1
|
Nava A, Lugli F, Lemmers S, Cerrito P, Mahoney P, Bondioli L, Müller W. Reading children's teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry. Neurosci Biobehav Rev 2024; 163:105745. [PMID: 38825260 DOI: 10.1016/j.neubiorev.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant's growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
Collapse
Affiliation(s)
- Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, via Caserta 6, Rome 00161, Italy.
| | - Federico Lugli
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Chemical and Geological Science, University of Modena and Reggio Emilia, via Giuseppe Campi, 103, Modena 41125, Italy
| | - Simone Lemmers
- Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, s.s. 14 km 163,500, Basovizza, Trieste, Italy; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA
| | - Paola Cerrito
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Ln, Giles Ln, Canterbury CT2 7NZ, UK
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Piazza Capitaniato, 7, Padua 35139, Italy
| | - Wolfgang Müller
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Rojas-Torres J, Quijón MEG, Henríquez-Vidal A, Devia-Rubio L, Martínez-Duran L. Permanent and decidua dentition as chronological biomarkers of heavy metal contamination: A review of the forensic literature. J Trace Elem Med Biol 2024; 84:127435. [PMID: 38547726 DOI: 10.1016/j.jtemb.2024.127435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/27/2024]
Abstract
STATEMENT OF PROBLEM Contamination with heavy metals (HM) has great environmental consequences in the environment due to lack of biodegradation, in addition, accumulation in living beings causes defects in tissues and organs, deteriorating their function and inducing a wide spectrum of diseases. Human biomonitoring consists of the periodic measurement of a certain chemical substance or metabolite in a particular population, using matrices that can be acute or chronic. Teeth are chronic matrices that have great characteristics of resistance and chronological storage of information. This review aims to identify the mechanisms, spatial location, and affinity of HM within teeth, along with understanding its applicability as a chronological record matrix in the face of HM contamination. MATERIAL AND METHODS A systematic search review was performed using the PubMed/Medline, Web of Science, and Scopus metasearch engines, and the terms "teeth" OR "dental" OR "tooth" AND "heavy metals" were intersected. Complete articles are included in Spanish, English and Portuguese without time restrictions, involving studies in humans or in vitro; Letters to the editor, editorials and those that did not refer to information on the incorporation and relationship of HM with the teeth were excluded. RESULTS 837 published articles were detected, 91 were adjusted to the search objective, and 6 were manually included. Teeth are structures with a great capacity for information retention in the face of HM contamination due to low physiological turnover and their long processes of marked formations by developmental biorhythm milestones such as the neonatal line (temporal reference indicator). The contamination mechanisms inside the tooth are linked to the affinity of hydroxyapatite for HM; this incorporation can be in the soft matrix during the apposition phase or as part of the chemical exchanges between hydroxyapatite and the elements of the environment. CONCLUSION The teeth present unique characteristics of great resistance and affinity for HM, as well as a chronological biomarker for human biomonitoring, so they can be used as means of expertise or evidence to confirm or rule out a fact of environmental characteristics in the legal field.
Collapse
Affiliation(s)
- Javier Rojas-Torres
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile; Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile.
| | - María Eugenia González Quijón
- Chemical Engineering Department, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile; Center of Waste Management and Bioenergy-BIOREN, University of La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Andrés Henríquez-Vidal
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Leslie Devia-Rubio
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Martínez-Duran
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile; Laboratorio de Farmacología Molecular y Química medicinal, departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; Receptomics and Brain Disorders Lab, Department of Human Physiology, Sport and Exercise, Faculty of Medicine, University of Malaga, Edificio Lopez-Penalver, Jimenez Fraud 10, Málaga 29071, Spain
| |
Collapse
|
3
|
Calsa B, de Camargo LS, Bortolança TJ, de Oliveira CA, Catisti R, do Amaral FG, Santamaria-Jr M. Absence of melatonin during development impairs craniofacial and dental onset in rats. Clin Oral Investig 2023; 27:5353-5365. [PMID: 37454327 DOI: 10.1007/s00784-023-05155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Herein, we evaluated pinealectomy-induced melatonin absence to determine its effects on craniofacial and dental development in the offspring. DESIGN Female Wistar rats in three groups, i.e., intact pregnant rats, pinealectomized pregnant rats (PINX), and pinealectomized pregnant rats subjected to oral melatonin replacement therapy, were crossed 30 days after surgery. The heads of 7-day-old pups were harvested for cephalometric and histological analyses, and maxillae and incisors were collected for mRNA expression analysis. RESULTS The PINX pups exhibited a reduction in neurocranial and facial parameters such as a decrease in alveolar bone area, incisor size and proliferation, and an increase in odontoblasts and the dentin layer. Based on incisor mRNA expression analysis, we found that Dmp1 expression was upregulated, whereas Col1a1 expression was downregulated. Maxillary mRNA expression revealed that Rankl expression was upregulated, whereas that of Opn and Osx was downregulated. CONCLUSION Our results demonstrated that the absence of maternal melatonin during early life could affect dental and maxillary development in offspring, as well as delay odontogenesis and osteogenesis in maxillary tissues. CLINICAL RELEVANCE Our findings suggest that disruptions or a lack of melatonin during pregnancy may cause changes in craniofacial and dental development, at least in animal experiments; however, in humans, these feedings are still poorly understood, and thus careful evaluations of melatonin levels in humans need to be investigated in craniofacial alterations.
Collapse
Affiliation(s)
- Bruno Calsa
- Graduate Program of Biomedical Sciences, Hermínio Ometto Foundation - FHO, Araras, SP, Brazil
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Ludmilla Scodeler de Camargo
- Pineal Neurobiology Laboratory, Department of Physiology, Federal University of São Paulo - UNIFESP, São Paulo, SP, Brazil
| | | | | | - Rosana Catisti
- Graduate Program of Biomedical Sciences, Hermínio Ometto Foundation - FHO, Araras, SP, Brazil
| | - Fernanda Gaspar do Amaral
- Pineal Neurobiology Laboratory, Department of Physiology, Federal University of São Paulo - UNIFESP, São Paulo, SP, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Milton Santamaria-Jr
- Graduate Program of Biomedical Sciences, Hermínio Ometto Foundation - FHO, Araras, SP, Brazil.
- Graduate Program of Orthodontics Hermínio Ometto Foundation - FHO, Araras, SP, Brazil.
- Department of Social and Pediatric Dentistry, Institute of Science and Technology - College of Dentistry, UNESP - São Paulo State University, Av. Eng. Francisco José Longo 777, São José Dos Campos, SP, 12245-000, Brazil.
| |
Collapse
|
4
|
Chemelo VS, Bittencourt LO, Nascimento PC, Paiva MF, Delbem ACB, Pessan JP, do Espírito Santo AR, Albuquerque ARL, Angélica RS, Crespo-Lopez ME, Pessanha S, Aschner M, Lima RR. Maternal methylmercury exposure during early-life periods adversely affects mature enamel structure of offspring rats at human exposure levels: a concern for oral health. Front Public Health 2023; 11:1183308. [PMID: 37457266 PMCID: PMC10348892 DOI: 10.3389/fpubh.2023.1183308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Although there are many studies on the health effects of methylmercury (MeHg) toxicity during in utero and early development, little is known about its effects on mineralized tissues present in the oral cavity, such as enamel structure. Therefore, this study evaluated the effects of MeHg exposure on the physico-chemical, ultrastructural and functional properties of mature tooth enamel. Specifically, we studied offspring of mothers exposed to MeHg during the prenatal and postnatal periods which are the developmental stages associated with tooth enamel formation. Female rats were exposed to MeHg at a dose of 40 μg/kg/day for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by (1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular matrix, and (4) resistance and hardness were evaluated by microhardness. The results showed that MeHg exposure during this sensitive enamel formation period induced changes in inorganic and organic content and enamel prisms ultrastructure alterations and disturbed the organic extracellular matrix due to a decreased enamel strength. These novel findings establish for the first time that maternal exposure to MeHg pre and postnatal promoted relevant changes in mature enamel of their offspring rats.
Collapse
Affiliation(s)
- Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Mayra Frasson Paiva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alexandre Ribeiro do Espírito Santo
- Laboratory of Histotechnology and Tissue Biology, Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Rômulo Simões Angélica
- Laboratory of X-Ray Diffraction, Institute of Geosciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Sofia Pessanha
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, NOVA School of Science and Technology, Caparica, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
5
|
Skeletal Markers of Physiological Stress as Indicators of Structural Violence: A Comparative Study between the Deceased Migrants of the Mediterranean Sea and the CAL Milano Cemetery Skeletal Collection. BIOLOGY 2023; 12:biology12020335. [PMID: 36829611 PMCID: PMC9953607 DOI: 10.3390/biology12020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Structural violence is an indirect form of violence that can lead to physiological consequences. Interestingly, these physiological disruptions may affect the skeletons and can therefore provide relevant information on violence and way of life in the analysis of skeletal remains. The aim of the present study was to test the hypothesis that migrants who died in the Mediterranean Sea would present physiological cranial stress markers such as cribra orbitalia (CO), porotic hyperostosis (PH), and linear enamel hypoplasia (LEH) more frequently and more severely than Italians of the 20th century. With this intent, a total of 164 crania were examined: 139 from deceased migrants recovered from a shipwreck in the Mediterranean Sea in 2015, aged between 16 and 35 years old, and 25 of the same age from the CAL Milano Cemetery Skeletal Collection. Both presence and severity of CO, PH, and LEH were evaluated. The data obtained were analyzed using Wilcoxon signed-rank and independence Chi-squared tests to compare the results between the two samples and to test whether there was an association between the sample of migrants and the occurrence of lesions. As a result, CO and PH appeared more frequently and more severely in the migrant sample. In addition, migrants were significantly associated with CO, PH, and LEH (p-values < 0.05). Although this does not imply in any way that CO, PH, and LEH are specific to migration, they should be regarded as indicators of structural violence.
Collapse
|
6
|
Said R, Mortazavi H, Cooper D, Ovens K, McQuillan I, Papagerakis S, Papagerakis P. Deciphering the functions of Stromal Interaction Molecule-1 in amelogenesis using AmelX-iCre mice. Front Physiol 2023; 14:1100714. [PMID: 36935757 PMCID: PMC10014868 DOI: 10.3389/fphys.2023.1100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: The intracellular Ca2+ sensor stromal interaction molecule 1 (STIM1) is thought to play a critical role in enamel development, as its mutations cause Amelogenesis Imperfecta (AI). We recently established an ameloblast-specific (AmelX-iCre) Stim1 conditional deletion mouse model to investigate the role of STIM1 in controlling ameloblast function and differentiation in vivo (Stim1 cKO). Our pilot data (Said et al., J. Dent. Res., 2019, 98, 1002-1010) support our hypothesis for a broad role of Stim1 in amelogenesis. This paper aims to provide an in-depth characterization of the enamel phenotype observed in our Stim1 cKO model. Methods: We crossed AmelX-iCre mice with Stim1-floxed animals to develop ameloblast-specific Stim1 cKO mice. Scanning electron microscopy, energy dispersive spectroscopy, and micro- CT were used to study the enamel phenotype. RNAseq and RT-qPCR were utilized to evaluate changes in the gene expression of several key ameloblast genes. Immunohistochemistry was used to detect the amelogenin, matrix metalloprotease 20 and kallikrein 4 proteins in ameloblasts. Results: Stim1 cKO animals exhibited a hypomineralized AI phenotype, with reduced enamel volume, diminished mineral density, and lower calcium content. The mutant enamel phenotype was more severe in older Stim1 cKO mice compared to younger ones and changes in enamel volume and mineral content were more pronounced in incisors compared to molars. Exploratory RNAseq analysis of incisors' ameloblasts suggested that ablation of Stim1 altered the expression levels of several genes encoding enamel matrix proteins which were confirmed by subsequent RT-qPCR. On the other hand, RT-qPCR analysis of molars' ameloblasts showed non-significant differences in the expression levels of enamel matrix genes between control and Stim1-deficient cells. Moreover, gene expression analysis of incisors' and molars' ameloblasts showed that Stim1 ablation caused changes in the expression levels of several genes associated with calcium transport and mitochondrial kinetics. Conclusions: Collectively, these findings suggest that the loss of Stim1 in ameloblasts may impact enamel mineralization and ameloblast gene expression.
Collapse
Affiliation(s)
- Raed Said
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Helyasadat Mortazavi
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Ian McQuillan
- Department of Computer Sciences, College of Arts and Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Petros Papagerakis,
| |
Collapse
|
7
|
Feng G, Zhao J, Peng J, Luo B, Zhang J, Chen L, Xu Z. Circadian clock—A promising scientific target in oral science. Front Physiol 2022; 13:1031519. [PMCID: PMC9708896 DOI: 10.3389/fphys.2022.1031519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases. However, the roles of the circadian clock in oral science have not yet been comprehensively reviewed. Therefore, This paper provides a systematic and integrated perspective on the function of the circadian clock in the fields of oral science, reviews recent advances in terms of the circadian clock in oral and maxillofacial development and disease, dialectically analyzes the importance of the circadian clock system and circadian rhythm to the activities of oral and maxillofacial tissues, and focuses on analyzing the mechanism of the circadian clock in the maintenance of oral health, affecting the common diseases of the oral and maxillofacial region and the process of oral-related systemic diseases, sums up the chronotherapy and preventive measures for oral-related diseases based on changes in tissue activity circadian rhythms, meanwhile, comes up with a new viewpoint to promote oral health and human health.
Collapse
Affiliation(s)
- Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| |
Collapse
|
8
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
9
|
Husein D, Alamoudi A, Ohyama Y, Mochida H, Ritter B, Mochida Y. Identification of the C-terminal region in Amelogenesis Imperfecta causative protein WDR72 required for Golgi localization. Sci Rep 2022; 12:4640. [PMID: 35301423 PMCID: PMC8930991 DOI: 10.1038/s41598-022-08719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Amelogenesis Imperfecta (AI) represents a group of hereditary conditions that manifest tooth enamel defects. Several causative mutations in the WDR72 gene have been identified and patients with WDR72 mutations have brown (or orange-brown) discolored enamel, rough enamel surface, early loss of enamel after tooth eruption, and severe attrition. Although the molecular function of WDR72 is not yet fully understood, a recent study suggested that WDR72 could be a facilitator of endocytic vesicle trafficking, which appears inconsistent with the previously reported cytoplasmic localization of WDR72. Therefore, the aims of our study were to investigate the tissues and cell lines in which WDR72 was expressed and to further determine the sub-cellular localization of WDR72. The expression of Wdr72 gene was investigated in mouse tissues and cell lines. Endogenous WDR72 protein was detected in the membranous fraction of ameloblast cell lines in addition to the cytosolic fraction. Sub-cellular localization studies supported our fractionation data, showing WDR72 at the Golgi apparatus, and to a lesser extent, in the cytoplasmic area. In contrast, a WDR72 AI mutant form that lacks its C-terminal region was exclusively detected in the cytoplasm. In addition, our studies identified a putative prenylation/CAAX motif within the last four amino acids of human WDR72 and generated a WDR72 variant, called CS mutant, in which the putative motif was ablated by a point mutation. Interestingly, mutation of the putative CAAX motif impaired WDR72 recruitment to the Golgi. Cell fractionation assays confirmed subcellular distribution of wild-type WDR72 in both cytosolic and membranous fractions, while the WDR72 AI mutant and CS mutant forms were predominantly detected in the cytosolic fraction. Our studies provide new insights into the subcellular localization of WDR72 and demonstrate a critical role for the C-terminal CAAX motif in regulating WDR72 recruitment to the Golgi. In accordance with structural modelling studies that classified WDR72 as a potential vesicle transport protein, our findings suggest a role for WDR72 in vesicular Golgi transport that may be key to understanding the underlying cause of AI.
Collapse
Affiliation(s)
- Dina Husein
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Brigitte Ritter
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Developmental Defects of the Teeth and Their Hard Tissues. Pediatr Dent 2022. [DOI: 10.1007/978-3-030-78003-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
JACINTO-ALEMÁN LF, PORTILLA-ROBERTSON J, LEYVA-HUERTA ER, RAMÍREZ-JARQUÍN JO, VILLANUEVA-SÁNCHEZ FG. Microarray and bioinformatic analysis of conventional ameloblastoma: an observational analysis. J Appl Oral Sci 2022. [DOI: 10.1590/1678-7757-2022-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Sezer B, Çarıkçıoğlu B, Kargül B. Dental age and tooth development in children with molar-incisor hypomineralization: A case-control study. Arch Oral Biol 2021; 134:105325. [PMID: 34871891 DOI: 10.1016/j.archoralbio.2021.105325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the study was to determine the dental age for the evaluation of tooth development in children with molar-incisor hypomineralization (MIH) by using the Willems method, Cameriere-European formula, and London Atlas. DESIGN Panoramic radiographs of 308 children between the ages of 6-13 diagnosed with MIH and the same number of sex- and age-matched children without MIH were evaluated by two different examiners using the Willems method, Cameriere-European formula, and London Atlas. The mean difference between chronological age and dental age in both groups was calculated for each sex and age. The mean absolute error was used to determine the accuracies of the Willems method, Cameriere-European formula, and London Atlas. RESULTS There was a statistically significant difference found only in Willems method in dental age estimation between the groups with and without MIH (P = 0.001). In the evaluation performed with Cameriere-European formula and London Atlas, which are more accurate methods for dental age estimation in both groups, no statistically significant difference was found in dental age estimation between the two groups (P = 0.322, P = 0.290, respectively). There was a statistically significant intense linear correlation for three methods in both groups (P < 0.001). CONCLUSIONS MIH, which is a developmental enamel defect, does not affect dental age and tooth development since there was no significant difference between groups with and without MIH according to the evaluations made with accurate dental age estimation methods.
Collapse
Affiliation(s)
- Berkant Sezer
- Department of Pediatric Dentistry, School of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Burak Çarıkçıoğlu
- Department of Pediatric Dentistry, School of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Betül Kargül
- Department of Pediatric Dentistry, School of Dentistry, Marmara University, Istanbul, Turkey.
| |
Collapse
|
13
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs’ heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait.,Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
14
|
Cagetti MG, Balian A, Cirio S, Camoni N, Salerno C, Tartaglia GM. Is Pediatric Dentistry a Topic of Interest for Pediatric Journals? A Scoping Review. CHILDREN-BASEL 2021; 8:children8090720. [PMID: 34572152 PMCID: PMC8467268 DOI: 10.3390/children8090720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 01/10/2023]
Abstract
Background: Pediatric dentistry shares many skills with pediatrics. This review evaluates the amount of literature on pediatric dentistry in the first 30 pediatric journals classified by the Web of Science in 2019. The aim was to perform a quantitative analysis of the main dental topics addressed. Methods: A scoping review with the PRISMA-ScR criteria was performed. The Clarivate Analytics Journal Citation Report was consulted for journals ranked in the category “Pediatrics” in 2019. Papers were searched in PubMed using an ad hoc prepared string. Results: A total of 504 papers were included. Papers on dental hard tissues were the most prevalent (45.6%), followed by dental public health (23.2%), orofacial development (15.3%), soft tissues related conditions (12.3%), and orofacial trauma (3.6%). Increasing trends have been observed for total papers published (R2 = 0.9822) and total dental papers (R2 = 0.8862), with no statistically significant differences (χ2(6) = 0.051 p > 0.05). The majority of papers (n = 292, 57.9%) were cited between 1 and 10 times, whilst less than 7% of papers received more than 40 citations. Discussion: It is desirable that papers on pediatric dentistry increase in the pediatric scenario, allowing the two related disciplines to intertwine more in the future.
Collapse
Affiliation(s)
- Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
| | - Araxi Balian
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
- Correspondence:
| | - Silvia Cirio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
| | - Nicole Camoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
| | - Claudia Salerno
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.G.C.); (S.C.); (N.C.); (C.S.); (G.M.T.)
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| |
Collapse
|
15
|
Sehirli AÖ, Chukwunyere U, Aksoy U, Sayiner S, Abacioglu N. The circadian clock gene Bmal1: Role in COVID-19 and periodontitis. Chronobiol Int 2021; 38:779-784. [PMID: 33792447 DOI: 10.1080/07420528.2021.1895198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023]
Abstract
The physiological processes of most living organisms follow a rhythmic pattern, which is controlled by the interaction between environmental cues and the internal circadian timing system. Different regulatory circadian genes are expressed in most cells and tissues, and disruptions in the sleep-wake cycle affect these genes, which may result in metabolic disorders and cause alterations of the immune system. The manifestations of these disrupted genes are evident in inflammatory conditions such as periodontitis and some viral diseases, including COVID-19. The brain and muscle ARNT-like protein-1 (Bmal1), an important circadian regulatory gene, decreases when the sleep-wake cycle is disrupted. Circadian genes have been linked to different events, including cytokine storm in inflammatory conditions and virus invasion. The evaluation of the effects of these regulatory circadian genes, especially Bmal1, in periodontitis and viral infection suggests that both diseases may have a common pathogenesis via the NF-κB pathway. This brief review highlights the role and importance of the circadian clock gene Bmal1 in the disease process of periodontitis and suggests its role and importance in viral infections, including COVID-19.
Collapse
Affiliation(s)
- Ahmet Özer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| | - Ugochukwu Chukwunyere
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - Umut Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| | - Serkan Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Nicosia, Cyprus
| | - Nurettin Abacioglu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
- Department of Pharmacology, Faculty of Pharmacy, Kyrenia University, Kyrenia, Cyprus
| |
Collapse
|
16
|
Dean C, Zanolli C, Le Cabec A, Tawane M, Garrevoet J, Mazurier A, Macchiarelli R. Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa. Sci Rep 2020; 10:19053. [PMID: 33149180 PMCID: PMC7642444 DOI: 10.1038/s41598-020-76032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
Third permanent molars (M3s) are the last tooth to form but have not been used to estimate age at dental maturation in early fossil hominins because direct histological evidence for the timing of their growth has been lacking. We investigated an isolated maxillary M3 (SK 835) from the 1.5 to 1.8-million-year-old (Mya) site of Swartkrans, South Africa, attributed to Paranthropus robustus. Tissue proportions of this specimen were assessed using 3D X-ray micro-tomography. Thin ground sections were used to image daily growth increments in enamel and dentine. Transmitted light microscopy and synchrotron X-ray fluorescence imaging revealed fluctuations in Ca concentration that coincide with daily growth increments. We used regional daily secretion rates and Sr marker-lines to reconstruct tooth growth along the enamel/dentine and then cementum/dentine boundaries. Cumulative growth curves for increasing enamel thickness and tooth height and age-of-attainment estimates for fractional stages of tooth formation differed from those in modern humans. These now provide additional means for assessing late maturation in early hominins. M3 formation took ≥ 7 years in SK 835 and completion of the roots would have occurred between 11 and 14 years of age. Estimated age at dental maturation in this fossil hominin compares well with what is known for living great apes.
Collapse
Affiliation(s)
- Christopher Dean
- Department of Earth Sciences, Natural History Museum, London, UK. .,Department of Cell and Developmental Biology, University College London, London, UK.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Maxillofacial and Oral Surgery, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Arnaud Mazurier
- IC2MP, UMR 7285 CNRS, Université de Poitiers, Poitiers, France
| | - Roberto Macchiarelli
- UMR 7194 CNRS, Muséum National D'Histoire Naturelle, Musée de L'Homme, Paris, France.,Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
17
|
Said R, Lobanova L, Papagerakis S, Papagerakis P. Calcium Sets the Clock in Ameloblasts. Front Physiol 2020; 11:920. [PMID: 32848861 PMCID: PMC7411184 DOI: 10.3389/fphys.2020.00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Stromal interaction molecule 1 (STIM1) is one of the main components of the store operated Ca2+ entry (SOCE) signaling pathway. Individuals with mutated STIM1 present severely hypomineralized enamel characterized as amelogenesis imperfecta (AI) but the downstream molecular mechanisms involved remain unclear. Circadian clock signaling plays a key role in regulating the enamel thickness and mineralization, but the effects of STIM1-mediated AI on circadian clock are unknown. Objectives The aim of this study is to examine the potential links between SOCE and the circadian clock during amelogenesis. Methods We have generated mice with ameloblast-specific deletion of Stim1 (Stim1fl/fl/Amelx-iCre+/+, Stim1 cKO) and analyzed circadian gene expression profile in Stim1 cKO compared to control (Stim1fl/fl/Amelx-iCre–/–) using ameloblast micro-dissection and RNA micro-array of 84 circadian genes. Expression level changes were validated by qRT-PCR and immunohistochemistry. Results Stim1 deletion has resulted in significant upregulation of the core circadian activator gene Brain and Muscle Aryl Hydrocarbon Receptor Nuclear Translocation 1 (Bmal1) and downregulation of the circadian inhibitor Period 2 (Per2). Our analyses also revealed that SOCE disruption results in dysregulation of two additional circadian regulators; p38α mitogen-activated protein kinase (MAPK14) and transforming growth factor-beta1 (TGF-β1). Both MAPK14 and TGF-β1 pathways are known to play major roles in enamel secretion and their dysregulation has been previously implicated in the development of AI phenotype. Conclusion These data indicate that disruption of SOCE significantly affects the ameloblasts molecular circadian clock, suggesting that alteration of the circadian clock may be partly involved in the development of STIM1-mediated AI.
Collapse
Affiliation(s)
- Raed Said
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Petros Papagerakis
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Papakyrikos AM, Arora M, Austin C, Boughner JC, Capellini TD, Dingwall HL, Greba Q, Howland JG, Kato A, Wang X, Smith TM. Biological clocks and incremental growth line formation in dentine. J Anat 2020; 237:367-378. [PMID: 32266720 PMCID: PMC7369199 DOI: 10.1111/joa.13198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Dentine- and enamel-forming cells secrete matrix in consistent rhythmic phases, resulting in the formation of successive microscopic growth lines inside tooth crowns and roots. Experimental studies of various mammals have proven that these lines are laid down in subdaily, daily (circadian), and multidaily rhythms, but it is less clear how these rhythms are initiated and maintained. In 2001, researchers reported that lesioning the so-called master biological clock, the suprachiasmatic nucleus (SCN), halted daily line formation in rat dentine, whereas subdaily lines persisted. More recently, a key clock gene (Bmal1) expressed in the SCN in a circadian manner was also found to be active in dentine- and enamel- secretory cells. To probe these potential neurological and local mechanisms for the production of rhythmic lines in teeth, we reexamined the role of the SCN in growth line formation in Wistar rats and investigated the presence of daily lines in Bmal1 knockout mice (Bmal1-/- ). In contrast to the results of the 2001 study, we found that both daily and subdaily growth lines persisted in rat dentine after complete or partial SCN lesion in the majority of individuals. In mice, after transfer into constant darkness, daily rhythms continued to manifest as incremental lines in the dentine of each Bmal1 genotype (wild-type, Bmal+/- , and Bmal1-/- ). These results affirm that the manifestation of biological rhythms in teeth is a robust phenomenon, imply a more autonomous role of local biological clocks in tooth growth than previously suggested, and underscore the need further to elucidate tissue-specific circadian biology and its role in incremental line formation. Investigations of this nature will strengthen an invaluable system for determining growth rates and calendar ages from mammalian hard tissues, as well as documenting the early lives of fossil hominins and other primates.
Collapse
Affiliation(s)
- Amanda M. Papakyrikos
- Department of AnthropologyWellesley CollegeWellesleyMAUSA
- Department of Developmental BiologyStanford University School of MedicineStanfordCAUSA
| | - Manish Arora
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christine Austin
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Julia C. Boughner
- Department of Anatomy, Physiology and PharmacologyCollege of MedicineUniversity of SaskatchewanSaskatoonSKCanada
| | | | | | - Quentin Greba
- Department of Anatomy, Physiology and PharmacologyCollege of MedicineUniversity of SaskatchewanSaskatoonSKCanada
| | - John G. Howland
- Department of Anatomy, Physiology and PharmacologyCollege of MedicineUniversity of SaskatchewanSaskatoonSKCanada
| | - Akiko Kato
- Department of Human Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Department of Oral AnatomySchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Xiu‐Ping Wang
- Department of Developmental BiologyHarvard School of Dental MedicineBostonMAUSA
| | - Tanya M. Smith
- Department of Human Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Australian Research Centre for Human EvolutionGriffith UniversityNathanQldAustralia
- Griffith Centre for Social and Cultural ResearchGriffith UniversityNathanQldAustralia
| |
Collapse
|
19
|
Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L. The biological function of BMAL1 in skeleton development and disorders. Life Sci 2020; 253:117636. [DOI: 10.1016/j.lfs.2020.117636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
20
|
Jiang L, Zhang F, Fan W, Zheng M, Kang J, Huang F, He H. Expression of circadian clock genes during differentiation of rat dental papilla cells in vitro. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1777049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Liulin Jiang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Kang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Dirks W, Lemmers SAM, Ngoubangoye B, Herbert A, Setchell JM. Odontochronologies in male and female mandrills (
Mandrillus sphinx
) and the development of dental sexual dimorphism. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:528-544. [DOI: 10.1002/ajpa.24094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wendy Dirks
- Department of AnthropologyDurham University Durham UK
| | - Simone A. M. Lemmers
- Department of AnthropologyDurham University Durham UK
- Science and Technology in Archaeology Research CenterThe Cyprus Institute Nicosia Cyprus
| | | | - Anaïs Herbert
- Centre de Primatologie, Centre Internationale de Recherches Médicales Franceville Gabon
| | | |
Collapse
|
22
|
Melatonin as an Agent for Direct Pulp-Capping Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031043. [PMID: 32041360 PMCID: PMC7037898 DOI: 10.3390/ijerph17031043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Melatonin plays an essential role in the regulation of bone growth. The actions that melatonin exerts on odontoblasts may be similar to its action on osteoblasts. This research aimed to evaluate the pulp response to melatonin used for direct pulp capping to evaluate the antioxidant effect of melatonin administered orally and its influence on dental pulp. Direct pulp capping was performed on the upper molars of Sprague Dawley rats using melatonin or Mineral Trioxide Aggregate (MTA). The study groups were: MTA; Melatonin; MTA + Melatonin administered orally; and Melatonin + Melatonin administered orally. In the latter two groups, the animals drank water dosed with melatonin ad libitum (10 mg/100 mL). After 30 days, the animals were sacrificed, and 5 ml of blood, the kidneys, and the liver were extracted in order to evaluate oxidative stress using thiobarbituric acid reactive substances testing (TBARS). Fragments of the maxilla containing the study molars were prepared for histological evaluation. The degree of pulp inflammation and pulp necrosis, the presence of reparative dentin and dentin bridging the pulp chamber, the presence and regularity of the odontoblastic layer, and the presence of pulp fibrosis were evaluated. No significant differences were found between the four study groups for any of the studied histological variables. The oral administration of melatonin did not modify the local effects of MTA or melatonin on dental pulp, or reduce basal-level oxidative stress. The effect of melatonin on pulp is similar to that of MTA and may be used as an agent for direct pulp capping.
Collapse
|
23
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
24
|
Said R, Zheng L, Saunders T, Zeidler M, Papagerakis S, Papagerakis P. Generation of Amelx-iCre Mice Supports Ameloblast-Specific Role for Stim1. J Dent Res 2019; 98:1002-1010. [PMID: 31329049 DOI: 10.1177/0022034519858976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification and targeting of the molecular pathways regulating amelogenesis is an ongoing challenge in dental research, and progress has been restricted by the limited number of genetic tools available to study gene function in ameloblasts. Here, we generated 4 transgenic Cre-driver mouse lines that express improved Cre (iCre)-recombinase from the locus of the mouse ameloblast-specific gene amelogenin X (Amelx-iCre) with a large (250-kb) bacterial artificial chromosome DNA vector. All 4 Amelx-iCre transgenic lines were bred with ROSA26 reporter mice to characterize the iCre developmental pattern with the LacZ gene encoding β-galactosidase enzyme activity assay and Cre protein immunohistochemistry. From the 4 generated transgenic lines, 2 were selected for further analysis because they expressed a high amount of Cre recombinase exclusively in ameloblasts and showed developmental stage- and cell-specific β-galactosidase activity mimicking the endogenous amelogenin expression. To test the functionality of the selected transgenic models, we bred the 2 Amelx-iCre mice lines with stromal interaction molecule 1 (Stim1) floxed mice to generate ameloblast-specific Stim1 conditional knockout mice (Stim1 cKO). STIM1 protein serves as one of the main calcium sensors in ameloblasts and plays a major role in enamel mineralization and ameloblast differentiation. Amelx-iCre mice displayed exclusive CRE-mediated recombination in incisor and molar ameloblasts. Stim1 cKO mice showed a severely defected enamel phenotype, including reduced structural integrity concomitant with increased attrition and smaller teeth. The phenotype and genotype of the Amelx-iCre/Stim1 cKO showed significant differences with the previously reported Ker14-Cre/Stim1 cKO, highlighting the need for cell- and stage-specific Cre lines for an accurate phenotype-genotype comparison. Furthermore, our model has the advantage of carrying the entire Amelx gene locus rather than being limited to an Amelx partial promoter construct, which greatly enhances the stability and the specificity of our Cre expression. As such, the Amelx-iCre transgenic lines that we developed may serve as a powerful tool for targeting ameloblast-specific gene expression in future investigations.
Collapse
Affiliation(s)
- R Said
- 1 Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,2 College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Zheng
- 3 Department of Orthodontics, School of Dentistry, Ohio State University, Columbus, OH, USA
| | - T Saunders
- 4 Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - M Zeidler
- 4 Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - S Papagerakis
- 5 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI, USA.,6 Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - P Papagerakis
- 1 Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,2 College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,7 Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Trejo-Remigio DA, Jacinto-Alemán LF, Leyva-Huerta ER, Navarro-Bustos BR, Portilla-Robertson J. Ectodermal and ectomesenchymal marker expression in primary cell lines of complex and compound odontomas: a pilot study. ACTA ACUST UNITED AC 2019; 68:132-141. [PMID: 31014063 DOI: 10.23736/s0026-4970.19.04166-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Odontomas are odontogenic tumors with hamartoma features that are classified as compound or complex. Our objective was to characterize the proliferation of ectodermal and ectomesenchymal profile markers of primary cell cultures of complex and compound odontomas. METHODS Four samples of compound odontomas (OdCm) and three of complex odontomas (OdCx) were obtained from patients attending the Oral Pathology and Medicine Clinic of the Graduate Dental School, National Autonomous University of Mexico for primary culture generation. MTT, immunocytochemistry and RT-PCR assays of CD34, Sox2, Amel, Ambn, p21, EDAR, Msx1, Msx2, Pax9, RUNX2, BSP, OPN, Barx1 and GAPDH (control) were performed. Additionally, six paraffin-embedded odontomas were obtained for immunocytochemistry and RT-PCR validation assays. The mean and standard deviation were determined, and ANOVA and Kruskall-Wallis tests were performed. RESULTS Cultured compound odontoma exhibited higher proliferation, and an ectomesenchymal immunocytochemistry profile with predominant expression of Amel, BSP, Pax9, EDAR, Barx and Msx2; in complex cultured odontoma Sox2, CD34, RUNX2 and OPN predominated. Our statistical analysis showed a significant difference in PCR analysis (P<0.05) for OPN and CD34. Paraffin-embedded odontomas showed similar pattern with difference for NGFR and Sox2 for immunohistochemistry and EDAR, BARX1 and PAX9 for RT-PCR assays. CONCLUSIONS The results suggested heterogeneous behavior for both odontoma cell lines, because in compound odontomas predominant biomarkers are related to the enamel knot, late-stage odontogenesis and ectomesenchymal interactions; and in complex odontoma the significant expression of CD34 and OPN could be responsible for the difference behavior and mineralized amorphous structure.
Collapse
Affiliation(s)
- David A Trejo-Remigio
- Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | - Luis F Jacinto-Alemán
- Laboratory of Cell Culture and Immunohistochemistry, Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | - Elba R Leyva-Huerta
- Service of Oral Pathology Diagnosis, Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | | | - Javier Portilla-Robertson
- Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico -
| |
Collapse
|
26
|
Janjić K, Agis H. Chronodentistry: the role & potential of molecular clocks in oral medicine. BMC Oral Health 2019; 19:32. [PMID: 30760278 PMCID: PMC6375164 DOI: 10.1186/s12903-019-0720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Molecular clocks help organisms to adapt important physiological functions to periodically changing conditions in the environment. These include the adaption of the 24 h sleep-wake rhythm to changes of day and night. The circadian clock is known to act as a key regulator in processes of health and disease in different organs. The knowledge on the circadian clock led to the development of chronopharmacology and chronotherapy. These fields aim to investigate how efficiency of medication and therapies can be improved based on circadian clock mechanisms. In this review we aim to highlight the role of the circadian clock in oral tissues and its potential in the different fields of dentistry including oral and maxillofacial surgery, restorative dentistry, endodontics, periodontics and orthodontics to trigger the evolving field of chronodentistry.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
27
|
Farahani RM, Rezaei-Lotfi S, Simonian M, Xaymardan M, Hunter N. Neural microvascular pericytes contribute to human adult neurogenesis. J Comp Neurol 2018; 527:780-796. [PMID: 30471080 DOI: 10.1002/cne.24565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
Consistent adult neurogenic activity in humans is observed in specific niches within the central nervous system. However, the notion of an adult neurogenic niche is challenged by accumulating evidence for ectopic neurogenic activity in other cerebral locations. Herein we interface precision of ultrastructural resolution and anatomical simplicity of accessible human dental pulp neurogenic zone to address this conflict. We disclose a basal level of adult neurogenic activity characterized by glial invasion of terminal microvasculature followed by release of individual platelet-derived growth factor receptor-β mural pericytes and subsequent reprogramming into NeuN+ local interneurons. Concomitant angiogenesis, a signature of adult neurogenic niches, accelerates the rate of neurogenesis by amplifying release and proliferation of the mural pericyte population by ≈10-fold. Subsequent in vitro and in vivo experiments confirmed gliogenic and neurogenic capacities of human neural pericytes. Findings foreshadow the bimodal nature of the glio-vascular assembly where pericytes, under instruction from glial cells, can stabilize the quiescent microvasculature or enrich local neuronal microcircuits upon differentiation.
Collapse
Affiliation(s)
- Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saba Rezaei-Lotfi
- Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Mary Simonian
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia
| | - Munira Xaymardan
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Neil Hunter
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
28
|
Le Cabec A, Tang NK, Ruano Rubio V, Hillson S. Nondestructive adult age at death estimation: Visualizing cementum annulations in a known age historical human assemblage using synchrotron X-ray microtomography. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:25-44. [DOI: 10.1002/ajpa.23702] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Adeline Le Cabec
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
- ID19 Beamline; Structure of Materials Group, European Synchrotron Radiation Facility; Grenoble France
| | | | | | - Simon Hillson
- Institute of Archaeology; University College London; London United Kingdom
| |
Collapse
|
29
|
Kahle P, Witzel C, Kierdorf U, Frölich K, Kierdorf H. Mineral Apposition Rates in Coronal Dentine of Mandibular First Molars in Soay Sheep: Results of a Fluorochrome Labeling Study. Anat Rec (Hoboken) 2017; 301:902-912. [PMID: 29244244 DOI: 10.1002/ar.23753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023]
Abstract
We studied the spatio-temporal variation of mineral apposition rate (MAR) in postnatally formed coronal dentine of mandibular first molars from Soay sheep repeatedly injected with different fluorochromes. MAR declined along the cuspal to cervical crown axis, and from early to late formed dentine, that is, from the dentine at the enamel-dentine-junction (EDJ) to the dentine adjacent to the dentine-pulp-interface (DPI). Highest mean MARs (about 21 µm/day) were recorded in cuspal dentine formed in the period of 28-42 days after birth. Lowest values (<2 µm/day) were recorded in late-formed (secondary) dentine close to the DPI. The high MARs recorded in the dentine of the cuspal crown portions enable the formation of a large tooth crown within a relatively short period of less than one year. The established MARs in the dentine of the different crown portions of sheep molars will allow a precise determination of the timing of stress events affecting dentine formation. They are also helpful for devising sampling protocols in studies of trace element or stable isotope distributions in sheep dentine aimed at assessing temporal variation of incorporation into forming dentine. Such data are useful in a variety of contexts, including, for example, the exposure to pollutants and the reconstruction of husbandry practices or feeding regimes. Anat Rec, 301:902-912, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Kahle
- Department of Biology, University of Hildesheim, Universitätsplatz 1, Hildesheim, 31141, Germany
| | - Carsten Witzel
- Department of Biology, University of Hildesheim, Universitätsplatz 1, Hildesheim, 31141, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, Hildesheim, 31141, Germany
| | - Kai Frölich
- Tierpark Arche Warder e.V, Langwedeler Weg 11, Warder, 24646, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Universitätsplatz 1, Hildesheim, 31141, Germany
| |
Collapse
|
30
|
Nava A, Bondioli L, Coppa A, Dean C, Rossi PF, Zanolli C. New regression formula to estimate the prenatal crown formation time of human deciduous central incisors derived from a Roman Imperial sample (Velia, Salerno, Italy, I-II cent. CE). PLoS One 2017; 12:e0180104. [PMID: 28700601 PMCID: PMC5507505 DOI: 10.1371/journal.pone.0180104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 11/28/2022] Open
Abstract
The characterization and quantification of human dental enamel microstructure, in both permanent and deciduous teeth, allows us to document crucial growth parameters and to identify stressful events, thus contributing to the reconstruction of the past life history of an individual. Most studies to date have focused on the more accessible post-natal portion of the deciduous dental enamel, even though the analysis of prenatal enamel is pivotal in understanding fetal growth, and reveals information about the mother's health status during pregnancy. This contribution reports new data describing the prenatal enamel development of 18 central deciduous incisors from the Imperial Roman necropolis of Velia (I-II century CE, Salerno, Italy). Histomorphometrical analysis was performed to collect data on prenatal crown formation times, daily secretion rates and enamel extension rates. Results for the Velia sample allowed us to derive a new regression formula, using a robust statistical approach, that describes the average rates of deciduous enamel formation. This can now be used as a reference for pre-industrial populations. The same regression formula, even when daily incremental markings are difficult to visualize, may provide a clue to predicting the proportion of infants born full term and pre-term in an archaeological series.
Collapse
Affiliation(s)
- Alessia Nava
- Dipartimento di Biologia Ambientale, Università di Roma ‘La Sapienza’, Rome, Italy
- Museo delle Civiltà. Museo Nazionale Preistorico Etnografico ‘Luigi Pigorini’, Section of Bioarchaeology, Rome, Italy
| | - Luca Bondioli
- Museo delle Civiltà. Museo Nazionale Preistorico Etnografico ‘Luigi Pigorini’, Section of Bioarchaeology, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Università di Roma ‘La Sapienza’, Rome, Italy
| | - Christopher Dean
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Paola Francesca Rossi
- Museo delle Civiltà. Museo Nazionale Preistorico Etnografico ‘Luigi Pigorini’, Section of Bioarchaeology, Rome, Italy
| | - Clément Zanolli
- Laboratoire AMIS, UMR 5288, Université Toulouse III, Toulouse, France
| |
Collapse
|
31
|
Janjić K, Kurzmann C, Moritz A, Agis H. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-Mimosine and hypoxia in monolayer and spheroid cultures. Arch Oral Biol 2017; 79:95-99. [PMID: 28350992 DOI: 10.1016/j.archoralbio.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/06/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The circadian clock is involved in a plethora of physiological processes including bone formation and tooth development. While expression of circadian core clock genes was observed in various tissues, their role in the periodontium is unclear. We hypothesized that periodontal cells express circadian core clock genes and that their levels are modulated by hypoxia mimetic agents and hypoxia. MATERIAL AND METHODS Fibroblasts of human gingiva (GF) and periodontal ligament (PDLF) in monolayer and spheroid cultures were treated with the hypoxia mimetic agent L-Mimosine (L-MIM) or hypoxia. Reverse transcription and quantitative PCR were performed to assess the impact on mRNA levels of the circadian core clock genes Clock, Bmal1, Cry1, Cry2, Per1, Per2, and Per3. RESULTS GF and PDLF expressed Clock, Bmal1, Cry1, Cry2, Per1, Per2, and Per3 in monolayer and spheroid cultures. In monolayer cultures, L-MIM significantly reduced Clock, Cry2, and Per3 mRNA expression in GF and Clock, Cry1, Cry2, Per1, and Per3 in PDLF. Hypoxia significantly reduced Clock, Cry2, and Per3 in GF and Cry1, Cry2, and Per3 in PDLF. In spheroid cultures, L-MIM significantly decreased Clock, Cry1, Cry2, and Per3 in GF and PDLF. Hypoxia significantly decreased Cry2 and Per3 in GF and Clock and Per3 in PDLF. CONCLUSIONS GF and PDLF express circadian core clock genes. The hypoxia mimetic agent L-MIM and hypoxic conditions can decrease the expression of Clock, Cry1-2 and Per1 and Per3. The specific response depends on cell type and culture model. Future studies will show how this effect contributes to periodontal health and disease.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kurzmann
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
32
|
Krivanek J, Adameyko I, Fried K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front Physiol 2017. [PMID: 28638345 PMCID: PMC5461273 DOI: 10.3389/fphys.2017.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria.,Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
33
|
Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol 2014; 5:477. [PMID: 25540624 PMCID: PMC4261713 DOI: 10.3389/fphys.2014.00477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/22/2014] [Indexed: 12/02/2022] Open
Abstract
Amelogenin is the major enamel matrix protein with key roles in amelogenesis. Although for many decades amelogenin was considered to be exclusively expressed by ameloblasts, more recent studies have shown that amelogenin is also expressed in other dental and no-dental cells. However, amelogenin expression in human tissues remains unclear. Here, we show that amelogenin protein is not only expressed during human embryonic development but also in pathological conditions such as carious lesions and injuries after dental cavity preparation. In developing embryonic teeth, amelogenin stage-specific expression is found in all dental epithelia cell populations but with different intensities. In the different layers of enamel matrix, waves of positive vs. negative immunostaining for amelogenin are detected suggesting that the secretion of amelogenin protein is orchestrated by a biological clock. Amelogenin is also expressed transiently in differentiating odontoblasts during predentin formation, but was absent in mature functional odontoblasts. In intact adult teeth, amelogenin was not present in dental pulp, odontoblasts, and dentin. However, in injured and carious adult human teeth amelogenin is strongly re-expressed in newly differentiated odontoblasts and is distributed in the dentinal tubuli under the lesion site. In an in vitro culture system, amelogenin is expressed preferentially in human dental pulp cells that start differentiating into odontoblast-like cells and form mineralization nodules. These data suggest that amelogenin plays important roles not only during cytodifferentiation, but also during tooth repair processes in humans.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Anna Filatova
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Seconda Università Degli Studi di Napoli Napoli, Italy
| | - Michel Goldberg
- INSERM UMR-S 1124, Biomédicale des Saints Pères, University Paris Descartes Paris, France
| | - Imad About
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université Marseille, France
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, USA ; Center for Organogenesis, School of Medicine, University of Michigan Ann Arbor, USA ; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan Ann Arbor, USA
| |
Collapse
|