBP protected blood–brain barrier integrity and attenuated brain injury in the acute phase of ischemic stroke by decreasing AQP4 expression and MMP-9 enzyme activity. The MAPK signaling pathway may be associated in this process.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Wei
- University of Shanghai for Science and Technology Affiliated Shidong Hospital, Shanghai, China
| | - Chuan Qin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan-Xia Shen
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Ouabain Accelerates Collective Cell Migration Through a cSrc and ERK1/2 Sensitive Metalloproteinase Activity. J Membr Biol 2019; 252:549-559. [PMID: 31041466 DOI: 10.1007/s00232-019-00066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Studies made in the Madin-Darby canine kidney (MDCK) epithelial cell line showed that ouabain regulates cell adhesion and cell-adhesion-related biological processes, such as migration. Here, we demonstrated that 10 nM ouabain accelerates collective cell migration and heals wounds in cultured MDCK cell monolayers. Ouabain-induced acceleration of cell migration depends on activation of the cSrc-ERK1/2 signaling cascade, as it was inhibited by the kinase inhibitors PP2 and PD98059. Activation of the cSrc-ERK1/2 signaling cascade increased expression and activation of the extracellular matrix metalloproteinase-2 (MMP-2). Inhibition of MMP activity using the generic inhibitor GM6001 or the potent iMMP-2 inhibitor prevented the accelerative effect of ouabain. Likewise, Focal Adhesion Kinase (FAK) inhibition with the transfection of dominant negative peptide FRNK impaired the effect of ouabain. These results suggest that ouabain binding to the Na+,K+-ATPase accelerates collective migration of MDCK cells through activation of the cSrc-ERK1/2-FAK signaling cascade and promoting secretion and MMP activity.
Collapse
|
5
|
Vilchis-Nestor CA, Roldán ML, Leonardi A, Navea JG, Padilla-Benavides T, Shoshani L. Ouabain Enhances Cell-Cell Adhesion Mediated by β 1 Subunits of the Na +,K +-ATPase in CHO Fibroblasts. Int J Mol Sci 2019; 20:E2111. [PMID: 31035668 PMCID: PMC6539428 DOI: 10.3390/ijms20092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na+,K+-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine β1 subunit become adhesive, and those homotypic interactions amongst β1 subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, inhibits the pump activity and induces the detachment of epithelial cells when used at concentrations above 300 nM. At nanomolar non-inhibiting concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through the activation of signaling pathways associated with the α subunit. In this study, we investigated whether the adhesion between β1 subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the β1 subunit of the Na+,K+-ATPase (CHO β1), and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO β1 cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the β1 subunit of the Na+,K+-ATPase at the cell membrane. We also examined the effect of ouabain on the activation of signaling pathways in CHO β1 cells, and their subsequent effect on cell adhesion. We found that cSrc is activated by ouabain and, therefore, that it likely regulates the adhesive properties of CHO β1 cells. Collectively, our findings suggest that the β1 subunit adhesion is modulated by the expression levels of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.
Collapse
Affiliation(s)
- Claudia Andrea Vilchis-Nestor
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - María Luisa Roldán
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| | - Angelina Leonardi
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Liora Shoshani
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| |
Collapse
|
6
|
Delpiano L, Thomas JJ, Yates AR, Rice SJ, Gray MA, Saint-Criq V. Esomeprazole Increases Airway Surface Liquid pH in Primary Cystic Fibrosis Epithelial Cells. Front Pharmacol 2018; 9:1462. [PMID: 30618754 PMCID: PMC6297391 DOI: 10.3389/fphar.2018.01462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Respiratory failure, driven by airways mucus obstruction, chronic inflammation and bacterial infections, is the main cause of mortality and morbidity in people with cystic fibrosis (CF) due to defects in the Cl- andHCO 3 - transport activity of the CF Transmembrane conductance Regulator (CFTR). Most recent pre-clinical and clinical studies have focused on restoring CFTR function by enhancing its trafficking or transport activity and show promising results. However, there are a significant number of patients that will not benefit from these CFTR-targeted therapies and it is therefore important to identify new non-CFTR targets that will restore lung function, by-passing CFTR dysfunction. The H+/K+-ATPase, ATP12A, has recently been identified as a potential novel target for CF therapies, since its acute inhibition by ouabain was shown to help restore mucus viscosity, mucociliary transport, and antimicrobial activity using in vitro CF airway models, and this effect was linked to an increase in the pH of the airway surface liquid (ASL). Here, we have evaluated the potential therapeutic use of ouabain by investigating the effect of chronically treating fully differentiated CF primary human airway epithelial cells (hAECs) with ouabain, under thin film conditions, resembling the in vivo situation. Our results show that although chronic treatment increased ASL pH, this correlated with a deleterious effect on epithelial integrity as assessed by LDH release, transepithelial electrical resistance, fluorescein flux, and ion transport. Since ATP12A shares approximately 65% identity with the gastric H+/K+-ATPase (ATP4A), we investigated the potential of using clinically approved ATP4A proton pump inhibitors (PPIs) for their ability to restore ASL pH in CF hAECs. We show that, despite not expressing ATP4A transcripts, acute exposure to the PPI esomeprezole, produced changes in intracellular pH that were consistent with the inhibition of H+ secretion, but this response was independent of ATP12A. More importantly, chronic exposure of CF hAECs to esomeprazole alkalinized the ASL without disrupting the epithelial barrier integrity, but this increase in ASL pH was consistent with a decrease in mRNA expression of ATP12A. We conclude that PPIs may offer a new approach to restore ASL pH in CF airways, which is independent of CFTR.
Collapse
Affiliation(s)
- Livia Delpiano
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph J. Thomas
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annabel R. Yates
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah J. Rice
- Skeletal Research Group, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Rajamanickam GD, Kastelic JP, Thundathil JC. The ubiquitous isoform of Na/K-ATPase (ATP1A1) regulates junctional proteins, connexin 43 and claudin 11 via Src-EGFR-ERK1/2-CREB pathway in rat Sertoli cells. Biol Reprod 2018; 96:456-468. [PMID: 28203706 DOI: 10.1095/biolreprod.116.141267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
Interaction of Na/K-ATPase with its ligand ouabain has been implicated in the regulation of various biological processes. The objective was to investigate roles of Na/K-ATPase isoforms in formation and function of junctional complexes in Sertoli cells. Primary cultures of Sertoli cells were obtained by enzymatic digestion of 20-day-old rat testes and grown on Matrigel-coated dishes for 7 days. Sertoli cells predominantly expressed the ubiquitous isoform of Na/K-ATPase (ATP1A1), confirmed by immunoblotting, PCR, immunofluorescence, and mass spectrometry. Treatment of Sertoli cells with 50 nM ouabain increased transepithelial electrical resistance (TER) and expression of claudin 11 (tight junctions) and connexin 43 (gap junctions), whereas 1 mM ouabain had opposite effects. Involvement of Src-EGFR-ERK1/2-CREB pathway in ouabain-mediated expression of claudin 11 and connexin 43 was evaluated. Incubation of Sertoli cells with 50 nM ouabain increased content of p-Src, p-EGFR, p-ERK1/2, and p-CREB; in contrast, 1 mM ouabain decreased phosphorylation of these signaling molecules. Preincubation of Sertoli cells with inhibitors of Src and MAPK pathways inhibited ouabain-induced effects on these signaling molecules, TER, and expression of claudin 11 and connexin 43. In conclusion, we inferred that ATP1A1 regulated Sertoli cell tight junctions and gap junctions through the Src-EGFR-ERK1/2-CREB pathway. Ouabain is an endogenous steroid; therefore, its interaction with ATP1A1 may be a critical signaling mechanism for the regulation of Sertoli cell function and male fertility.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, Heritage Medical Research Building RM 400, 3330 Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, Heritage Medical Research Building RM 400, 3330 Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, Heritage Medical Research Building RM 400, 3330 Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Wasén C, Ekstrand M, Levin M, Giglio D. Epidermal growth factor receptor function in the human urothelium. Int Urol Nephrol 2018; 50:647-656. [PMID: 29508172 PMCID: PMC5878195 DOI: 10.1007/s11255-018-1831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/22/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFr)-targeted therapy may be used in subgroups of patients with urinary bladder cancer. Here we assessed the role of EGFr in urothelial proliferation and migration in a two- and three-dimensional cell culture system. METHODS UROtsa cells derived from normal urothelium and malignant T24 cells were cultured in a Type I collagen gel. Proliferation and migration of urothelial cells, in the absence and presence of the EGFr inhibitor cetuximab, were assessed with a proliferation test (ATCC) and with the Axioplan 2 imaging microscope with a motorized stage (Carl Zeiss), respectively. The expressions of cytokeratin (CK) 17, CK20, EGFr, pEGFr, laminin, occludin and zonula occludens 1 (ZO-1) were assessed with immunohistochemistry and/or western blot. RESULTS UROtsa spheroids were formed after 7 days in culture, while T24 cells did not form spheroids. UROtsa expressed CK20 but not laminin or CK17 and consequently resembled umbrella cells. In UROtsa and T24, cetuximab inhibited urothelial proliferation, induced cleavage of EGFr and/or pEGFR but did not affect urothelial migration. The tight junction protein occludin was cleaved, and the formation of cellular spheroids was inhibited in UROtsa by the presence of cetuximab. CONCLUSIONS EGFr modulates urothelial proliferation and the formation of the three-dimensional structure of the urothelium possibly by interfering with occludin. The present data also show a cell culture technique enabling phenotypically normal urothelial cells to form epithelial structures in contrast to malignant urothelial cells.
Collapse
Affiliation(s)
- C Wasén
- Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Box 431, 405 30, Göteborg, Sweden
| | - M Ekstrand
- The Wallenberg Laboratory, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - M Levin
- The Wallenberg Laboratory, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - D Giglio
- Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Box 431, 405 30, Göteborg, Sweden. .,Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
9
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
10
|
Stamatovic SM, Johnson AM, Sladojevic N, Keep RF, Andjelkovic AV. Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci 2017; 1397:54-65. [PMID: 28415156 DOI: 10.1111/nyas.13346] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Internalization of tight junction (TJ) proteins from the plasma membrane is a pivotal mechanism regulating TJ plasticity and function in both epithelial and endothelial barrier tissues. Once internalized, the TJ proteins enter complex vesicular machinery, where further trafficking is directly dependent on the initiating stimulus and downstream signaling pathways that regulate the sorting and destiny of TJ proteins, as well as on cell and barrier responses. The destiny of internalized TJ proteins is recycling to the plasma membrane or sorting to late endosomes and degradation. This review highlights recent advances in our knowledge of endocytosis and vesicular trafficking of TJ proteins in both epithelial and endothelial cells. A greater understanding of these processes may allow for the development of methods to modulate barrier permeability for drug delivery or prevent barrier dysfunction in disease states.
Collapse
Affiliation(s)
| | | | | | - Richard F Keep
- Neurosurgery.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
11
|
Jiang WD, Qu B, Feng L, Jiang J, Kuang SY, Wu P, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS One 2016; 11:e0157001. [PMID: 27280406 PMCID: PMC4900568 DOI: 10.1371/journal.pone.0157001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/22/2016] [Indexed: 01/14/2023] Open
Abstract
Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
12
|
Yang S, Krug SM, Heitmann J, Hu L, Reinhold AK, Sauer S, Bosten J, Sommer C, Fromm M, Brack A, Rittner HL. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 2016; 82:20-33. [DOI: 10.1016/j.biomaterials.2015.11.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
|
13
|
Rocha SC, Pessoa MTC, Neves LDR, Alves SLG, Silva LM, Santos HL, Oliveira SMF, Taranto AG, Comar M, Gomes IV, Santos FV, Paixão N, Quintas LEM, Noël F, Pereira AF, Tessis ACSC, Gomes NLS, Moreira OC, Rincon-Heredia R, Varotti FP, Blanco G, Villar JAFP, Contreras RG, Barbosa LA. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions. PLoS One 2014; 9:e108776. [PMID: 25290152 PMCID: PMC4188576 DOI: 10.1371/journal.pone.0108776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions.
Collapse
Affiliation(s)
- Sayonarah C. Rocha
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Marco T. C. Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luiza D. R. Neves
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Silmara L. G. Alves
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luciana M. Silva
- Laboratório de Biologia Celular e Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Herica L. Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Soraya M. F. Oliveira
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Alex G. Taranto
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Moacyr Comar
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Isabella V. Gomes
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Fabio V. Santos
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Natasha Paixão
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luis E. M. Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio F. Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C. S. C. Tessis
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Natalia L. S. Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ruth Rincon-Heredia
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Fernando P. Varotti
- Laboratório de Bioquímica de Parasitos, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jose A. F. P. Villar
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Rubén G. Contreras
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| |
Collapse
|
14
|
García-Hernández V, Flores-Maldonado C, Rincon-Heredia R, Verdejo-Torres O, Bonilla-Delgado J, Meneses-Morales I, Gariglio P, Contreras RG. EGF Regulates Claudin-2 and -4 Expression Through Src and STAT3 in MDCK Cells. J Cell Physiol 2014; 230:105-15. [DOI: 10.1002/jcp.24687] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Vicky García-Hernández
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Catalina Flores-Maldonado
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Ruth Rincon-Heredia
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
- Department of Pharmacology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Odette Verdejo-Torres
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - José Bonilla-Delgado
- Laboratory of Genetics and Molecular Diagnosis; Research Unit; Hospital Juárez de México; México City México
| | - Ivan Meneses-Morales
- Breast Cancer investigation program; National Autonomous University of México (UNAM); México
- Department of Molecular Biology and Biotechnology; Biomedical Research Institute; National Autonomous University of México (UNAM); México
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Rubén G. Contreras
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| |
Collapse
|
15
|
Larre I, Ponce A, Franco M, Cereijido M. The emergence of the concept of tight junctions and physiological regulation by ouabain. Semin Cell Dev Biol 2014; 36:149-56. [PMID: 25242280 DOI: 10.1016/j.semcdb.2014.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 02/01/2023]
Abstract
The exchange of substances between metazoan and the environment takes place across transporting epithelia that have two fundamental differentiated features: tight junctions (TJ) and apical/basolateral polarity. Usually, reviews of the structure and function of transporting epithelia follow a historical description of major biological findings, but seldom refer to the fact that it also required fundamental theoretical changes in the physics and chemistry involved. We make a brief description of the concatenation of both types of achievements, in which it becomes clear that the major source of conflicts was the enzyme Na(+),K(+)-ATPase (also referred to as "the pump"), because of its intrinsic mechanisms and its asymmetric expression on one side of epithelial cells only (polarity). This enzyme is also the receptor of the newly recognized hormone ouabain, whose chief function is to modulate cell contacts, such as TJs, several types of cell-cell contacts participating in polarization (as gauged through ciliogenesis).
Collapse
Affiliation(s)
- I Larre
- Department of Physiology, Biophysics and Neurosciences, Center for Research & Advanced Studies (Cinvestav), Mexico
| | - A Ponce
- Department of Physiology, Biophysics and Neurosciences, Center for Research & Advanced Studies (Cinvestav), Mexico
| | - M Franco
- National Institute of Cardiology "Ignacio Chavez", Mexico
| | - M Cereijido
- Department of Physiology, Biophysics and Neurosciences, Center for Research & Advanced Studies (Cinvestav), Mexico.
| |
Collapse
|
16
|
Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. J Endocrinol 2014; 222:R11-24. [PMID: 24781255 DOI: 10.1530/joe-13-0613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na(+)/K(+) ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na(+)/K(+) ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na(+)/K(+) ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na(+)/K(+) ATPase activity, cell signaling, and blood pressure regulation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Division of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USADivision of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USA
| |
Collapse
|