1
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Priante G, Ceol M, Gianesello L, Bizzotto D, Braghetta P, Calò LA, Del Prete D, Anglani F. Emerging Perspectives on the Rare Tubulopathy Dent Disease: Is Glomerular Damage a Direct Consequence of ClC-5 Dysfunction? Int J Mol Sci 2023; 24:1313. [PMID: 36674829 PMCID: PMC9864126 DOI: 10.3390/ijms24021313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Dent disease (DD1) is a rare tubulopathy caused by mutations in the CLCN5 gene. Glomerulosclerosis was recently reported in DD1 patients and ClC-5 protein was shown to be expressed in human podocytes. Nephrin and actin cytoskeleton play a key role for podocyte functions and podocyte endocytosis seems to be crucial for slit diaphragm regulation. The aim of this study was to analyze whether ClC-5 loss in podocytes might be a direct consequence of the glomerular damage in DD1 patients. Three DD1 kidney biopsies presenting focal global glomerulosclerosis and four control biopsies were analyzed by immunofluorescence (IF) for nephrin and podocalyxin, and by immunohistochemistry (IHC) for ClC-5. ClC-5 resulted as down-regulated in DD1 vs. control (CTRL) biopsies in both tubular and glomerular compartments (p < 0.01). A significant down-regulation of nephrin (p < 0.01) in DD1 vs. CTRL was demonstrated. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Caspase9) gene editing of CLCN5 in conditionally immortalized human podocytes was used to obtain clones with the stop codon mutation p.(R34Efs*14). We showed that ClC-5 and nephrin expression, analyzed by quantitative Reverse Transcription/Polymerase Chain Reaction (qRT/PCR) and In-Cell Western (ICW), was significantly downregulated in mutant clones compared to the wild type ones. In addition, F-actin staining with fluorescent phalloidin revealed actin derangements. Our results indicate that ClC-5 loss might alter podocyte function either through cytoskeleton disorganization or through impairment of nephrin recycling.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| |
Collapse
|
3
|
Zha D, Wu X. Nutrient sensing, signaling transduction, and autophagy in podocyte injury: implications for kidney disease. J Nephrol 2023; 36:17-29. [PMID: 35704261 DOI: 10.1007/s40620-022-01365-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Podocytes are terminally differentiated epithelial cells of the renal glomerular tuft and these highly specialized cells are essential for the integrity of the slit diaphragm. The biological function of podocytes is primarily based on a complex ramified structure that requires sufficient nutrients and a large supply of energy in support of their unique structure and function in the glomeruli. Of note, the dysregulation of nutrient signaling and energy metabolic pathways in podocytes has been associated with a range of kidney diseases i.e., diabetic nephropathy. Therefore, nutrient-related and energy metabolic signaling pathways are critical to maintaining podocyte homeostasis and the pathogenesis of podocyte injury. Recently, a growing body of evidence has indicated that nutrient starvation induces autophagy, which suggests crosstalk between nutritional signaling with the modulation of autophagy for podocytes to adapt to nutrient deprivation. In this review, the current knowledge and advancement in the understanding of nutrient sensing, signaling, and autophagy in the podocyte biology, injury, and pathogenesis of kidney diseases is summarized. Based on the existing findings, the implications and perspective to target these signaling pathways and autophagy in podocytes during the development of novel preventive and therapeutic strategies in patients with podocyte injury-associated kidney diseases are discussed.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430070, Hubei, China
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Jay AG, Simard JR, Huang N, Hamilton JA. SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. J Lipid Res 2020; 61:790-807. [PMID: 32102800 DOI: 10.1194/jlr.ra120000648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.
Collapse
Affiliation(s)
- Anthony G Jay
- Department of Physiology and Biomedical Engineering,Mayo Clinic, Rochester, MN 55905; Departments of Biochemistry,Boston University School of Medicine, Boston, MA 02118. mailto:
| | - Jeffrey R Simard
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118; Pharmacology and Experimental Therapeutics,Boston University School of Medicine, Boston, MA 02118
| | - Nasi Huang
- Section of Infectious Diseases Department of Medicine,Boston University School of Medicine, Boston, MA 02118
| | - James A Hamilton
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
5
|
Sheng N, Pan Y, Guo Y, Sun Y, Dai J. Hepatotoxic Effects of Hexafluoropropylene Oxide Trimer Acid (HFPO-TA), A Novel Perfluorooctanoic Acid (PFOA) Alternative, on Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8005-8015. [PMID: 29927593 DOI: 10.1021/acs.est.8b01714] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As an alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been increasingly used for fluoropolymer manufacture in recent years. Its growing detection in environmental matrices and wildlife raises considerable concern about its potential health risks. Here we investigated the effects of HFPO-TA on mouse liver following 28 days of exposure to 0.02, 0.1, or 0.5 mg/kg/d of HFPO-TA via oral gavage. Results showed that HFPO-TA concentrations increased to 1.14, 4.48, and 30.8 μg/mL in serum and 12.0, 32.2, and 100 μg/g in liver, respectively. Liver injury, including hepatomegaly, necrosis, and increase in alanine aminotransferase activity, was observed. Furthermore, total cholesterol and triglycerides decreased in the liver in a dose-dependent manner. Liver transcriptome analysis revealed that 281, 1001, and 2491 genes were differentially expressed (fold change ≥2 and FDR < 0.05) in the three treated groups, respectively, compared with the control group. KEGG enrichment analysis highlighted the PPAR and chemical carcinogenesis pathways in all three treatment groups. Protein levels of genes involved in carcinogenesis, such as AFP, p21, Sirt1 C-MYC, and PCNA, were significantly increased. Compared with previously published toxicological data of PFOA, HFPO-TA showed higher bioaccumulation potential and more serious hepatotoxicity. Taken together, HFPO-TA does not appear to be a safer alternative to PFOA.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
6
|
Gianesello L, Priante G, Ceol M, Radu CM, Saleem MA, Simioni P, Terrin L, Anglani F, Del Prete D. Albumin uptake in human podocytes: a possible role for the cubilin-amnionless (CUBAM) complex. Sci Rep 2017; 7:13705. [PMID: 29057905 PMCID: PMC5651885 DOI: 10.1038/s41598-017-13789-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
Albumin re-uptake is a receptor-mediated pathway located in renal proximal tubuli. There is increasing evidence of glomerular protein handling by podocytes, but little is known about the mechanism behind this process. In this study, we found that human podocytes in vitro are committed to internalizing albumin through a receptor-mediated mechanism even after exposure to low doses of albumin. We show that these cells express cubilin, megalin, ClC-5, amnionless and Dab2, which are partners in the tubular machinery. Exposing human podocytes to albumin overload prompted an increase in CUBILIN, AMNIONLESS and CLCN5 gene expression. Inhibiting cubilin led to a reduction in albumin uptake, highlighting its importance in this mechanism. We demonstrated that human podocytes are committed to performing endocytosis via a receptor-mediated mechanism even in the presence of low doses of albumin. We also disclosed that protein overload first acts on the expression of the cubilin-amnionless (CUBAM) complex in these cells, then involves the ClC-5 channel, providing the first evidence for a possible role of the CUBAM complex in albumin endocytosis in human podocytes.
Collapse
Affiliation(s)
- Lisa Gianesello
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Giovanna Priante
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Monica Ceol
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Moin A Saleem
- Academic and Children's Renal Unit, Dorothy Hodgkin Building, BS8 1TH, Bristol, United Kingdom
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Liliana Terrin
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Franca Anglani
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy
| | - Dorella Del Prete
- Clinical Nephrology, Department of Medicine - DIMED, University of Padua, 35129, Padua, Italy.
| |
Collapse
|
7
|
Merlot AM, Sahni S, Lane DJR, Fordham AM, Pantarat N, Hibbs DE, Richardson V, Doddareddy MR, Ong JA, Huang MLH, Richardson DR, Kalinowski DS. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget 2016; 6:10374-98. [PMID: 25848850 PMCID: PMC4496362 DOI: 10.18632/oncotarget.3606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.
Collapse
Affiliation(s)
- Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh M Fordham
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Namfon Pantarat
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - David E Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Jennifer A Ong
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Inoue K, Ishibe S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 2015; 309:F398-405. [PMID: 26084928 DOI: 10.1152/ajprenal.00136.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Severe defects in the glomerular filtration barrier result in nephrotic syndrome, which is characterized by massive proteinuria. The podocyte, a specialized epithelial cell with interdigitating foot processes separated by a slit diaphragm, plays a vital role in regulating the passage of proteins from the capillary lumen to Bowman's space. Recent findings suggest a critical role for endocytosis in podocyte biology as highlighted by genetic mouse models of disease and human genetic mutations that result in the loss of the integrity of the glomerular filtration barrier. In vitro podocyte studies have also unraveled a plethora of constituents that are differentially internalized to maintain homeostasis. These observations provide a framework and impetus for understanding the precise regulation of podocyte endocytic machinery in both health and disease.
Collapse
Affiliation(s)
- Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|