1
|
Mullenger JL, Zeidler MP, Fragiadaki M. Evaluating the Molecular Properties and Function of ANKHD1, and Its Role in Cancer. Int J Mol Sci 2023; 24:12834. [PMID: 37629022 PMCID: PMC10454556 DOI: 10.3390/ijms241612834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ankyrin repeat and single KH domain-containing protein 1 (ANKHD1) is a large, scaffolding protein composed of two stretches of ankyrin repeat domains that mediate protein-protein interactions and a KH domain that mediates RNA or single-stranded DNA binding. ANKHD1 interacts with proteins in several crucial signalling pathways, including receptor tyrosine kinase, JAK/STAT, mechanosensitive Hippo (YAP/TAZ), and p21. Studies into the role of ANKHD1 in cancer cell lines demonstrate a crucial role in driving uncontrolled cellular proliferation and growth, enhanced tumorigenicity, cell cycle progression through the S phase, and increased epithelial-to-mesenchymal transition. Furthermore, at a clinical level, the increased expression of ANKHD1 has been associated with greater tumour infiltration, increased metastasis, and larger tumours. Elevated ANKHD1 resulted in poorer prognosis, more aggressive growth, and a decrease in patient survival in numerous cancer types. This review aims to gather the current knowledge about ANKHD1 and explore its molecular properties and functions, focusing on the protein's role in cancer at both a cellular and clinical level.
Collapse
Affiliation(s)
- Jordan L. Mullenger
- Department of Infection, Immunity, and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK;
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| | - Martin P. Zeidler
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Maria Fragiadaki
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| |
Collapse
|
2
|
de Almeida BO, de Almeida LC, Costa-Lotufo LV, Machado-Neto JA. ANKHD1 contributes to the malignant phenotype of triple-negative breast cancer cells. Cell Biol Int 2022; 46:1433-1446. [PMID: 35842770 DOI: 10.1002/cbin.11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
Ankyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context. Gene and protein expressions were assessed in the cell lines by quantitative reverse transcription PCR and Western blot analysis, respectively, and ANKHD1 silencing through siRNA transfection was conducted for further in vitro functional assays. The expression of ANKHD1 was identified in non-tumorigenic breast epithelium and breast cancer cell lines, but differences in cellular localization were found among the neoplasia subtypes. ANKHD1 silencing reduced the viability, clonogenicity, and migration of triple-negative breast cancer (TNBC) cells. Bioinformatics analyses demonstrated that patients with triple-negative basal-like 2 and mesenchymal breast cancer subtypes had high ANKHD1 expression associated with poor recurrence-free survival. Therefore, these data indicate that ANKHD1 relevance in breast cancer varies among its subtypes, indicating the importance of ANKHD1 in TNBC.
Collapse
Affiliation(s)
- Bruna O de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Larissa C de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Ren D, Sun Y, Li D, Wu H, Jin X. USP22-mediated deubiquitination of PTEN inhibits pancreatic cancer progression by inducing p21 expression. Mol Oncol 2022; 16:1200-1217. [PMID: 34743406 PMCID: PMC8895442 DOI: 10.1002/1878-0261.13137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a dual lipid and protein phosphatase. Multiple mechanisms contributing to the regulation of PTEN levels have been identified thus far, including post-translational modifications, epigenetic mechanisms, and transcriptional mechanisms. In the present study, we identified ubiquitin-specific peptidase 22 (USP22) as a novel deubiquitination-modifying enzyme of PTEN. Furthermore, by inducing deubiquitination and inhibiting the degradation of PTEN, USP22 could induce cyclin-dependent kinase inhibitor 1A (CDKN1A, also symboled as p21) expression in pancreatic cancer. Besides, MDM2 proto-oncogene (MDM2) inhibitor enhanced the antipancreatic cancer effects of USP22 overexpression. In addition to its regulation of MDM2-tumor protein p53 (p53) signaling, we found that PTEN could induce p21 expression by interacting with ankyrin repeat and KH domain containing 1 (ANKHD1) and inhibiting ANKHD1 binding to the p21 promoter. Taken together, our results indicate that ANKHD1 and MDM2 might be novel therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Sun
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Li
- Cardiovascular Medicine DepartmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heshui Wu
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic CancerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Stuart KC, Sherwin WB, Austin JJ, Bateson M, Eens M, Brandley MC, Rollins LA. Historical museum samples enable the examination of divergent and parallel evolution during invasion. Mol Ecol 2022; 31:1836-1852. [PMID: 35038768 PMCID: PMC9305591 DOI: 10.1111/mec.16353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
During the Anthropocene, Earth has experienced unprecedented habitat loss, native species decline and global climate change. Concurrently, greater globalization is facilitating species movement, increasing the likelihood of alien species establishment and propagation. There is a great need to understand what influences a species' ability to persist or perish within a new or changing environment. Examining genes that may be associated with a species' invasion success or persistence informs invasive species management, assists with native species preservation and sheds light on important evolutionary mechanisms that occur in novel environments. This approach can be aided by coupling spatial and temporal investigations of evolutionary processes. Here we use the common starling, Sturnus vulgaris, to identify parallel and divergent evolutionary change between contemporary native and invasive range samples and their common ancestral population. To do this, we use reduced-representation sequencing of native samples collected recently in northwestern Europe and invasive samples from Australia, together with museum specimens sampled in the UK during the mid-19th century. We found evidence of parallel selection on both continents, possibly resulting from common global selective forces such as exposure to pollutants. We also identified divergent selection in these populations, which might be related to adaptive changes in response to the novel environment encountered in the introduced Australian range. Interestingly, signatures of selection are equally as common within both invasive and native range contemporary samples. Our results demonstrate the value of including historical samples in genetic studies of invasion and highlight the ongoing and occasionally parallel role of adaptation in both native and invasive ranges.
Collapse
Affiliation(s)
- Katarina C. Stuart
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - William B. Sherwin
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| | - Jeremy J. Austin
- School of Biological SciencesAustralian Centre for Ancient DNA (ACAD)University of AdelaideAdelaideSouth AustraliaAustralia
| | - Melissa Bateson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology GroupDepartment of BiologyUniversity of AntwerpWilrijkBelgium
| | - Matthew C. Brandley
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPennsylvaniaUSA
| | - Lee A. Rollins
- School of Biological, Earth and Environmental SciencesEvolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Martinez D, Zhu M, Guidry JJ, Majeste N, Mao H, Yanofsky ST, Tian X, Wu C. Mask, the Drosophila ankyrin repeat and KH domain-containing protein, affects microtubule stability. J Cell Sci 2021; 134:272264. [PMID: 34553767 PMCID: PMC8572007 DOI: 10.1242/jcs.258512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
Proper regulation of microtubule (MT) stability and dynamics is vital for essential cellular processes, including axonal transportation and synaptic growth and remodeling in neurons. In the present study, we demonstrate that the Drosophila ankyrin repeat and KH domain-containing protein Mask negatively affects MT stability in both larval muscles and motor neurons. In larval muscles, loss-of-function of mask increases MT polymer length, and in motor neurons, loss of mask function results in overexpansion of the presynaptic terminal at the larval neuromuscular junctions (NMJs). mask genetically interacts with stathmin (stai), a neuronal modulator of MT stability, in the regulation of axon transportation and synaptic terminal stability. Our structure–function analysis of Mask revealed that its ankyrin repeats domain-containing N-terminal portion is sufficient to mediate Mask's impact on MT stability. Furthermore, we discovered that Mask negatively regulates the abundance of the MT-associated protein Jupiter in motor neuron axons, and that neuronal knocking down of Jupiter partially suppresses mask loss-of-function phenotypes at the larval NMJs. Taken together, our studies demonstrate that Mask is a novel regulator for MT stability, and such a role of Mask requires normal function of Jupiter. Summary: Mask is a novel regulator of MT stability in Drosophila. Mask shows prominent interplay with two important modulators of MT, Tau and Stathmin (Stai), whose mutations are related to human diseases.
Collapse
Affiliation(s)
- Daniel Martinez
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mingwei Zhu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jessie J Guidry
- Proteomics Core Facility, and the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Niles Majeste
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Mao
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sarah T Yanofsky
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Lv HW, Xing WQ, Ba YF, Li HM, Wang HR, Li Y. SMYD3 confers cisplatin chemoresistance of NSCLC cells in an ANKHD1-dependent manner. Transl Oncol 2021; 14:101075. [PMID: 33773404 PMCID: PMC8027902 DOI: 10.1016/j.tranon.2021.101075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Up-regulated SMYD3 correlates with worse prognosis and controls DDP resistance of NSCLC. ANKHD1 interacts with and is essential for SMYD3-induced DDP resistance. CDK2 is identified to be a downstream effector of SMYD3-ANKHD1 in NSCLC. SMYD3-ANKHD1 critically regulates the growth DDP-resistant NSCLC cells in vivo.
Background Cisplatin (DDP) remains the backbone of chemotherapy for non-small cell lung cancer (NSCLC), yet its clinical efficacy is limited by DDP resistance. We aim to investigate the role of the SET and MYND domain-containing protein 3 (SMYD3) in DDP resistance of NSCLC. Methods Expression pattern of SMYD3 was determined in NSCLC tissues using qRT-PCR, which also validated its correlation with NSCLC clinicopathological stages. Impacts of SMYD3 on DDP resistance were evaluated by knocking down SMYD3 in DDP-resistant cells and overexpressing it in DDP-sensitive cells, and assessed for several phenotypes: IC50 by MTT, long-term proliferation by colony formation, apoptosis and cell-cycle distribution by flow cytometry. The interaction between Ankyrin Repeat and KH Domain Containing 1 (ANKHD1) and SMYD3 was examined by co-immunoprecipitation and immunofluorescence. The transcriptional regulation of SMYD3 on cyclin-dependent kinase 2 (CDK2) promoter regions was confirmed using chromatin-immunoprecipitation. The in vivo experiments using DDP-resistant cells with altered SMYD3 and ANKHD1 expression were further performed to verify the SMYD3/ANKHD1 axis. Results Highly expressed SMYD3 was observed in NSCLC tissues or cells, acted as a sensitive indicator for NSCLC, correlated with higher TNM stages or resistant to DDP treatment, and shorter overall survival. The promotion of SMYD3 on DDP resistance requires co-regulator, ANKHD1. CDK2 was identified as a downstream effector. In vivo, SMYD3 knockdown inhibited the growth of DDP-resistant NSCLC cells, which was abolished by ANKHD1 overexpression. Conclusions SMYD3 confers NSCLC cells chemoresistance to DDP in an ANKHD1-dependent manner, providing novel therapeutic targets to overcome DDP resistance in NSCLC .
Collapse
Affiliation(s)
- Hong-Wei Lv
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Wen-Qun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yu-Feng Ba
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Miao Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Ran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China; Department of Thoracic Surgery, The Cancer Hospital Chinese Academy of Medical Science, Beijing 100021, People's Republic of China.
| |
Collapse
|
7
|
Bueno De Paiva L, Aline Bernusso V, Machado-Neto JA, Traina F, Ridley AJ, Olalla-Saad ST, Lazarini M. Effects of RhoA and RhoC upon the sensitivity of prostate cancer cells to glutamine deprivation. Small GTPases 2021; 12:20-26. [PMID: 30449238 PMCID: PMC7781845 DOI: 10.1080/21541248.2018.1546098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022] Open
Abstract
RhoA and RhoC contribute to the regulation of glutamine metabolism, which is a crucial determinant of cell growth in some types of cancer. Here we investigated the participation of RhoA and RhoC in the response of prostate cancer cells to glutamine deprivation. We found that RhoA and RhoC activities were up- or downregulated by glutamine reduction in PC3 and LNCaP cell lines, which was concomitant to a reduction in cell number and proliferation. Stable overexpression of wild type RhoA or RhoC did not alter the sensitivity to glutamine deprivation. However, PC3 cells expressing dominant negative RhoAN19 or RhoCN19 mutants were more resistant to glutamine deprivation. Our results indicate that RhoA and RhoC activities could affect cancer treatments targeting the glutamine pathway.
Collapse
Affiliation(s)
- Luciana Bueno De Paiva
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Vanessa Aline Bernusso
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Anne J Ridley
- Randall Centre of Cell & Molecular Biophysics, King´s College London, London, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Mariana Lazarini
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
8
|
Chen Y, Tibbs Cortes LE, Ashley C, Putz AM, Lim KS, Dyck MK, Fortin F, Plastow GS, Dekkers JCM, Harding JCS. The genetic basis of natural antibody titers of young healthy pigs and relationships with disease resilience. BMC Genomics 2020; 21:648. [PMID: 32962629 PMCID: PMC7510148 DOI: 10.1186/s12864-020-06994-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
Background Disease resilience is the ability to maintain performance under pathogen exposure but is difficult to select for because breeding populations are raised under high health. Selection for resilience requires a trait that is heritable, easy to measure on healthy animals, and genetically correlated with resilience. Natural antibodies (NAb) are important parts of the innate immune system and are found to be heritable and associated with disease susceptibility in dairy cattle and poultry. Our objective was to investigate NAb and total IgG in blood of healthy, young pigs as potential indicator traits for disease resilience. Results Data were from Yorkshire x Landrace pigs, with IgG and IgM NAb (four antigens) and total IgG measured by ELISA in blood plasma collected ~ 1 week after weaning, prior to their exposure to a natural polymicrobial challenge. Heritability estimates were lower for IgG NAb (0.12 to 0.24, + 0.05) and for total IgG (0.19 + 0.05) than for IgM NAb (0.33 to 0.53, + 0.07) but maternal effects were larger for IgG NAb (0.41 to 0.52, + 0.03) and for total IgG (0.19 + 0.05) than for IgM NAb (0.00 to 0.10, + 0.04). Phenotypically, IgM NAb titers were moderately correlated with each other (average 0.60), as were IgG NAb titers (average 0.42), but correlations between IgM and IgG NAb titers were weak (average 0.09). Phenotypic correlations of total IgG were moderate with NAb IgG (average 0.46) but weak with NAb IgM (average 0.01). Estimates of genetic correlations among NAb showed similar patterns but with small SE, with estimates averaging 0.76 among IgG NAb, 0.63 among IgM NAb, 0.17 between IgG and IgM NAb, 0.64 between total IgG and IgG NAb, and 0.13 between total IgG and IgM NAb. Phenotypically, pigs that survived had slightly higher levels of NAb and total IgG than pigs that died. Genetically, higher levels of NAb tended to be associated with greater disease resilience based on lower mortality and fewer parenteral antibiotic treatments. Genome-wide association analyses for NAb titers identified several genomic regions, with several candidate genes for immune response. Conclusions Levels of NAb in blood of healthy young piglets are heritable and potential genetic indicators of resilience to polymicrobial disease.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Carolyn Ashley
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Michael K Dyck
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Frederic Fortin
- Centre de développement du porc du Québec inc. (CDPQ), Québec City, QC, Canada
| | - Graham S Plastow
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
9
|
Almeida BOD, Machado-Neto JA. Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes. BMB Rep 2020. [PMID: 32635985 PMCID: PMC7473474 DOI: 10.5483/bmbrep.2020.53.8.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and high-light future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.
Collapse
Affiliation(s)
- Bruna Oliveira de Almeida
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
10
|
de Almeida BO, Machado-Neto JA. Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes. BMB Rep 2020; 53:413-418. [PMID: 32635985 PMCID: PMC7473474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 08/02/2024] Open
Abstract
ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer. [BMB Reports 2020; 53(8): 413-418].
Collapse
Affiliation(s)
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
11
|
Dhyani A, Favaro P, Olalla Saad ST. ANKHD1 is an S phase protein required for histone synthesis and DNA repair in multiple myeloma cells. Blood Cells Mol Dis 2020; 84:102460. [PMID: 32562952 DOI: 10.1016/j.bcmd.2020.102460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/17/2022]
Abstract
ANKHD1 is highly expressed in various cancers such as leukemia and multiple myeloma. Silencing of ANKHD1 expression leads to decreased cell proliferation and accumulation of cells at the S phase. In this study we found ANKHD1 expression to be higher at the S phase, suggesting it to be an S phase protein. We observed that ANKHD1 interacts with histone promoter regions and its inhibition downregulates expression of all core histones, implying a role in histone synthesis. Since histone synthesis occurs in parallel with DNA replication at S phase, we evaluated PCNA (Proliferating Cell Nuclear Antigen) expression, a protein involved in DNA replication and repair. PCNA expression was found to be significantly decreased in ANKHD1 silenced cells. We further observed accumulation γH2AX, a marker for DNA double stranded breaks and an early sign of DNA damage induced by replication stress, upon ANKHD1 silencing. The expressions of several genes implicated in DNA repair were also modulated in ANKHD1 silenced cells, confirming the role of ANKHD1 in DNA repair. Based on this study we speculate that ANKHD1 is an S phase protein required for histone synthesis and DNA repair. These results however, are preliminary and require thorough investigation.
Collapse
Affiliation(s)
- Anamika Dhyani
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil.
| | - Patricia Favaro
- Department of Biological Sciences, Federal University of Sao Paulo, Diadema, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| |
Collapse
|
12
|
A Genome-Wide Screen in Mice To Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation. G3-GENES GENOMES GENETICS 2020; 10:1869-1877. [PMID: 32245826 PMCID: PMC7263671 DOI: 10.1534/g3.120.401128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic (microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice. Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and 10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary metastatic colonization (15 increased and 19 decreased; P < 0.005 and genotype effect <-55 or >+55). While several of these genes have known roles in immune system regulation (Bach2, Cyba, Cybb, Cybc1, Id2, Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes, ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30 and Fgd4), with no previous reports of a role in the regulation of metastasis. Thus, we have identified numerous novel regulators of pulmonary metastatic colonization, which may represent potential therapeutic targets.
Collapse
|
13
|
DeAngelis MW, McGhie EW, Coolon JD, Johnson RI. Mask, a component of the Hippo pathway, is required for Drosophila eye morphogenesis. Dev Biol 2020; 464:53-70. [PMID: 32464117 DOI: 10.1016/j.ydbio.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
Hippo signaling is an important regulator of tissue size, but it also has a lesser-known role in tissue morphogenesis. Here we use the Drosophila pupal eye to explore the role of the Hippo effector Yki and its cofactor Mask in morphogenesis. We found that Mask is required for the correct distribution and accumulation of adherens junctions and appropriate organization of the cytoskeleton. Accordingly, disrupting mask expression led to severe mis-patterning and similar defects were observed when yki was reduced or in response to ectopic wts. Further, the patterning defects generated by reducing mask expression were modified by Hippo pathway activity. RNA-sequencing revealed a requirement for Mask for appropriate expression of numerous genes during eye morphogenesis. These included genes implicated in cell adhesion and cytoskeletal organization, a comprehensive set of genes that promote cell survival, and numerous signal transduction genes. To validate our transcriptome analyses, we then considered two loci that were modified by Mask activity: FER and Vinc, which have established roles in regulating adhesion. Modulating the expression of either locus modified mask mis-patterning and adhesion phenotypes. Further, expression of FER and Vinc was modified by Yki. It is well-established that the Hippo pathway is responsive to changes in cell adhesion and the cytoskeleton, but our data indicate that Hippo signaling also regulates these structures.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Emily W McGhie
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Joseph D Coolon
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Ruth I Johnson
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| |
Collapse
|
14
|
Yang C, Zheng J, Liu X, Xue Y, He Q, Dong Y, Wang D, Li Z, Liu L, Ma J, Cai H, Liu Y. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:866-878. [PMID: 32464549 PMCID: PMC7256448 DOI: 10.1016/j.omtn.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that long noncoding RNA (lncRNA) dysregulation plays a critical role in tumor angiogenesis. Glioma is characterized by abundant angiogenesis. Herein, we investigated the expression and function of LINC00346 in the regulation of glioma angiogenesis. The present study first demonstrated that ANKHD1 (ankyrin repeat and KH domain-containing protein 1) and LINC00346 were significantly increased in glioma-associated endothelial cells (GECs), whereas ZNF655 (zinc finger protein 655) was decreased in GECs. Meanwhile, ANKHD1 inhibition, LINC00346 inhibition, or ZNF655 overexpression impeded angiogenesis of GECs. Moreover, ANKHD1 targeted LINC00346 and enhanced the stability of LINC00346. In addition, LINC00346 bound to ZNF655 mRNA through their Alu elements so that LINC00346 facilitated the degradation of ZNF655 mRNA via a STAU1 (Staufen1)-mediated mRNA decay (SMD) mechanism. Futhermore, ZNF655 targeted the promoter region of ANKHD1 and formed an ANKHD1/LINC00346/ZNF655 feedback loop that regulated glioma angiogenesis. Finally, knockdown of ANKHD1 and LINC00346, combined with overexpression of ZNF655, resulted in a significant decrease in new vessels and hemoglobin content in vivo. The results identified an ANKHD1/LINC00346/ZNF655 feedback loop in the regulation of glioma angiogenesis that may provide new targets and strategies for targeted therapy against glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yiming Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
15
|
Zhang X, Liao Z, Wu Y, Yan Y, Chen S, Lin S, Chen F, Xie Q. gga-microRNA-375 negatively regulates the cell cycle and proliferation by targeting Yes-associated protein 1 in DF-1 cells. Exp Ther Med 2020; 20:530-542. [PMID: 32537011 PMCID: PMC7281959 DOI: 10.3892/etm.2020.8711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve a key role in regulating the cell cycle and inducing tumorigenesis. Subgroup J of the avian leukosis virus (ALV-J) belongs to the family Retroviridae, subfamily Orthoretrovirinae and genus Alpharetrovirus that causes tumors in susceptible chickens. gga-miR-375 is downregulated and Yes-associated protein 1 (YAP1) is upregulated in ALV-J-induced tumors in the livers of chickens, and it has been further identified that YAP1 is the direct target gene of gga-miR-375. In the present study, it was found that ALV-J infection promoted the cell cycle and proliferation in DF-1 cells. As the cell cycle and cell proliferation are closely associated with tumorigenesis, further experiments were performed to determine whether gga-miR-375 and YAP1 were involved in these cellular processes. It was demonstrated that gga-miR-375 significantly inhibited the cell cycle by inhibiting G1 to S/G2 stage transition and decreasing cell proliferation, while YAP1 significantly promoted the cell cycle and proliferation. Furthermore, these cellular processes in DF-1 cells were affected by gga-miR-375 through the targeting of YAP1. Collectively, the present results suggested that gga-miR-375, downregulated by ALV-J infection, negatively regulated the cell cycle and proliferation via the targeting of YAP1.
Collapse
Affiliation(s)
- Xinheng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yu Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yiming Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Qingmei Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
16
|
Liu XF, Han Q, Rong XZ, Yang M, Han YC, Yu JH, Lin XY. ANKHD1 promotes proliferation and invasion of non‑small‑cell lung cancer cells via regulating YAP oncoprotein expression and inactivating the Hippo pathway. Int J Oncol 2020; 56:1175-1185. [PMID: 32319569 PMCID: PMC7115354 DOI: 10.3892/ijo.2020.4994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
The ankyrin repeat and KH domain‑containing 1 (ANKHD1) protein was recently reported to be a potential member of the Hippo signaling pathway. However, its role in human non‑small‑cell lung cancer (NSCLC) has not been extensively investigated. The aim of the present study was to examine the expression of ANKHD1 in primary human tissues and cells and determine whether it is correlated with the clinical characteristics of tumor growth. The biological functions of ANKHD1 were evaluated in vitro and in vivo. Yes‑associated protein (YAP) expression and phosphorylation induced by ANKHD1 were evaluated by western blotting and immunoprecipitation. Marked upregulation of ANKHD1 protein expression was observed in NSCLC cells and tissues, which was associated with advanced pathological tumor‑node‑metastasis stage, lymph node metastasis and poor prognosis in patients with NSCLC. ANKHD1 overexpression also promoted the proliferation and invasion of NSCLC cells. ANKHD1 upregulation inactivated Hippo signaling via increasing YAP protein levels, as well as inhibiting YAP protein phosphorylation, whereas depletion of YAP abolished the effects of ANKHD1 on cell proliferation and invasion. Therefore, ANKHD1 may play an important role in NSCLC through regulating the YAP‑dependent Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiao-Fang Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| | - Qiang Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| | - Xue-Zhu Rong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| | - Man Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| | - Yu-Chen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Juan-Han Yu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| | - Xu-Yong Lin
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001
| |
Collapse
|
17
|
Krooss S, Werwitzke S, Kopp J, Rovai A, Varnholt D, Wachs AS, Goyenvalle A, Aarstma-Rus A, Ott M, Tiede A, Langemeier J, Bohne J. Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B. PLoS Genet 2020; 16:e1008690. [PMID: 32267853 PMCID: PMC7141619 DOI: 10.1371/journal.pgen.1008690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/22/2020] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in the human coagulation factor 9 (F9) gene lead to hemophilia B. Here, we dissected the consequences and the pathomechanism of a non-coding mutation (c.2545A>G) in the F9 3’ untranslated region. Using wild type and mutant factor IX (FIX) minigenes we revealed that the mutation leads to reduced F9 mRNA and FIX protein levels and to lower coagulation activity of cell culture supernatants. The phenotype could not be compensated by increased transcription. The pathomechanism comprises the de novo creation of a binding site for the spliceosomal component U1snRNP, which is able to suppress the nearby F9 poly(A) site. This second, splicing-independent function of U1snRNP was discovered previously and blockade of U1snRNP restored mutant F9 mRNA expression. In addition, we explored the vice versa approach and masked the mutation by antisense oligonucleotides resulting in significantly increased F9 mRNA expression and coagulation activity. This treatment may transform the moderate/severe hemophilia B into a mild or subclinical form in the patients. This antisense based strategy is applicable to other mutations in untranslated regions creating deleterious binding sites for cellular proteins. The elucidation of the pathomechanisms of non-coding variants yields important insights into diseases as well as cellular processes causing the defect. Although these variants may account for the majority of phenotypic variation, only a minority of them can be explained mechanistically. The human coagulation factor 9 3’ UTR variant described here converts a non-essential sequence motif into a U1snRNP-binding site with deleterious effects on RNA 3’ end processing at the nearby poly(A) site. Poly(A) site suppression by U1snRNP was described before and it normally protects cellular mRNAs from premature termination. However, if misled by creation of a U1 site close the authentic poly(A) site as in the F9 3’ UTR, this nuclear surveillance mechanism results in the opposite. Since recognition by U1snRNP depends on sequence complementarity we were able to use antisense oligonucleotides to mask the mutant site and partially restored F9 mRNA levels. This antisense based strategy may be applicable to other variants in untranslated regions, which create deleterious binding sites for cellular proteins.
Collapse
Affiliation(s)
- Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sonja Werwitzke
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Johannes Kopp
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Alice Rovai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Dirk Varnholt
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Amelie S. Wachs
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Andreas Tiede
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Jörg Langemeier
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Pediatric Intensive Care Unit, Children’s Hospital Bielefeld, Germany
- * E-mail: (JL); (JB)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail: (JL); (JB)
| |
Collapse
|
18
|
Sidor C, Borreguero-Munoz N, Fletcher GC, Elbediwy A, Guillermin O, Thompson BJ. Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. eLife 2019; 8:e48601. [PMID: 31661072 PMCID: PMC6861002 DOI: 10.7554/elife.48601] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Mask family proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving formation of liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction.
Collapse
Affiliation(s)
- Clara Sidor
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | | | | | - Ahmed Elbediwy
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Oriane Guillermin
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
| | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom
- EMBL Australia, ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| |
Collapse
|
19
|
Zhang X, Yan Y, Lin W, Li A, Zhang H, Lei X, Dai Z, Li X, Li H, Chen W, Chen F, Ma J, Xie Q. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol 2019; 16:118-132. [PMID: 30608205 DOI: 10.1080/15476286.2018.1564462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.
Collapse
Affiliation(s)
- Xinheng Zhang
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Yiming Yan
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Wencheng Lin
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Aijun Li
- e College of science and engineering , Jinan University , Guangzhou , P. R. China
| | - Huanmin Zhang
- f USDA, Agriculture Research Service , Avian Disease and Oncology Laboratory , East Lansing , MI , USA
| | - Xiaoya Lei
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Zhenkai Dai
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Xinjian Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Hongxin Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Weiguo Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Feng Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Jingyun Ma
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Qingmei Xie
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| |
Collapse
|
20
|
Zhou Z, Jiang H, Tu K, Yu W, Zhang J, Hu Z, Zhang H, Hao D, Huang P, Wang J, Wang A, Xiao Z, He C. ANKHD1 is required for SMYD3 to promote tumor metastasis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:18. [PMID: 30646949 PMCID: PMC6332640 DOI: 10.1186/s13046-018-1011-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Background Tumor metastasis is the major reason for poor prognosis of hepatocellular carcinoma (HCC) patients after hepatic resection. SMYD3 has been demonstrated to promote liver tumor metastasis in mice. However, the detailed molecular mechanism is still largely unknown. Methods The effect of SMYD3 on invasiveness and metastasis of HCC was analyzed by immunohistochemistry, migration assay, invasion assay, wound healing assay and in vivo lung metastasis assay. Mass spectrometry analysis was conducted using proteins pulled down by H3K4me3 antibody in SMYD3-overexpressing cells. Luciferase reporter, chromatin immunoprecipitation, Electrophoretic mobility shift assay were used to measure the regulation of SLUG transcription by SMYD3-ANKHD1. In addition, the role of SMYD3-ANKHD1 in determining clinical outcomes for HCC patients was investigated by immunohistochemistry in 243 HCC tissues. Results SMYD3 was an independent prognostic factor of HCC and promoted migration and invasion of human HCC cells. ANKHD1 was identified by mass spectrometry as a co-regulator with SMYD3. ANKHD1 interacted with H3K4me3 when cells were overexpressing SMYD3. The pro-migratory and pro-invasive effects of SMYD3 were attenuated when ANKHD1 was knocked down by siRNA. Furthermore, we found that SMYD3 bound and activated the SLUG gene promoter in a manner associated with elevating H3K4me3, H3K9Ac and H3K14Ac. Knockdown of ANKHD1 could attenuate the SMYD3-dependent activation of Slug expression. We further detected the expression of SMYD3 and ANKHD1 in 243 HCC patients and found that patients with positive coexpression of SMYD3 and ANKHD1 (SMYD3+ANKHD1+) had the shortest overall and recurrence-free survival. Conclusion Our findings provide a novel molecular mechanism for the SMYD3-regulated HCC migration and metastasis, and indicates that SMYD3-ANKHD1 may be a potential target for treating HCC. Electronic supplementary material The online version of this article (10.1186/s13046-018-1011-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, 710061, China
| | - Wei Yu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Jianlong Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Zhigang Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Heyun Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Research II, Suite 3005, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Pinbo Huang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Research II, Suite 3005, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| | - Zhiyu Xiao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China.
| | - Chuanchao He
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 33 Yingfeng Road, Guangzhou, 510289, China.
| |
Collapse
|
21
|
Wang J, Hong Y, Shao S, Zhang K, Hong W. FFAR1-and FFAR4-dependent activation of Hippo pathway mediates DHA-induced apoptosis of androgen-independent prostate cancer cells. Biochem Biophys Res Commun 2018; 506:590-596. [PMID: 30366669 DOI: 10.1016/j.bbrc.2018.10.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 01/18/2023]
Abstract
Evidence indicates that diets enriched in Docosahexaenoic acid (DHA), a 22:6 n-3 polyunsaturated fatty acid, reduces the risk of prostate cancer, but the biochemical mechanisms are unclear. The Hippo pathway has been well established as a tumor suppressor pathway and is involved in many diverse biologic processes including cell growth, cell death, and organ size control in organisms. Here we showed that DHA induces cell growth inhibition and apoptosis of human androgen-independent prostate cancer cells dependent on the Hippo pathway. DHA inactivates YAP by promoting phosphorylation in androgen-independent prostate cancer cell lines, accompanied by increased YAP cytoplasm translocation. We also observed that DHA-induced YAP phosphorylation was reversed by both the LATS1 and MST1 siRNAs. Further experiments showed that the mechanism of DHA-induced YAP phosphorylation associated with FFAR1 and FFAR4. Down-regulation of FFAR1 and FFAR4 resulted in reduced YAP phosphorylation and reversed DHA-induced YAP phosphorylation. In addition, DHA-induced YAP phosphorylation was abolished by dominant negative Gαs and PKA inhibitor H-89. Overall, these findings define a mechanism by which FFAR1-and FFAR4-dependent activation of Hippo pathway mediates DHA-induced apoptosis of androgen-independent prostate cancer cells, thus providing a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuheng Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Shuai Shao
- The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Dehghanian F, Hojati Z, Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer. Comput Biol Med 2018; 99:76-84. [PMID: 29890510 DOI: 10.1016/j.compbiomed.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | - Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Fragiadaki M, Zeidler MP. Ankyrin repeat and single KH domain 1 (ANKHD1) drives renal cancer cell proliferation via binding to and altering a subset of miRNAs. J Biol Chem 2018; 293:9570-9579. [PMID: 29695508 DOI: 10.1074/jbc.ra117.000975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common kidney cancer worldwide. Increased cell proliferation associated with abnormal microRNA (miRNA) regulation are hallmarks of carcinogenesis. Ankyrin repeat and single KH domain 1 (ANKHD1) is a highly conserved protein found to interact with core cancer pathways in Drosophila; however, its involvement in RCC is completely unexplored. Quantitative PCR studies coupled with large-scale genomics data sets demonstrated that ANKHD1 is significantly up-regulated in kidneys of RCC patients when compared with healthy controls. Cell cycle analysis revealed that ANKHD1 is an essential factor for RCC cell division. To understand the molecular mechanism(s) utilized by ANKHD1 to drive proliferation, we performed bioinformatics analyses that revealed that ANKHD1 contains a putative miRNA-binding motif. We screened 48 miRNAs with tumor-enhancing or -suppressing activities and found that ANKHD1 binds to and regulates three tumor-suppressing miRNAs (i.e. miR-29a, miR-205, and miR-196a). RNA-immunoprecipitation assays demonstrated that ANKHD1 physically interacts with its target miRNAs via a single K-homology domain, located in the C terminus of the protein. Functionally, we discovered that ANKHD1 positively drives ccRCC cell mitosis via binding to and suppressing mainly miR-29a and to a lesser degree via miR-196a/205, leading to up-regulation in proliferative genes such as CCDN1. Collectively, these data identify ANKHD1 as a new regulator of ccRCC proliferation via specific miRNA interactions.
Collapse
Affiliation(s)
- Maria Fragiadaki
- From the Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, United Kingdom and .,the Bateson Centre, Departments of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin P Zeidler
- the Bateson Centre, Departments of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
24
|
The Immunoexpression of YAP1 and LATS1 Proteins in Clear Cell Renal Cell Carcinoma: Impact on Patients' Survival. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2653623. [PMID: 29850494 PMCID: PMC5903336 DOI: 10.1155/2018/2653623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022]
Abstract
The aim of the study was to determine by immunohistochemistry cellular localization and immunoreactivity levels of YAP1 and LATS1 proteins in paired sections of tumor and unchanged renal tissues of 54 clear cell renal cell carcinoma (ccRCC) patients. Associations between clinical-pathological and overall survival (OS; median follow-up was 40.6 months) data of patients and YAP1 and LATS1 immunoreactivity were analyzed by uni- and multivariate Cox regression model and log-rank test. YAP1 immunoreactivity was found in the nuclei of tumor cells in 64.8% of ccRCC patients, whereas only 24.1% of tumors revealed cytoplasmic YAP1 expression. LATS1 immunoexpression was observed only in the cytoplasm of tumor cells in 59.3% of patients. LATS1 immunoreactivity in cancer cells negatively correlated with the size of primary tumor. The overall YAP1 immunoreactivity did not correlate with clinical-pathological data of patients. However, the subgroup of ccRCC patients who presented with cytoplasmic YAP1 immunoexpression had significantly shorter OS (median = 26.8 months) than patients without cytoplasmic YAP1 expression (median undefined). Multivariate Cox analysis revealed that increased cytoplasmic YAP1 (HR = 4.53) and decreased LATS1 immunoreactivity levels (HR = 0.90) were associated with worse prognosis, being independent prognostic factors. These results suggest that YAP1 and LATS1 can be considered as new prognostic factors in ccRCC.
Collapse
|
25
|
Zhu M, Zhang S, Tian X, Wu C. Mask mitigates MAPT- and FUS-induced degeneration by enhancing autophagy through lysosomal acidification. Autophagy 2017; 13:1924-1938. [PMID: 28806139 PMCID: PMC5788473 DOI: 10.1080/15548627.2017.1362524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulation of intracellular misfolded or damaged proteins is associated with both normal aging and late-onset degenerative diseases. Two cellular clearance mechanisms, the ubiquitin-proteasome system (UPS) and the macroautophagy/autophagy-lysosomal pathway, work in concert to degrade harmful protein aggregates and maintain protein homeostasis. Here we show that Mask, an Ankyrin-repeat and KH-domain containing protein, plays a key role in promoting autophagy flux and mitigating degeneration caused by protein aggregation or impaired UPS function. In Drosophila eye models of human tauopathy or amyotrophic lateral sclerosis diseases, loss of Mask function enhanced, while gain of Mask function mitigated, eye degenerations induced by eye-specific expression of human pathogenic MAPT/TAU or FUS proteins. The fly larval muscle, a more accessible tissue, was then used to study the underlying molecular mechanisms in vivo. We found that Mask modulates the global abundance of K48- and K63-ubiquitinated proteins by regulating autophagy-lysosome-mediated degradation, but not UPS function. Indeed, upregulation of Mask compensated the partial loss of UPS function. We further demonstrate that Mask promotes autophagic flux by enhancing lysosomal function, and that Mask is necessary and sufficient for promoting the expression levels of the proton-pumping vacuolar (V)-type ATPases in a TFEB-independent manner. Moreover, the beneficial effects conferred by Mask expression on the UPS dysfunction and neurodegenerative models depend on intact autophagy-lysosomal pathway. Our findings highlight the importance of lysosome acidification in cellular surveillance mechanisms and establish a model for exploring strategies to mitigate neurodegeneration by boosting lysosomal function.
Collapse
Affiliation(s)
- Mingwei Zhu
- a Neuroscience Center of Excellence, Department of Cell Biology and Anatomy , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Sheng Zhang
- b The Brown Foundation Institute of Molecular Medicine and Department of Neurobiology and Anatomy , McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth) , Houston , TX , USA
| | - Xiaolin Tian
- a Neuroscience Center of Excellence, Department of Cell Biology and Anatomy , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Chunlai Wu
- a Neuroscience Center of Excellence, Department of Cell Biology and Anatomy , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
26
|
Xia J, Zeng M, Zhu H, Chen X, Weng Z, Li S. Emerging role of Hippo signalling pathway in bladder cancer. J Cell Mol Med 2017; 22:4-15. [PMID: 28782275 PMCID: PMC5742740 DOI: 10.1111/jcmm.13293] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.
Collapse
Affiliation(s)
- Jianling Xia
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hua Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangjian Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiliang Weng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Rybarczyk A, Klacz J, Wronska A, Matuszewski M, Kmiec Z, Wierzbicki PM. Overexpression of the YAP1 oncogene in clear cell renal cell carcinoma is associated with poor outcome. Oncol Rep 2017; 38:427-439. [DOI: 10.3892/or.2017.5642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
|
28
|
Han S, Wang D, Tang G, Yang X, Jiao C, Yang R, Zhang Y, Huo L, Shao Z, Lu Z, Zhang J, Li X. Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma. Oncotarget 2017; 8:56635-56650. [PMID: 28915618 PMCID: PMC5593589 DOI: 10.18632/oncotarget.17832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 01/17/2023] Open
Abstract
Background & Aims Aberrant expression of microRNAs is associated with many cancers progression. Many studies have shown that miR-16 is down-regulated in many cancers. However, its role in cholangiocarcinoma (CCA) is unknown. Methods Quantitative real-time PCR (qRT-PCR) was developed to measure miR-16 expression in CCA tissues and cell lines. CCK-8, colony formation and transwell assays were used to reveal the role of miR-16 in CCA cell proliferation and malignant transformation in vitro. The loss-and-gain function was further validated by subcutaneous xenotransplantation and tail vein injection xenotransplantation model in vivo. Dual-luciferase reporter assay was performed to validate the relationship of miR-16 with YAP1. Results MiR-16 was notably downregulated in CCA tissues, which was associated with tumor size, metastasis, and TNM stage. Both in vitro and in vivo studies demonstrated that miR-16 could suppress proliferation, invasion and metastasis throughout the progression of CCA. We further identified YAP1 as a direct target gene of miR-16 and found that miR-16 could regulate CCA cell growth and invasion in a YAP1-dependent manner. In addition, YAP1 was markedly upregulated in CCA tissues, which was reversely correlated with miR-16 level in tissue samples. Besides, Down-regulation of miR-16 was remarkably associated with tumor progression and poor survival in CCA patients through a Kaplan–Meier survival analysis. Conclusions miR-16, as a novel tumor suppressor in CCA through directly targeting YAP1, might be a promising therapeutic target or prognosis biomarker for CCA.
Collapse
Affiliation(s)
- Sheng Han
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Dong Wang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Guohua Tang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xinxiang Yang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Chenyu Jiao
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Renjie Yang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yaodong Zhang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Liqun Huo
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zicheng Shao
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zefa Lu
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jiawei Zhang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
29
|
Yu L, Gao C, Feng B, Wang L, Tian X, Wang H, Ma D. Distinct prognostic values of YAP1 in gastric cancer. Tumour Biol 2017; 39:1010428317695926. [PMID: 28381174 DOI: 10.1177/1010428317695926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Hippo pathway regulates intrinsic organ sizes by regulating apoptosis and cell proliferation. YAP1 (yes-associated protein 1) is a transcriptional effector of the Hippo pathway. YAP1 expression is reported to be associated with gastric cancer carcinogenesis and malignancy. In this study, we compared the expression of YAP1 in gastric cancer and normal stomach tissues. Tissue microarray analysis was performed in 156 gastric cancer samples, 8 adjacent normal stomach tissues, and 4 normal stomach tissues. We also analyzed the association between YAP1 protein expression and clinicopathological features, such as age, gender, histological differentiation, and clinical stages. We used the ONCOMINE database and the Kaplan-Meier plotter to analyze YAP1 expression status in different clinicopathological parameters of gastric cancer. We also used the Kaplan-Meier plotter to summarize the survival information of YAP1 from a total of 631 gastric cancer patients. YAP1 expression was found to be elevated in gastric cancer tissues compared to normal stomach tissues. YAP1 messenger RNA was found to be upregulated in gastric intestinal-type adenocarcinoma and gastric mixed adenocarcinoma compared to gastric mucosa. YAP1 high expression was found to be correlated to worse overall survival for all gastric cancer patients followed for 20 years. These results indicate that YAP1 can be used to predict the prognosis of gastric cancer. And YAP1 maybe a potential drug target for gastric cancer patients.
Collapse
Affiliation(s)
- Lan Yu
- 1 Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Gao
- 1 Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei Feng
- 1 Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Wang
- 1 Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- 1 Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- 2 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- 2 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Chi GC, Liu Y, MacDonald JW, Barr RG, Donohue KM, Hensley MD, Hou L, McCall CE, Reynolds LM, Siscovick DS, Kaufman JD. Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health 2016; 15:119. [PMID: 27903268 PMCID: PMC5131503 DOI: 10.1186/s12940-016-0202-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/24/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND DNA methylation may mediate effects of air pollution on cardiovascular disease. The association between long-term air pollution exposure and DNA methylation in monocytes, which are central to atherosclerosis, has not been studied. We investigated the association between long-term ambient air pollution exposure and DNA methylation (candidate sites and global) in monocytes of adults (aged ≥55). METHODS One-year average ambient fine particulate matter (PM2.5) and oxides of nitrogen (NOX) concentrations were predicted at participants' (n = 1,207) addresses using spatiotemporal models. We assessed DNA methylation in circulating monocytes at 1) 2,713 CpG sites associated with mRNA expression of nearby genes and 2) probes mapping to Alu and LINE-1 repetitive elements (surrogates for global DNA methylation) using Illumina's Infinium HumanMethylation450 BeadChip. We used linear regression models adjusted for demographics, smoking, physical activity, socioeconomic status, methyl-nutrients, and technical variables. For significant air pollution-associated methylation sites, we also assessed the association between expression of gene transcripts previously associated with these CpG sites and air pollution. RESULTS At a false discovery rate of 0.05, five candidate CpGs (cg20455854, cg07855639, cg07598385, cg17360854, and cg23599683) had methylation significantly associated with PM2.5 and none were associated with NOX. Cg20455854 had the smallest p-value for the association with PM2.5 (p = 2.77 × 10-5). mRNA expression profiles of genes near three of the PM2.5-associated CpGs (ANKHD1, LGALS2, and ANKRD11) were also significantly associated with PM2.5 exposure. Alu and LINE-1 methylation were not associated with long-term air pollution exposure. CONCLUSIONS We observed novel associations between long-term ambient air pollution exposure and site-specific DNA methylation, but not global DNA methylation, in purified monocytes of a multi-ethnic adult population. Epigenetic markers may provide insights into mechanisms underlying environmental factors in complex diseases like atherosclerosis.
Collapse
Affiliation(s)
- Gloria C. Chi
- Department of Epidemiology, School of Public Health, University of Washington, 1959 NE Pacific St, Box 357236, Seattle, WA 98195 USA
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA USA
| | - R. Graham Barr
- Division of General Medicine, Mailman School of Public Health, Columbia University, New York, NY USA
- Division of Pulmonary, Allergy & Critical Care, Columbia University Medical Center, New York, NY USA
| | - Kathleen M. Donohue
- Division of General Medicine, Mailman School of Public Health, Columbia University, New York, NY USA
- Division of Pulmonary, Allergy & Critical Care, Columbia University Medical Center, New York, NY USA
| | - Mark D. Hensley
- Department of Epidemiology, School of Public Health, University of Washington, 1959 NE Pacific St, Box 357236, Seattle, WA 98195 USA
| | - Lifang Hou
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Charles E. McCall
- Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Lindsay M. Reynolds
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC USA
| | | | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, 1959 NE Pacific St, Box 357236, Seattle, WA 98195 USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA USA
| |
Collapse
|
31
|
Dong L, Lin F, Wu W, Huang W, Cai Z. Transcriptional cofactor Mask2 is required for YAP-induced cell growth and migration in bladder cancer cell. J Cancer 2016; 7:2132-2138. [PMID: 27877230 PMCID: PMC5118678 DOI: 10.7150/jca.16438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022] Open
Abstract
The highly conserved Hippo signaling pathway is an important pathway involved in tumorigenesis and development. In previous studies, YAP, the transcription coactivator of Hippo pathway, is found to be highly expressed in many clinical bladder cancer samples. To investigate the function of YAP and its cofactor Mask2 in bladder cancer, we overexpress YAP in bladder cancer cells and discover that YAP is able to promote bladder cancer cell growth and migration. In addition, we provide evidence that knockdown of Mask2 is able to repress bladder cancer cell growth and migration. Furthermore, we demonstrate knockdown of Mask2 is able to inhibit bladder cancer cell growth and migration induced by the excessive YAP. To explain the function of YAP/Mask2 complex in bladder cancer, we check the target genes' expression of Hippo signaling pathway involved in cell growth and migration and find overexpressed YAP is able to upregulate the target genes' expression while depletion of Mask2 downregulates them. Taken together, we demonstrate that Mask2 is required for the function of bladder cancer cell growth and migration induced by YAP via the target genes of Hippo pathway.
Collapse
Affiliation(s)
| | | | | | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Zhiming Cai
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| |
Collapse
|
32
|
Wang L, Wang Y, Li PP, Wang R, Zhu Y, Zheng F, Li L, Cui JJ, Wang LW. Expression profile and prognostic value of SAV1 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2016; 37:10.1007/s13277-016-5457-4. [PMID: 27747589 DOI: 10.1007/s13277-016-5457-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
SAV1 is a human homolog of salvador that contains two protein-protein interaction modules known as WW domains and acts as a scaffolding protein for Hpo and Warts. SAV1 is known to be a tumor suppressor, but its clinical and prognostic implications remain elusive. This study aimed at evaluating the prognostic significance and associated expression of SAV1 in pancreatic ductal adenocarcinoma (PDAC) patients. The expression of SAV1 in tissue specimens of PDAC patients were assayed with immunohistochemistry on a tissue microarray. The correlations between SAV1 expression and clinicopathological characteristics were analyzed by Pearson's chi-square test, Fisher's exact test, and Spearman's rank. The prognostic factors for overall survival were analyzed by univariate and multivariate Cox regression. The percentage of SAV1 expression in PDAC (50.6 %) was significantly lower than those in paratumor tissues (69.9 %) (P = 0.017). Expression of SAV1 was only significantly correlated with histological differentiation (P = 0.025) and N classification (P = 0.009). On multivariate analysis, elevated expression of SAV1 and N0 was a significant favorable prognostic factor of OS. Our study demonstrated for the first time that lower expression of SAV1 might be involved in the progression of PDAC, suggesting that SAV1 may be a potential prognostic marker and target for PDAC therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China
| | - Yu Wang
- Department of Oncology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, 201620, China
| | - Peng-Ping Li
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University , Nanjing, 211166, China
| | - Rui Wang
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China
| | - Yue Zhu
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China
| | - Fang Zheng
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China
| | - Lin Li
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China
| | - Jiu-Jie Cui
- Department of Oncology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, 201620, China.
| | - Li-Wei Wang
- Department of Oncology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, China.
- Department of Oncology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, 201620, China.
| |
Collapse
|
33
|
Xiao L, Zhou H, Li XP, Chen J, Fang C, Mao CX, Cui JJ, Zhang W, Zhou HH, Yin JY, Liu ZQ. MicroRNA-138 acts as a tumor suppressor in non small cell lung cancer via targeting YAP1. Oncotarget 2016; 7:40038-40046. [PMID: 27223073 PMCID: PMC5129990 DOI: 10.18632/oncotarget.9480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/23/2016] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miR)-138 was found to have suppressive effects on the growth and metastasis of different human cancers. In this study, we aimed to investigate the regulatory mechanism of miR-138 in non-small cell lung cancer (NSCLC). We applied the Quantitative real-time PCR (qRT-PCR) to detect the miR-138 levels in NSCLC tissues (n=21) and cell lines, Bioinformatical predication, luciferase reporter assay and western blot to identify the target gene of miR-138. We also applied Cell transfection, MTT, transwell, and wound healing assays to reveal the role of miR-138 in NSCLC cell proliferation and malignant transformation. We observed that miR-138 expression level was significantly decreased in NSCLC tissues compared to their matched adjacent normal tissues. It was also downregulated in tissues with poor differentiation, advanced stage or lymph nodes metastasis, as well as in several NSCLC cell lines compared to normal lung epithelial cell. We further identified YAP1 as a direct target gene of miR-138, and observed that the protein level of YAP1 was negatively mediated by miR-138 in NSCLC A549 cells. Moreover, overexpression of miR-138 significantly inhibited A549 cell growth, invasion and migration, while knockdown of miR-138 enhanced such capacities. Further investigation showed that the cell proliferation capacity was higher in the miR-138+YAP1 group, when compared with that in the miR-138 group, suggesting that overexpression of YAP1 rescued the suppressive effects of miR-138 upregulation on NSCLC cell proliferation. However, we found no difference of cell invasion and migration capacities between miR-138+YAP1 group and miR-138 group. Finally, YAP1 was markedly upregulated in NSCLC tissues compared to their marched adjacent normal tissues. Its mRNA levels were reversely correlated with the miR-138 levels in NSCLC tissues. In summary, our study suggests that miR-138 may play a suppressive role in the growth and metastasis of NSCLC cells partly at least by targeting YAP1.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Zhou
- The Affiliated Cancer Hospital, XiangYa School of Medicine, Central South University, Changsha, Hunan 410014, P.R. China
| | - Xiang-Ping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Chao Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan 410078, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
34
|
ANKRD53 interacts with DDA3 and regulates chromosome integrity during mitosis. Biochem Biophys Res Commun 2016; 470:484-491. [DOI: 10.1016/j.bbrc.2016.01.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022]
|
35
|
Liu R, Huang S, Lei Y, Zhang T, Wang K, Liu B, Nice EC, Xiang R, Xie K, Li J, Huang C. FGF8 promotes colorectal cancer growth and metastasis by activating YAP1. Oncotarget 2015; 6:935-52. [PMID: 25473897 PMCID: PMC4359266 DOI: 10.18632/oncotarget.2822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/25/2014] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related death worldwide. The poor prognosis of CRC is mainly due to uncontrolled tumor growth and distant metastases. In this study, we found that the level of FGF8 was elevated in the great majority of CRC cases and high FGF8 expression was significantly correlated with lymph nodes metastasis and worse overall survival. Functional studies showed that FGF8 can induce a more aggressive phenotype displaying epithelial-to-mesenchymal transition (EMT) and enhanced invasion and growth in CRC cells. Consistent with this, FGF8 can also promote tumor growth and metastasis in mouse models. Bioinformatics and pathological analysis suggested that YAP1 is a potential downstream target of FGF8 in CRC cells. Molecular validation demonstrated that FGF8 fully induced nuclear localization of YAP1 and enhanced transcriptional outcomes such as the expression of CTGF and CYR61, while decreasing YAP1 expression impeded FGF-8–induced cell growth, EMT, migration and invasion, revealing that YAP1 is required for FGF8-mediated CRC growth and metastasis. Taken together, these results demonstrate that FGF8 contributes to the proliferative and metastatic capacity of CRC cells and may represent a novel candidate for intervention in tumor growth and metastasis formation.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Shan Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, P. R. China
| | - Tao Zhang
- The School of Biomedical Sciences, Chengdu Medical College, Chengdu, P. R. China
| | - Kui Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Ke Xie
- Department of Oncology, Sichuan Provincial People's Hospital, Chengdu, P. R. China
| | - Jingyi Li
- The School of Biomedical Sciences, Chengdu Medical College, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
36
|
Bernusso VA, Machado-Neto JA, Pericole FV, Vieira KP, Duarte AS, Traina F, Hansen MD, Olalla Saad ST, Barcellos KS. Imatinib restores VASP activity and its interaction with Zyxin in BCR–ABL leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:388-95. [DOI: 10.1016/j.bbamcr.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
|
37
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
38
|
Machado-Neto JA, Lazarini M, Favaro P, de Melo Campos P, Scopim-Ribeiro R, Franchi Junior GC, Nowill AE, Lima PRM, Costa FF, Benichou S, Olalla Saad ST, Traina F. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:583-93. [PMID: 25523139 DOI: 10.1016/j.bbamcr.2014.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/29/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Renata Scopim-Ribeiro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Gilberto Carlos Franchi Junior
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Integrated Center for Childhood Onco-Hematological Investigation, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Paulo Roberto Moura Lima
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | | | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas 13083-878, São Paulo, Brazil.
| |
Collapse
|
39
|
Dhyani A, Machado-Neto JA, Favaro P, Saad STO. ANKHD1 represses p21 (WAF1/CIP1) promoter and promotes multiple myeloma cell growth. Eur J Cancer 2014; 51:252-9. [PMID: 25483783 DOI: 10.1016/j.ejca.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
ANKHD1 (Ankyrin repeat and KH domain-containing protein 1) is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irrespective of the TP53 mutational status of MM cell lines. The present study was aimed to investigate the role of ANKHD1 in MM in vitro clonogenicity and in vivo tumourigenicity, as well as the role of ANKHD1 in p21 transcriptional regulation. ANKHD1 silencing in MM cells resulted in significantly low no. of colonies formed and in slow migration as compared to control cells (p < 0.05). Furthermore, in xenograft MM mice models, tumour growth was visibly suppressed in mice injected with ANKHD1 silenced cells compared to the control group. There was a significant decrease in tumour volume (p = 0.006) as well as in weight (p = 0.02) in the group injected with silenced cells compared to those of the control group. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays confirmed the interaction between p21 and ANKHD1. Moreover, overexpression of ANKHD1 downregulated the activity of a p21 promoter in luciferase assays. Decrease in luciferase activity suggests a direct role of ANKHD1 in p21 transcriptional regulation. In addition confocal analysis after U266 cells were treated with Leptomycin B (LMB) for 24 h showed accumulation of ANKHD1 inside the nucleus as compared to untreated cells where ANKHD1 was found to be predominantly in cytoplasm. This suggests ANKHD1 might be shuttling between cytoplasm and nucleus. In conclusion, ANKHD1 promotes MM growth by repressing p21 a potent cell cycle regulator.
Collapse
Affiliation(s)
- Anamika Dhyani
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil.
| | - João A Machado-Neto
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Patricia Favaro
- Department of Biological Sciences, Federal University of Sao Paulo, Diadema, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| |
Collapse
|