1
|
Shiomi M, Matsuzaki S, Serada S, Matsuo K, Mizuta-Odani C, Jitsumori M, Nakae R, Matsuzaki S, Nakagawa S, Hiramatsu K, Miyoshi A, Kobayashi E, Kimura T, Ueda Y, Yoshino K, Naka T, Kimura T. CD70 antibody-drug conjugate: A potential novel therapeutic agent for ovarian cancer. Cancer Sci 2021; 112:3655-3668. [PMID: 34117815 PMCID: PMC8409415 DOI: 10.1111/cas.15027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/16/2023] Open
Abstract
This study aimed to investigate the cytotoxicity of a cluster of differentiation 70 antibody-drug conjugate (CD70-ADC) against ovarian cancer in in vitro and in vivo xenograft models. CD70 expression was assessed in clinical samples by immunohistochemical analysis. Western blotting and fluorescence-activated cell sorting analyses were used to determine CD70 expression in the ovarian cancer cell lines A2780 and SKOV3, and in the cisplatin-resistant ovarian cancer cell lines A2780cisR and SKOV3cisR. CD70 expression after cisplatin exposure was determined in A2780 cells transfected with mock- or nuclear factor (NF)-κB-p65-small interfering RNA. We developed an ADC with an anti-CD70 monoclonal antibody linked to monomethyl auristatin F and investigated its cytotoxic effect. We examined 63 ovarian cancer clinical samples; 43 (68.3%) of them expressed CD70. Among patients with advanced stage disease (n = 50), those who received neoadjuvant chemotherapy were more likely to exhibit high CD70 expression compared to those who did not (55.6% [15/27] vs 17.4% [4/23], P < .01). CD70 expression was confirmed in A2780cisR, SKOV3, and SKOV3cisR cells. Notably, CD70 expression was induced after cisplatin treatment in A2780 mock cells but not in A2780-NF-κB-p65-silenced cells. CD70-ADC was cytotoxic to A2780cisR, SKOV3, and SKOV3cisR cells, with IC50 values ranging from 0.104 to 0.341 nmol/L. In A2780cisR and SKOV3cisR xenograft models, tumor growth in CD70-ADC treated mice was significantly inhibited compared to that in the control-ADC treated mice (A2780cisR: 32.0 vs 1639.0 mm3 , P < .01; SKOV3cisR: 232.2 vs 584.9 mm3 , P < .01). Platinum treatment induced CD70 expression in ovarian cancer cells. CD70-ADC may have potential therapeutic implications in the treatment of CD70 expressing ovarian cancer.
Collapse
Affiliation(s)
- Mayu Shiomi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan.,Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Mariko Jitsumori
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Ruriko Nakae
- Department of Obstetrics and Gynecology, Sumitomo Hospital, Osaka, Japan
| | - Satoko Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Osaka General Medical Center, Osaka, Japan
| | - Satoshi Nakagawa
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kosuke Hiramatsu
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Ai Miyoshi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Toshihiro Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan.,Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg Chem 2020; 94:103486. [DOI: 10.1016/j.bioorg.2019.103486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/27/2019] [Indexed: 01/17/2023]
|
3
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Mensah LB, Morton SW, Li J, Xiao H, Quadir MA, Elias KM, Penn E, Richson AK, Ghoroghchian PP, Liu J, Hammond PT. Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng Transl Med 2019; 4:e10131. [PMID: 31249881 PMCID: PMC6584097 DOI: 10.1002/btm2.10131] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Advanced staged high-grade serous ovarian cancer (HGSOC) is the leading cause of gynecological cancer death in the developed world, with 5-year survival rates of only 25-30% due to late-stage diagnosis and the shortcomings of platinum-based therapies. A Phase I clinical trial of a combination of free cisplatin and poly(ADP-ribose) polymerase inhibitors (PARPis) showed therapeutic benefit for HGSOC. In this study, we address the challenge of resistance to platinum-based therapy by developing a targeted delivery approach. Novel electrostatic layer-by-layer (LbL) liposomal nanoparticles (NPs) with a terminal hyaluronic acid layer that facilitates CD44 receptor targeting are designed for selective targeting of HGSOC cells; the liposomes can be formulated to contain both cisplatin and the PARPi drug within the liposomal core and bilayer. The therapeutic effectiveness of LbL NP-encapsulated cisplatin and PARPi alone and in combination was compared with the corresponding free drugs in luciferase and CD44-expressing OVCAR8 orthotopic xenografts in female nude mice. The NPs exhibited prolonged blood circulation half-life, mechanistic staged drug release and targeted codelivery of the therapeutic agents to HGSOC cells. Moreover, compared to the free drugs, the NPs resulted in significantly reduced tumor metastasis, extended survival, and moderated systemic toxicity.
Collapse
Affiliation(s)
- Lawrence B. Mensah
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| | - Stephen W. Morton
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| | - Jiahe Li
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| | - Haihua Xiao
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
- Institute of Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences, JilinChangchunP.R. China
| | - Mohiuddin A. Quadir
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
- Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoND, 58108
| | - Kevin M. Elias
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, and Reproductive BiologyBrigham and Women's HospitalBostonMA, 02115
| | - Emily Penn
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| | - Aysen K. Richson
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| | - Paiman Peter Ghoroghchian
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Dana‐Farber Cancer InstituteBostonMA, 02115
| | - Joyce Liu
- Dana‐Farber Cancer InstituteBostonMA, 02115
| | - Paula T. Hammond
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeMA, 02142
- Department of Chemical EngineeringMassachusetts Institute of Technology (MIT)CambridgeMA, 02139
| |
Collapse
|
5
|
Kondrashova O, Topp M, Nesic K, Lieschke E, Ho GY, Harrell MI, Zapparoli GV, Hadley A, Holian R, Boehm E, Heong V, Sanij E, Pearson RB, Krais JJ, Johnson N, McNally O, Ananda S, Alsop K, Hutt KJ, Kaufmann SH, Lin KK, Harding TC, Traficante N, deFazio A, McNeish IA, Bowtell DD, Swisher EM, Dobrovic A, Wakefield MJ, Scott CL. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat Commun 2018; 9:3970. [PMID: 30266954 PMCID: PMC6162272 DOI: 10.1038/s41467-018-05564-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/25/2018] [Indexed: 01/17/2023] Open
Abstract
Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects. Among BRCA1-methylated PDX, silencing of all BRCA1 copies predicts rucaparib response, whilst heterozygous methylation is associated with resistance. Analysis of 21 BRCA1-methylated platinum-sensitive recurrent HGSOC (ARIEL2 Part 1 trial) confirmed that homozygous or hemizygous BRCA1 methylation predicts rucaparib clinical response, and that methylation loss can occur after exposure to chemotherapy. Accordingly, quantitative BRCA1 methylation analysis in a pre-treatment biopsy could allow identification of patients most likely to benefit, and facilitate tailoring of PARPi therapy.
Collapse
Affiliation(s)
- Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Monique Topp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medicine and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Gwo-Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
| | - Maria I Harrell
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195, USA
| | - Giada V Zapparoli
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Alison Hadley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Holian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma Boehm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Valerie Heong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Richard B Pearson
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3168, Australia
| | - John J Krais
- Fox Chase Cancer Centre, Philadelphia, PA, 19111, USA
| | - Neil Johnson
- Fox Chase Cancer Centre, Philadelphia, PA, 19111, USA
| | - Orla McNally
- Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | | | - Kathryn Alsop
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
| | - Karla J Hutt
- Department of Medicine and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Nadia Traficante
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney and Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Iain A McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Kensington, London, SW7 2AZ, United Kingdom
| | - David D Bowtell
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander Dobrovic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Melbourne Bioinformatics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medicine and Health Sciences, Monash University, Clayton, VIC, 3168, Australia.
- Research Division, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Reilly SW, Puentes LN, Wilson K, Hsieh CJ, Weng CC, Makvandi M, Mach RH. Examination of Diazaspiro Cores as Piperazine Bioisosteres in the Olaparib Framework Shows Reduced DNA Damage and Cytotoxicity. J Med Chem 2018; 61:5367-5379. [PMID: 29856625 DOI: 10.1021/acs.jmedchem.8b00576] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Development of poly(ADP-ribose) polymerase inhibitors (PARPi's) continues to be an attractive area of research due to synthetic lethality in DNA repair deficient cancers; however, PARPi's also have potential as therapeutics to prevent harmful inflammation. We investigated the pharmacological impact of incorporating spirodiamine motifs into the phthalazine architecture of FDA approved PARPi olaparib. Synthesized analogues were screened for PARP-1 affinity, enzyme specificity, catalytic inhibition, DNA damage, and cytotoxicity. This work led to the identification of 10e (12.6 ± 1.1 nM), which did not induce DNA damage at similar drug concentrations as olaparib. Interestingly, several worst in class compounds with low PARP-1 affinity, including 15b (4397 ± 1.1 nM), induced DNA damage at micromolar concentrations, which can explain the cytotoxicity observed in vitro. This work provides further evidence that high affinity PARPi's can be developed without DNA damaging properties offering potential new drugs for treating inflammatory related diseases.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Laura N Puentes
- Department of Systems Pharmacology and Translational Therapeutics , University of Pennsylvania , 421 Curie Blvd. , Philadelphia , Pennsylvania 19104 , United States
| | - Khadija Wilson
- Department of Systems Pharmacology and Translational Therapeutics , University of Pennsylvania , 421 Curie Blvd. , Philadelphia , Pennsylvania 19104 , United States
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Chi-Chang Weng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
7
|
Shen YT, Evans JC, Zafarana G, Allen C, Piquette-Miller M. BRCA Status Does Not Predict Synergism of a Carboplatin and Olaparib Combination in High-Grade Serous Ovarian Cancer Cell Lines. Mol Pharm 2018; 15:2742-2753. [DOI: 10.1021/acs.molpharmaceut.8b00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yen Ting Shen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James C. Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Gaetano Zafarana
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
8
|
Stordal BK, Kalachand R, Hall N. Taxane monotherapy regimens for the treatment of recurrent epithelial ovarian cancer. Hippokratia 2018. [DOI: 10.1002/14651858.cd008766.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Britta K Stordal
- Middlesex University; Department of Natural Sciences; The Burroughs Hendon London UK NW4 4BT
| | - Roshni Kalachand
- Beaumont Hospital and Royal College of Surgeons in Ireland; Department of Medical Oncology; Beaumont Road Dublin 9 Ireland
| | - Neville Hall
- Middlesex University; Department of Natural Sciences; The Burroughs Hendon London UK NW4 4BT
| |
Collapse
|
9
|
Makvandi M, Pantel A, Schwartz L, Schubert E, Xu K, Hsieh CJ, Hou C, Kim H, Weng CC, Winters H, Doot R, Farwell MD, Pryma DA, Greenberg RA, Mankoff DA, Simpkins F, Mach RH, Lin LL. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer. J Clin Invest 2018; 128:2116-2126. [PMID: 29509546 PMCID: PMC5919879 DOI: 10.1172/jci97992] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/28/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors are effective in a broad population of patients with ovarian cancer; however, resistance caused by low enzyme expression of the drug target PARP-1 remains to be clinically evaluated in this context. We hypothesize that PARP-1 expression is variable in ovarian cancer and can be quantified in primary and metastatic disease using a novel PET imaging agent. METHODS We used a translational approach to describe the significance of PET imaging of PARP-1 in ovarian cancer. First, we produced PARP1-KO ovarian cancer cell lines using CRISPR/Cas9 gene editing to test the loss of PARP-1 as a resistance mechanism to all clinically used PARP inhibitors. Next, we performed preclinical microPET imaging studies using ovarian cancer patient-derived xenografts in mouse models. Finally, in a phase I PET imaging clinical trial we explored PET imaging as a regional marker of PARP-1 expression in primary and metastatic disease through correlative tissue histology. RESULTS We found that deletion of PARP1 causes resistance to all PARP inhibitors in vitro, and microPET imaging provides proof of concept as an approach to quantify PARP-1 in vivo. Clinically, we observed a spectrum of standard uptake values (SUVs) ranging from 2-12 for PARP-1 in tumors. In addition, we found a positive correlation between PET SUVs and fluorescent immunohistochemistry for PARP-1 (r2 = 0.60). CONCLUSION This work confirms the translational potential of a PARP-1 PET imaging agent and supports future clinical trials to test PARP-1 expression as a method to stratify patients for PARP inhibitor therapy. TRIAL REGISTRATION Clinicaltrials.gov NCT02637934. FUNDING Research reported in this publication was supported by the Department of Defense OC160269, a Basser Center team science grant, NIH National Cancer Institute R01CA174904, a Department of Energy training grant DE-SC0012476, Abramson Cancer Center Radiation Oncology pilot grants, the Marsha Rivkin Foundation, Kaleidoscope of Hope Foundation, and Paul Calabresi K12 Career Development Award 5K12CA076931.
Collapse
Affiliation(s)
- Mehran Makvandi
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Austin Pantel
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin Schubert
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kuiying Xu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chia-Ju Hsieh
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Catherine Hou
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hyoung Kim
- Department of OBGYN, Division of Gynecology and Oncology
| | - Chi-Chang Weng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Robert Doot
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael D. Farwell
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel A. Pryma
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - David A. Mankoff
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fiona Simpkins
- Department of OBGYN, Division of Gynecology and Oncology
| | - Robert H. Mach
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lilie L. Lin
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Dalvi MP, Wang L, Zhong R, Kollipara RK, Park H, Bayo J, Yenerall P, Zhou Y, Timmons BC, Rodriguez-Canales J, Behrens C, Mino B, Villalobos P, Parra ER, Suraokar M, Pataer A, Swisher SG, Kalhor N, Bhanu NV, Garcia BA, Heymach JV, Coombes K, Xie Y, Girard L, Gazdar AF, Kittler R, Wistuba II, Minna JD, Martinez ED. Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors. Cell Rep 2018; 19:1669-1684. [PMID: 28538184 DOI: 10.1016/j.celrep.2017.04.077] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022] Open
Abstract
Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.
Collapse
Affiliation(s)
- Maithili P Dalvi
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Zhong
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hyunsil Park
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Bayo
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paul Yenerall
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunyun Zhou
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brenda C Timmons
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milind Suraokar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natarajan V Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Coombes
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Yang Xie
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralf Kittler
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Nikolskaya ED, Zhunina OA, Yabbarov NG, Zenin VA, Tereshchenko OG, Fomicheva MV, Sokol MB, Lobanov AV, Severin ES. Antitumor activity of carboplatin in the composition of a copolymer of lactic and glycolic acids. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Paclitaxel is necessary for improved survival in epithelial ovarian cancers with homologous recombination gene mutations. Oncotarget 2018; 7:48577-48585. [PMID: 27191893 PMCID: PMC5217039 DOI: 10.18632/oncotarget.9373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/29/2016] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the impact of somatic mutations in homologous recombination (HR) genes on the chemotherapeutic response and survival of patients with epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN We performed targeted massively parallel sequencing of tumor DNA from 158 patients with EOC. We associated adjuvant chemotherapy and clinical outcome with mutations in selected genes, focusing on those encoding HR proteins. RESULTS HR mutations were found in 47 (30%) tumors. We did not detect an overall survival (OS) difference in advanced stage patients whose tumors had HR mutations compared to those without (median OS of 49.6 months (95% CI 29.9-57.7) vs. 43.3 months (95% CI 31.9-75.47), p = 0.87). However, when stratified by chemotherapy regimen, patients whose tumors had TP53 and HR mutations demonstrated a marked survival advantage when treated with platinum and paclitaxel vs. platinum +/− cyclophosphamide (median OS of 90 months (95% CI 50-NA) vs. 29.5 months (95% CI 17.7-50.5), p = 0.0005). CONCLUSIONS Previous studies demonstrating a survival advantage for EOC patients with somatic HR mutations have been conducted with almost universal use of both platinum and paclitaxel. Our study is the first to our knowledge to compare cohorts with somatic HR gene mutations treated with and without paclitaxel containing platinum regimens. The survival benefit attributed to the platinum sensitivity of HR deficient ovarian cancers may depend upon the combined use of paclitaxel.
Collapse
|
13
|
Nishio S, Takekuma M, Takeuchi S, Kawano K, Tsuda N, Tasaki K, Takahashi N, Abe M, Tanaka A, Nagasawa T, Shoji T, Xiong H, Nuthalapati S, Leahy T, Hashiba H, Kiriyama T, Komarnitsky P, Hirashima Y, Ushijima K. Phase 1 study of veliparib with carboplatin and weekly paclitaxel in Japanese patients with newly diagnosed ovarian cancer. Cancer Sci 2017; 108:2213-2220. [PMID: 28837250 PMCID: PMC5665762 DOI: 10.1111/cas.13381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023] Open
Abstract
This phase 1, open-label, dose-escalation study was conducted to determine the safety, tolerability, pharmacokinetics and preliminary efficacy of veliparib with carboplatin and weekly paclitaxel in Japanese women with newly diagnosed, advanced ovarian cancer. Patients received veliparib at 100 or 150 mg b.i.d. on days 1-21 with carboplatin (area under the concentration-time curve 6 mg/mL•min) on day 1 and paclitaxel 80 mg/m2 on days 1, 8 and 15 every 3 weeks for up to 6 21-day cycles. Dose escalation followed a 3 + 3 design to determine dose-limiting toxicities, maximum tolerated dose and the recommended phase 2 dose. Nine patients (median age 62 [range 27-72] years) received a median of 5 (range 3-6) cycles of treatment (3 at 100 mg, 6 at 150 mg). There were no dose-limiting toxicities. The most common adverse events of any grade were neutropenia (100%), alopecia (89%), peripheral sensory neuropathy (78%), and anemia, nausea and malaise (67% each). Grade 3 or 4 adverse events were associated with myelosuppression. Pharmacokinetics of carboplatin/paclitaxel were similar at both veliparib doses. Response, assessed in five patients, was partial in four and complete in one (objective response rate 100%). The response could not be assessed in four patients who had no measurable disease at baseline. The recommended phase 2 dose of veliparib, when combined with carboplatin/paclitaxel, is 150 mg b.i.d. Findings from this phase 1 trial demonstrate the tolerability and safety of veliparib with carboplatin/paclitaxel, a regimen with potential clinical benefit in Japanese women with ovarian cancer.
Collapse
Affiliation(s)
- Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Munetaka Takekuma
- Division of Gynecology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Satoshi Takeuchi
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Kouichirou Kawano
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuto Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Nobutaka Takahashi
- Division of Gynecology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Masakazu Abe
- Division of Gynecology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Aki Tanaka
- Division of Gynecology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Takayuki Nagasawa
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Hao Xiong
- AbbVie, North Chicago, Illinois, USA
| | | | | | | | | | | | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center, Nagaizumi, Shizuoka, Japan
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
14
|
New compounds based on a benzimidazole nucleus: synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Yan J, Chen J, Zhang S, Hu J, Huang L, Li X. Synthesis, Evaluation, and Mechanism Study of Novel Indole-Chalcone Derivatives Exerting Effective Antitumor Activity Through Microtubule Destabilization in Vitro and in Vivo. J Med Chem 2016; 59:5264-83. [PMID: 27149641 DOI: 10.1021/acs.jmedchem.6b00021] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-nine novel indole-chalcone derivatives were synthesized and evaluated for antiproliferative activity. Among them, 14k exhibited most potent activity, with IC50 values of 3-9 nM against six cancer cells, which displayed a 3.8-8.7-fold increase in activity when compare with compound 2. Further investigation revealed 14k was a novel tubulin polymerization inhibitor binding to the colchicine site. Its low cytotoxicity toward normal human cells and nearly equally potent activity against drug-resistant cells revealed the possibility for cancer therapy. Cellular mechanism studies elucidated 14k arrests cell cycle at G2/M phase and induces apoptosis along with the decrease of mitochondrial membrane potential. Furthermore, good metabolic stability of 14k was observed in mouse liver microsomes. Importantly, 14k and its phosphate salt 14k-P inhibited tumor growth in xenograft models in vivo without apparent toxicity, which was better than the reference compound CA-4P and 2. In summary, 14k deserves consideration for cancer therapy.
Collapse
Affiliation(s)
- Jun Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Shun Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Jinhui Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| |
Collapse
|