1
|
Kang M, Senatore AJ, Naughton H, McTigue M, Beltman RJ, Herppich AA, Pflum MKH, Howe AK. Protein kinase A is a functional component of focal adhesions. J Biol Chem 2024; 300:107234. [PMID: 38552737 PMCID: PMC11044056 DOI: 10.1016/j.jbc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hannah Naughton
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Madeline McTigue
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Rachel J Beltman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew A Herppich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Alan K Howe
- Department of Pharmacology, Larner College of Medicine, University of Vermont Cancer Center, Burlington, Vermont, USA; Department of Molecular Physiology & Biophysics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
3
|
Johnson GA, Burghardt RC, Bazer FW, Seo H, Cain JW. Integrins and their potential roles in mammalian pregnancy. J Anim Sci Biotechnol 2023; 14:115. [PMID: 37679778 PMCID: PMC10486019 DOI: 10.1186/s40104-023-00918-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are a highly complex family of receptors that, when expressed on the surface of cells, can mediate reciprocal cell-to-cell and cell-to-extracellular matrix (ECM) interactions leading to assembly of integrin adhesion complexes (IACs) that initiate many signaling functions both at the membrane and deeper within the cytoplasm to coordinate processes including cell adhesion, migration, proliferation, survival, differentiation, and metabolism. All metazoan organisms possess integrins, and it is generally agreed that integrins were associated with the evolution of multicellularity, being essential for the association of cells with their neighbors and surroundings, during embryonic development and many aspects of cellular and molecular biology. Integrins have important roles in many aspects of embryonic development, normal physiology, and disease processes with a multitude of functions discovered and elucidated for integrins that directly influence many areas of biology and medicine, including mammalian pregnancy, in particular implantation of the blastocyst to the uterine wall, subsequent placentation and conceptus (embryo/fetus and associated placental membranes) development. This review provides a succinct overview of integrin structure, ligand binding, and signaling followed with a concise overview of embryonic development, implantation, and early placentation in pigs, sheep, humans, and mice as an example for rodents. A brief timeline of the initial localization of integrin subunits to the uterine luminal epithelium (LE) and conceptus trophoblast is then presented, followed by sequential summaries of integrin expression and function during gestation in pigs, sheep, humans, and rodents. As appropriate for this journal, summaries of integrin expression and function during gestation in pigs and sheep are in depth, whereas summaries for humans and rodents are brief. Because similar models to those illustrated in Fig. 1, 2, 3, 4, 5 and 6 are present throughout the scientific literature, the illustrations in this manuscript are drafted as Viking imagery for entertainment purposes.
Collapse
Affiliation(s)
- Gregory A Johnson
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA.
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Fuller W Bazer
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| |
Collapse
|
4
|
Mitsou I, Carlson CR, Multhaupt HA, Brakebusch C, Couchman JR. Two Transient Receptor Potential Channels at Focal Adhesions. J Histochem Cytochem 2023; 71:495-508. [PMID: 37596792 PMCID: PMC10501361 DOI: 10.1369/00221554231194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
Recently there have been reports that identify two transient receptor potential channels in cell-matrix junctions known as focal adhesions. These are the calcium channel TRP canonical 7 and the calcium-activated monovalent ion channel, TRP melastatin (TRPM) 4. Here, we report on the occurrence of TRPM4 in focal adhesions of fibroblasts. Of three commercial antibodies recognizing this channel, only one yielded focal adhesion staining, while the other two did not. The epitope recognized by the focal adhesion-localizing antibody was mapped to the extreme C-terminus of the TRPM4 protein. The other two antibodies bind to N-terminal regions of the TRPM4 proteins. Deletion of the TRPM4 gene by CRISPR/cas9 techniques confirmed that this channel is a bona fide focal adhesion component, while expression of full-length TRPM4 proteins suggested that processing may occur to yield a form that localizes to focal adhesions. Given the reports that this channel may influence migratory behavior of cells and is linked to cardiovascular disease, TRPM4 functions in adhesion should be explored in greater depth. (J Histochem Cytochem 71: 495-508, 2023).
Collapse
Affiliation(s)
- Ioli Mitsou
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Agilent Technologies Denmark ApS, Glostrup, Denmark
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hinke A.B. Multhaupt
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Cord Brakebusch
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - John R. Couchman
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Estep JA, Sun LO, Riccomagno MM. A luciferase fragment complementation assay to detect focal adhesion kinase (FAK) signaling events. Heliyon 2023; 9:e15282. [PMID: 37089315 PMCID: PMC10119766 DOI: 10.1016/j.heliyon.2023.e15282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Integrin Adhesion Complexes (IACs) serve as links between the cytoskeleton and extracellular environment, acting as mechanosensing and signaling hubs. As such, IACs participate in many aspects of cellular motility, tissue morphogenesis, anchorage-dependent growth and cell survival. Focal Adhesion Kinase (FAK) has emerged as a critical organizer of IAC signaling events due to its early recruitment and diverse substrates, and thus has become a genetic and therapeutic target. Here we present the design and characterization of simple, reversible, and scalable Bimolecular Complementation sensors to monitor FAK phosphorylation in living cells. These probes provide novel means to quantify IAC signaling, expanding on the currently available toolkit for interrogating FAK phosphorylation during diverse cellular processes.
Collapse
Affiliation(s)
- Jason A. Estep
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lu O. Sun
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin M. Riccomagno
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
8
|
Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater 2022; 15:145-159. [PMID: 35386337 PMCID: PMC8940943 DOI: 10.1016/j.bioactmat.2021.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future. A comprehensive overview of nanotopography fabrication, and nanotopography regulates various cell behaviours. The interactive physical adsorption between nanotopography and extracellular matrix. Nanotopography initiates the cellular mechanotransductive pathways and downstream signalling cascades.
Collapse
|
9
|
Barker CG, Petsalaki E, Giudice G, Sero J, Ekpenyong EN, Bakal C, Petsalaki E. Identification of phenotype-specific networks from paired gene expression-cell shape imaging data. Genome Res 2022; 32:750-765. [PMID: 35197309 PMCID: PMC8997347 DOI: 10.1101/gr.276059.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
Collapse
Affiliation(s)
- Charlie George Barker
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Eirini Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Julia Sero
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emmanuel Nsa Ekpenyong
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
10
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
12
|
Wang DY, Melero C, Albaraky A, Atherton P, Jansen KA, Dimitracopoulos A, Dajas-Bailador F, Reid A, Franze K, Ballestrem C. Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp Cell Res 2021; 407:112805. [PMID: 34487728 DOI: 10.1016/j.yexcr.2021.112805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 08/21/2021] [Indexed: 11/29/2022]
Abstract
Integrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions. Thus, how neurons sense tissue stiffness is currently poorly understood. Here, we found that integrins and the integrin-associated proteins talin and focal adhesion kinase (FAK) are required for the outgrowth of neuronal processes. Vinculin, however, whilst not required for neurite outgrowth was a key regulator of integrin-mediated mechanosensing of neurons. During growth, growth cones of axons of CNS derived cells exerted dynamic stresses of around 10-12 Pa on their environment, and axons grew significantly longer on soft (0.4 kPa) compared to stiff (8 kPa) substrates. Depletion of vinculin blocked this ability of growth cones to distinguish between soft and stiff substrates. These data suggest that vinculin in neurons acts as a key mechanosensor, involved in the regulation of growth cone motility.
Collapse
Affiliation(s)
- De-Yao Wang
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cristina Melero
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ashwaq Albaraky
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul Atherton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK
| | - Karin A Jansen
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK; Department of Plastic Surgery & Nurns, Wythenshawe Hospital, Manchester University NHS Foundation Trust. Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK; Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Christoph Ballestrem
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Hegewisch-Solloa E, Seo S, Mundy-Bosse BL, Mishra A, Waldman EH, Maurrasse S, Grunstein E, Connors TJ, Freud AG, Mace EM. Differential Integrin Adhesome Expression Defines Human NK Cell Residency and Developmental Stage. THE JOURNAL OF IMMUNOLOGY 2021; 207:950-965. [PMID: 34282002 DOI: 10.4049/jimmunol.2100162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune cells that reside within tissue and circulate in peripheral blood. They interact with a variety of microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. In this study, we define the integrin adhesome expression profile of NK cells from human tonsil, peripheral blood, and those derived from human hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. These data provide understanding of the diversity of human NK cell populations and how they engage with their microenvironment.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Anjali Mishra
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Erik H Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Thomas J Connors
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Aharon G Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Pathology, The Ohio State University, Columbus, OH
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY;
| |
Collapse
|
14
|
Gough RE, Jones MC, Zacharchenko T, Le S, Yu M, Jacquemet G, Muench SP, Yan J, Humphries JD, Jørgensen C, Humphries MJ, Goult BT. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J Biol Chem 2021; 297:100837. [PMID: 34118235 PMCID: PMC8260872 DOI: 10.1016/j.jbc.2021.100837] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Talin (TLN1) is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behavior of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronized phosphorylation of a large number of protein targets. CDK1 activity maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesion that are required for successful mitosis. Using a combination of biochemical, structural, and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8. Talin also contains a consensus CDK1 phosphorylation motif centered on S1589, a site shown to be phosphorylated by CDK1 in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of the cytoskeletal adaptor KANK and weakened the response of this region to force as measured by single molecule stretching, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator CDK1 to the primary integrin effector talin represents a coupling of cell proliferation and cell adhesion machineries and thereby indicates a mechanism by which the microenvironment can control cell division in multicellular organisms.
Collapse
Affiliation(s)
| | - Matthew C Jones
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Thomas Zacharchenko
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology Department, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ste P Muench
- School of Biomedical Sciences, Astbury Centre for Structural Biology, University of Leeds, Leeds, UK
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore
| | - Jonathan D Humphries
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin J Humphries
- Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
15
|
Yemanyi F, Baidouri H, Burns AR, Raghunathan V. Dexamethasone and Glucocorticoid-Induced Matrix Temporally Modulate Key Integrins, Caveolins, Contractility, and Stiffness in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 33170205 PMCID: PMC7686803 DOI: 10.1167/iovs.61.13.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine the temporal effects of dexamethasone (DEX) and glucocorticoid-induced matrix (GIM) on integrins/integrin adhesomes, caveolins, cytoskeletal-related proteins, and stiffness in human trabecular meshwork (hTM) cells. Methods Primary hTM cells were plated on plastic dishes (TCP), treated with vehicle (Veh) or 100 nM DEX in 1% serum media for 1, 3, 5, and 7 day(s). Concurrently, hTM cells were also plated on vehicle control matrices (VehMs) and GIMs for similar time points; VehMs and GIMs had been generated from chronic cultures of Veh-/DEX-stimulated hTM cells and characterized biochemically. Subsets of cells prior to plating on TCP or VehMs / GIMs served as baseline. Protein expression of mechanoreceptors, cytoskeletal-related proteins, and elastic moduli of hTM cells were determined. Results Compared with Veh, DEX temporally overexpressed αV, β3, and β5 integrins from day 3 to day 7, and integrin linked kinase at day 7, in hTM cells. However, DEX decreased β1 integrin at day 1 and day 7, while increasing Cavin1 at day 7, in a time-independent manner. Further, DEX temporally upregulated α-smooth muscle actin(α-SMA) and RhoA at day 7 and day 5, respectively; while temporally downregulating Cdc42 at day 3 and day 7 in hTM cells. Conversely, GIM showed increased immunostaining of fibronectin extra-domain A and B isoforms. Compared with VehM, GIM temporally increased αV integrin, Cavin1, and RhoA from day 3 to day 7, at day 3 and day 7, and at day 5, respectively, in hTM cells. Further, GIM overexpressed α-SMA at day 3 and day 7, and stiffened hTM cells from day 1 to day 7, in a time-independent fashion. Conclusions Our data highlight crucial mechanoreceptors, integrin adhesomes, and actin-related proteins that may temporally sustain fibrotic phenotypes precipitated by DEX and/or GIM in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Alan R Burns
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
16
|
Xie X, Chen H, Zhang L, Chan D, Hill WG, Zeidel ML, Yu W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB J 2021; 35:e21447. [PMID: 33742688 PMCID: PMC9844132 DOI: 10.1096/fj.202002415r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023]
Abstract
Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Chan
- Brown University/Harvard Summer Research Program in Kidney Medicine, Providence, RI, USA
| | - Warren G. Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Arumugam A, Subramani R, Lakshmanaswamy R. Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:596-606. [PMID: 33768141 PMCID: PMC7972938 DOI: 10.1016/j.omto.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023]
Abstract
Triple-negative breast cancers (TNBCs) are aggressive cancers, which currently do not have effective treatment options. Migration and establishment of metastatic colonies require dynamic cytoskeletal modifications characterized by polymerization and depolymerization of actin. Studies have demonstrated a direct molecular link between the integrin-focal adhesion kinase (FAK) pathway and cytoskeletal modifications. Nimbolide, a major bioactive compound present in neem leaves, shows promising anti-cancer effect on various cancers. In this study, we have demonstrated the growth and metastasis inhibitory potential of nimbolide on TNBC cells. Nimbolide inhibited cell proliferation, migratory, and invasive abilities of TNBC cells and also changed the shape of MDA-MB-231 cells, which is correlated with cytoskeletal changes including actin depolymerization. Furthermore, analysis revealed that integrins αV and β3, ILK, FAK, and PAK levels were downregulated by nimbolide. Even in cells where Rac1/Cdc42 was constitutively activated, nimbolide inhibited the formation of filopodial structures. Immunofluorescence analysis of phosphorylated p21 activated kinase (pPAK) showed reduced expression in nimbolide-treated cells. Nimbolide significantly reduced the metastatic colony formation in lung, liver, and brain of athymic nude mice. In conclusion, our data demonstrate that nimbolide inhibits TNBC by altering the integrin and FAK signaling pathway.
Collapse
Affiliation(s)
- Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
18
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
19
|
Abstract
The extracellular matrix (ECM) is the noncellular compartment of living organisms and is formed of a complex network of cross-linked proteins, which is collectively known as the matrisome. Apart from providing the structure for an organism, cells interact and thereby communicate with the ECM. Cells interact with their surrounding ECM using cell-surface receptors, such as integrins. Upon integrin engagement with the ECM, cytoskeletal proteins are recruited to integrins and form a molecular protein complex known as the integrin adhesome. Global descriptions of the matrisome and integrin adhesome have been proposed using in silico bioinformatics approaches, as well as through biochemical enrichment of matrisome and adhesome fractions coupled with mass spectrometry-based proteomic analyses, providing inventories of their compositions in different contexts. Here, methods are described for the computational downstream analyses of matrisome and adhesome mass spectrometry datasets that are accessible to wet lab biologists, which include comparing datasets to in silico descriptions, generating interaction networks and performing functional ontological analyses.
Collapse
|
20
|
Henning Stumpf B, Ambriović-Ristov A, Radenovic A, Smith AS. Recent Advances and Prospects in the Research of Nascent Adhesions. Front Physiol 2020; 11:574371. [PMID: 33343382 PMCID: PMC7746844 DOI: 10.3389/fphys.2020.574371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of proteins to build mature focal adhesions. They are also associated with early stage signaling and the mechanoresponse. Despite their crucial role in sampling the local extracellular matrix, very little is known about the mechanism of their formation. Consequently, there is a strong scientific activity focused on elucidating the physical and biochemical foundation of their development and function. Precisely the results of this effort will be summarized in this article.
Collapse
Affiliation(s)
- Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
21
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
22
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Huang X, Qu R, Ouyang J, Zhong S, Dai J. An Overview of the Cytoskeleton-Associated Role of PDLIM5. Front Physiol 2020; 11:975. [PMID: 32848888 PMCID: PMC7426503 DOI: 10.3389/fphys.2020.00975] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Chastney MR, Lawless C, Humphries JD, Warwood S, Jones MC, Knight D, Jorgensen C, Humphries MJ. Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation. J Cell Biol 2020; 219:e202003038. [PMID: 32585685 PMCID: PMC7401799 DOI: 10.1083/jcb.202003038] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Integrin adhesion complexes (IACs) bridge the extracellular matrix to the actin cytoskeleton and transduce signals in response to both chemical and mechanical cues. The composition, interactions, stoichiometry, and topological organization of proteins within IACs are not fully understood. To address this gap, we used multiplexed proximity biotinylation (BioID) to generate an in situ, proximity-dependent adhesome in mouse pancreatic fibroblasts. Integration of the interactomes of 16 IAC-associated baits revealed a network of 147 proteins with 361 proximity interactions. Candidates with underappreciated roles in adhesion were identified, in addition to established IAC components. Bioinformatic analysis revealed five clusters of IAC baits that link to common groups of prey, and which therefore may represent functional modules. The five clusters, and their spatial associations, are consistent with current models of IAC interaction networks and stratification. This study provides a resource to examine proximal relationships within IACs at a global level.
Collapse
Affiliation(s)
- Megan R. Chastney
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Matthew C. Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Alderley Park, Manchester, UK
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Maddala R, Rao PV. Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells. Am J Physiol Cell Physiol 2020; 319:C288-C299. [PMID: 32432933 PMCID: PMC7500213 DOI: 10.1152/ajpcell.00537.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Dysregulation of the mechanical properties and cell adhesive interactions of trabecular meshwork (TM) are known to impair aqueous humor drainage and elevate intraocular pressure in glaucoma patients. The identity of regulatory mechanisms underlying TM mechanotransduction, however, remains elusive. Here we analyzed the phosphotyrosine proteome of human TM cell-extracellular matrix (ECM) adhesion complexes, which play a key role in sensing and transducing extracellular chemical and mechanical cues into intracellular activities, using a two-level affinity pull-down (phosphotyrosine antibody and titanium dioxide beads) method and mass spectrometry. This analysis identified ~1,000 tyrosine-phosphorylated proteins of TM cell-ECM adhesion complexes. Many consensus adhesome proteins were found to be tyrosine phosphorylated. Interestingly, several of the phosphotyrosinylated proteins found in TM cell-ECM adhesion complexes are known to be required for podocyte glomerular filtration, indicating the existence of molecular parallels that are likely relevant to the shared fluid barrier and filtration functions of the two mechanosensitive cell types.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
26
|
Hopkins AA, Murphy R, Irnaten M, Wallace DM, Quill B, O'Brien C. The role of lamina cribrosa tissue stiffness and fibrosis as fundamental biomechanical drivers of pathological glaucoma cupping. Am J Physiol Cell Physiol 2020; 319:C611-C623. [PMID: 32667866 DOI: 10.1152/ajpcell.00054.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The primary biomechanical driver of pathological glaucomatous cupping remains unknown. Finite element modeling indicates that stress and strain play key roles. In this article, primarily a review, we utilize known biomechanical data and currently unpublished results from our lab to propose a three-stage, tissue stiffness-based model to explain glaucomatous cupping occurring at variable levels of translaminar pressure (TLP). In stage 1, a short-term increase in TLP gradient induces a transient increase in lamina cribrosa (LC) strain. Beyond a critical level of strain, the tissue stiffness rises steeply provoking cellular responses via integrin-mediated mechanotransduction. This early mechanoprotective cellular contraction reduces strain, which reduces tissue stiffness by return of the posteriorly deflected LC to baseline. In stage 2 a prolonged period of TLP increase elicits extracellular matrix (ECM) production leading to fibrosis, increasing baseline tissue stiffness and strain and diminishing the contractile ability/ability to return to the baseline LC position. This is supported by our three-dimensional collagen contraction assays, which show significantly reduced capacity to contract in glaucoma compared with normal LC cells. Second, 15% cyclic strain in LC cells over 24 h elicits a typical increase in ECM profibrotic genes in normal LC cells but a highly blunted response in glaucoma LC cells. Stage 3 is characterized by persistent fibrosis causing further stiffening and inducing a feed-forward ECM production cycle. Repeated cycles of increased strain and stiffness with profibrotic ECM deposition prevent optic nerve head (ONH) recoil from the new deflected position. This incremental maladaptive modeling leads to pathological ONH cupping.
Collapse
Affiliation(s)
- Alan A Hopkins
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rory Murphy
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Deborah M Wallace
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barry Quill
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm O'Brien
- Clinical Research Centre, Catherine McAuley Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
28
|
Adhesion and growth factor receptor crosstalk mechanisms controlling cell migration. Essays Biochem 2020; 63:553-567. [PMID: 31551325 DOI: 10.1042/ebc20190025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors (GFRs) exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals. GFRs are fast acting and highly sensitive signalling machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate the functions of the different receptor families. Here we discuss the nature of adhesion receptor and GFR crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedbacks. Exquisite and sensitive control of these mechanisms ensures that mechanical forces and pro-migratory signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the challenges, and potential therapeutic benefits, associated with deciphering this complexity.
Collapse
|
29
|
|
30
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
31
|
Guo L, Wang R, Zhang K, Yuan J, Wang J, Wang X, Ma J, Wu C. A PINCH-1-Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. J Cell Biol 2019; 218:3773-3794. [PMID: 31578224 PMCID: PMC6829670 DOI: 10.1083/jcb.201902022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/30/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical cues from extracellular matrix exert strong effects on stem cell differentiation. This study finds that a signaling axis consisting of PINCH-1, Smurf1, and BMPR2 senses mechanical signals from extracellular matrix and regulates BMP signaling and mesenchymal stem cell differentiation. Mechano-environment plays multiple critical roles in the control of mesenchymal stem cell (MSC) fate decision, but the underlying signaling mechanisms remain undefined. We report here a signaling axis consisting of PINCH-1, SMAD specific E3 ubiquitin protein ligase 1 (Smurf1), and bone morphogenetic protein type 2 receptor (BMPR2) that links mechano-environment to MSC fate decision. PINCH-1 interacts with Smurf1, which inhibits the latter from interacting with BMPR2 and consequently suppresses BMPR2 degradation, resulting in augmented BMP signaling and MSC osteogenic differentiation (OD). Extracellular matrix (ECM) stiffening increases PINCH-1 level and consequently activates this signaling axis. Depletion of PINCH-1 blocks stiff ECM-induced BMP signaling and OD, whereas overexpression of PINCH-1 overrides signals from soft ECM and promotes OD. Finally, perturbation of either Smurf1 or BMPR2 expression is sufficient to block the effects of PINCH-1 on BMP signaling and MSC fate decision. Our findings delineate a key signaling mechanism through which mechano-environment controls BMPR2 level and MSC fate decision.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxia Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
32
|
Are Integrins Still Practicable Targets for Anti-Cancer Therapy? Cancers (Basel) 2019; 11:cancers11070978. [PMID: 31336983 PMCID: PMC6678560 DOI: 10.3390/cancers11070978] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Correlative clinical evidence and experimental observations indicate that integrin adhesion receptors, in particular those of the αV family, are relevant to cancer cell features, including proliferation, survival, migration, invasion, and metastasis. In addition, integrins promote events in the tumor microenvironment that are critical for tumor progression and metastasis, including tumor angiogenesis, matrix remodeling, and the recruitment of immune and inflammatory cells. In spite of compelling preclinical results demonstrating that the inhibition of integrin αVβ3/αVβ5 and α5β1 has therapeutic potential, clinical trials with integrin inhibitors targeting those integrins have repeatedly failed to demonstrate therapeutic benefits in cancer patients. Here, we review emerging integrin functions and their proposed contribution to tumor progression, discuss preclinical evidence of therapeutic significance, revisit clinical trial results, and consider alternative approaches for their therapeutic targeting in oncology, including targeting integrins in the other cells of the tumor microenvironment, e.g., cancer-associated fibroblasts and immune/inflammatory cells. We conclude that integrins remain a valid target for cancer therapy; however, agents with better pharmacological properties, alternative models for their preclinical evaluation, and innovative combination strategies for clinical testing (e.g., together with immuno-oncology agents) are needed.
Collapse
|
33
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
34
|
Gkretsi V, Stylianopoulos T. Editorial: Metastasis: From Cell Adhesion and Beyond. Front Oncol 2019; 9:214. [PMID: 31001478 PMCID: PMC6454140 DOI: 10.3389/fonc.2019.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.,Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
35
|
Humphries JD, Chastney MR, Askari JA, Humphries MJ. Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 2019; 56:14-21. [PMID: 30195153 DOI: 10.1016/j.ceb.2018.08.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
Integrin adhesion complexes (IACs) have evolved over millions of years to integrate metazoan cells physically with their microenvironment. It is presumed that the simultaneous interaction of thousands of integrin receptors to binding sites in anisotropic extracellular matrix (ECM) networks enables cells to assemble a topological description of the chemical and mechanical properties of their surroundings. This information is then converted into intracellular signals that influence cell positioning, differentiation and growth, but may also influence other fundamental processes, such as protein synthesis and energy regulation. In this way, changes in the microenvironment can influence all aspects of cell phenotype. Current concepts envisage cell fate decisions being controlled by the integrated signalling output of myriad receptor clusters, but the mechanisms are not understood. Analyses of the adhesome, the complement of proteins attracted to the vicinity of IACs, are now providing insights into some of the primordial links connecting these processes. This article reviews recent advances in our understanding of the composition of IACs, the mechanisms used to transduce signals through these junctions, and the links between IACs and cell phenotype.
Collapse
Affiliation(s)
- Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Megan R Chastney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
36
|
Bernadskaya YY, Brahmbhatt S, Gline SE, Wang W, Christiaen L. Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors. Nat Commun 2019; 10:57. [PMID: 30610187 PMCID: PMC6320373 DOI: 10.1038/s41467-018-07976-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Integrated analyses of regulated effector genes, cellular processes, and extrinsic signals are required to understand how transcriptional networks coordinate fate specification and cell behavior during embryogenesis. Ciona cardiopharyngeal progenitors, the trunk ventral cells (TVCs), polarize as leader and trailer cells that migrate between the ventral epidermis and trunk endoderm. We show that the TVC-specific collagen-binding Discoidin-domain receptor (Ddr) cooperates with Integrin-β1 to promote cell-matrix adhesion. We find that endodermal cells secrete a collagen, Col9-a1, that is deposited in the basal epidermal matrix and promotes Ddr activation at the ventral membrane of migrating TVCs. A functional antagonism between Ddr/Intβ1-mediated cell-matrix adhesion and Vegfr signaling appears to modulate the position of cardiopharyngeal progenitors between the endoderm and epidermis. We show that Ddr promotes leader-trailer-polarized BMP-Smad signaling independently of its role in cell-matrix adhesion. We propose that dual functions of Ddr integrate transcriptional inputs to coordinate subcellular processes underlying collective polarity and migration.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Saahil Brahmbhatt
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Stephanie E Gline
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA.
| |
Collapse
|
37
|
The Fibrillin-1 RGD Integrin Binding Site Regulates Gene Expression and Cell Function through microRNAs. J Mol Biol 2019; 431:401-421. [DOI: 10.1016/j.jmb.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022]
|
38
|
Zarkoob H, Chinnathambi S, Selby JC, Sander EA. Substrate deformations induce directed keratinocyte migration. J R Soc Interface 2018; 15:20180133. [PMID: 29899159 PMCID: PMC6030620 DOI: 10.1098/rsif.2018.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential part of many (patho)physiological processes, including keratinocyte re-epithelialization of healing wounds. Physical forces and mechanical cues from the wound bed (in addition to biochemical signals) may also play an important role in the healing process. Previously, we explored this possibility and found that polyacrylamide (PA) gel stiffness affected human keratinocyte behaviour and that mechanical deformations in soft (approx. 1.2 kPa) PA gels produced by neighbouring cells appeared to influence the process of de novo epithelial sheet formation. To clearly demonstrate that keratinocytes do respond to such deformations, we conducted a series of experiments where we observed the response of single keratinocytes to a prescribed local substrate deformation that mimicked a neighbouring cell or evolving multicellular aggregate via a servo-controlled microneedle. We also examined the effect of adding either Y27632 or blebbistatin on cell response. Our results indicate that keratinocytes do sense and respond to mechanical signals comparable to those that originate from substrate deformations imposed by neighbouring cells, a finding that could have important implications for the process of keratinocyte re-epithelialization that takes place during wound healing. Furthermore, the Rho/ROCK pathway and the engagement of NM II are both essential to substrate deformation-directed keratinocyte migration.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - John C Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edward A Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
39
|
Gkretsi V, Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 2018; 8:145. [PMID: 29780748 PMCID: PMC5945811 DOI: 10.3389/fonc.2018.00145] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell’s adhesome at cell–ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell–ECM interactions and can promote cancer cell invasion to surrounding tissues. Here, we review the role of cell adhesion and matrix stiffness in cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Department of Life Sciences, Biomedical Sciences Program, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
40
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
41
|
Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Sci Rep 2018; 8:2693. [PMID: 29426917 PMCID: PMC5807537 DOI: 10.1038/s41598-018-21006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed (“auto-inhibited”) or open (“active”) conformation. A direct experimental demonstration, however, of the conformational transition between the two states is still absent. In this study, we combined multiple structural and biological approaches to probe the transition from the auto-inhibited to the active conformation, and determine its effects on FA structure and dynamics. We further show that the transition from a closed to an open conformation requires two sequential steps that can differentially regulate FA growth and stability.
Collapse
|
42
|
Cardiac shock wave therapy promotes arteriogenesis of coronary micrangium, and ILK is involved in the biomechanical effects by proteomic analysis. Sci Rep 2018; 8:1814. [PMID: 29379038 PMCID: PMC5788936 DOI: 10.1038/s41598-018-19393-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Cardiac Shock Wave Therapy (CSWT) improves myocardial perfusion and ameliorates cardiac remodeling after acute myocardial infarction (AMI), but the precise mechanisms remain obscure. Herein, we have applied CSWT to a rat model of AMI to demonstrate the arteriogenesis of coronary micrangium and protein expression changes in ischemic myocardium after CSWT. Four weeks after CSWT, the fraction shortening of rats was improved greatly and the cardiomyocyte apoptosis index was significantly lower than the AMI group (P < 0.05). Besides, the fibrotic area was markedly decreased in the CSWT group. In the infarction border zone, the thickness of smooth muscle layer was expanded apparently after CSWT. Label-free quantitative proteomic analysis and bioinformatics analysis revealed that the differentially expressed proteins were largely enriched in the focal adhesion signaling pathway. And integrin linked kinase (ILK) may be a key factor contributed to arteriogenesis of coronary micrangium during CSWT. In conclusion, non-invasive cardiac shock wave could promote arteriogenesis of coronary micrangium and alleviate myocardial apoptosis and fibrosis after AMI. Furthermore, focal adhesion signaling pathway may have a central role in the related signal network and ILK was closely related to the arteriogenesis of coronary micrangium during CSWT.
Collapse
|
43
|
LAGONEGRO P, TREVISI G, NASI L, PARISI L, MANFREDI E, LUMETTI S, ROSSI F, MACALUSO GM, SALVIATI G, GALLI C. Osteoblasts preferentially adhere to peaks on micro-structured titanium. Dent Mater J 2018; 37:278-285. [DOI: 10.4012/dmj.2017-008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Carlo GALLI
- Department of Medicine and Surgery, University of Parma
| |
Collapse
|
44
|
Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:53-69. [PMID: 30456642 DOI: 10.1007/5584_2018_293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.
Collapse
|
45
|
Naganathan SR, Oates AC. Mechanochemical coupling and developmental pattern formation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Mikulska-Ruminska K, Kulik AJ, Benadiba C, Bahar I, Dietler G, Nowak W. Nanomechanics of multidomain neuronal cell adhesion protein contactin revealed by single molecule AFM and SMD. Sci Rep 2017; 7:8852. [PMID: 28821864 PMCID: PMC5562865 DOI: 10.1038/s41598-017-09482-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.
Collapse
Affiliation(s)
- Karolina Mikulska-Ruminska
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,Institute of Physics, Faculty of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland. .,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Biomedical Science Tower 3, Pittsburgh, PA, 15213, USA.
| | - Andrej J Kulik
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Carine Benadiba
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Biomedical Science Tower 3, Pittsburgh, PA, 15213, USA.
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| |
Collapse
|
47
|
Hoffman L, Jensen CC, Yoshigi M, Beckerle M. Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Mol Biol Cell 2017; 28:2661-2675. [PMID: 28768826 PMCID: PMC5620374 DOI: 10.1091/mbc.e17-02-0087] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023] Open
Abstract
Mechanical force induces protein phosphorylations, subcellular redistributions, and actin remodeling. We show that mechanical activation of the p38 MAPK pathway leads to phosphorylation of HspB1 (hsp25/27), which redistributes to cytoskeletal structures, and contributes to the actin cytoskeletal remodeling induced by mechanical stimulation. Despite the importance of a cell’s ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin “comet tails” that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein’s cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
Collapse
Affiliation(s)
- Laura Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 .,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
48
|
The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Res Rev 2017; 35:322-335. [PMID: 27876574 DOI: 10.1016/j.arr.2016.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
Immunosenescence is thought to result from cellular aging and to reflect exposure to environmental stressors and antigens, including cytomegalovirus (CMV). However, not all of the features of immunosenescence are consistent with this view, and this has led to the emergence of the sister theory of "inflammaging". The recently discovered diffuse tissue distribution of resident memory T cells (TRM) which don't recirculate, calls these theories into question. These cells account for most T cells residing in barrier epithelia which sit in and travel through the extracellular matrix (ECM). With almost all studies to date carried out on peripheral blood, the age-related changes of the ECM and their consequences for T cell mobility, which is crucial for the function of these cells, have been largely ignored. We propose an update of the theoretical framework of immunosenescence, based on a novel hypothesis: the increasing stiffness and cross-linking of the senescent ECM lead to a progressive immunodeficiency due to an age-related decrease in T cell mobility and eventually the death of these cells. A key element of this mechanism is the mechanical stress to which the cell cytoplasm and nucleus are subjected during passage through the ECM. This hypothesis is based on an "evo-devo" perspective bringing together some major characteristics of aging, to create a single interpretive framework for immunosenescence.
Collapse
|
49
|
Georgiadou M, Lilja J, Jacquemet G, Guzmán C, Rafaeva M, Alibert C, Yan Y, Sahgal P, Lerche M, Manneville JB, Mäkelä TP, Ivaska J. AMPK negatively regulates tensin-dependent integrin activity. J Cell Biol 2017; 216:1107-1121. [PMID: 28289092 PMCID: PMC5379951 DOI: 10.1083/jcb.201609066] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/20/2016] [Accepted: 02/03/2017] [Indexed: 12/25/2022] Open
Abstract
Georgiadou et al. show that the major metabolic sensor AMPK regulates integrin activity and integrin-dependent processes in fibroblasts by modulating tensin levels. Loss of AMPK up-regulates tensin expression, triggering enhanced integrin activity in fibrillar adhesions, fibronectin remodeling, and traction stress. Tight regulation of integrin activity is paramount for dynamic cellular functions such as cell matrix adhesion and mechanotransduction. Integrin activation is achieved through intracellular interactions at the integrin cytoplasmic tails and through integrin–ligand binding. In this study, we identify the metabolic sensor AMP-activated protein kinase (AMPK) as a β1-integrin inhibitor in fibroblasts. Loss of AMPK promotes β1-integrin activity, the formation of centrally located active β1-integrin– and tensin-rich mature fibrillar adhesions, and cell spreading. Moreover, in the absence of AMPK, cells generate more mechanical stress and increase fibronectin fibrillogenesis. Mechanistically, we show that AMPK negatively regulates the expression of the integrin-binding proteins tensin1 and tensin3. Transient expression of tensins increases β1-integrin activity, whereas tensin silencing reduces integrin activity in fibroblasts lacking AMPK. Accordingly, tensin silencing in AMPK-depleted fibroblasts impedes enhanced cell spreading, traction stress, and fibronectin fiber formation. Collectively, we show that the loss of AMPK up-regulates tensins, which bind β1-integrins, supporting their activity and promoting fibrillar adhesion formation and integrin-dependent processes.
Collapse
Affiliation(s)
- Maria Georgiadou
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Camilo Guzmán
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Maria Rafaeva
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Charlotte Alibert
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France
| | - Yan Yan
- Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Martina Lerche
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jean-Baptiste Manneville
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France
| | - Tomi P Mäkelä
- Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland.,Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
50
|
Millon-Frémillon A, Aureille J, Guilluy C. Analyzing Cell Surface Adhesion Remodeling in Response to Mechanical Tension Using Magnetic Beads. J Vis Exp 2017:55330. [PMID: 28362397 PMCID: PMC5408950 DOI: 10.3791/55330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanosensitive cell surface adhesion complexes allow cells to sense the mechanical properties of their surroundings. Recent studies have identified both force-sensing molecules at adhesion sites, and force-dependent transcription factors that regulate lineage-specific gene expression and drive phenotypic outputs. However, the signaling networks converting mechanical tension into biochemical pathways have remained elusive. To explore the signaling pathways engaged upon mechanical tension applied to cell surface receptor, superparamagnetic microbeads can be used. Here we present a protocol for using magnetic beads to apply forces to cell surface adhesion proteins. Using this approach, it is possible to investigate not only force-dependent cytoplasmic signaling pathways by various biochemical approaches, but also adhesion remodeling by magnetic isolation of adhesion complexes attached to the ligand-coated beads. This protocol includes the preparation of ligand-coated superparamagnetic beads, and the application of define tensile forces followed by biochemical analyses. Additionally, we provide a representative sample of data demonstrating that tension applied to integrin-based adhesion triggers adhesion remodeling and alters protein tyrosine phosphorylation.
Collapse
Affiliation(s)
| | - Julien Aureille
- Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR
| | - Christophe Guilluy
- Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR;
| |
Collapse
|