1
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Lin X, Liu W, Hu X, Liu Z, Wang F, Wang J. The role of polyphenols in modulating mitophagy: Implications for therapeutic interventions. Pharmacol Res 2024; 207:107324. [PMID: 39059613 DOI: 10.1016/j.phrs.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Collapse
Affiliation(s)
- Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenkai Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Fang Wang
- Chengdu First People's Hospital, Sichuan, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
3
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
4
|
Gao X, Yin Y, Liu S, Dong K, Wang J, Guo C. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int J Biol Macromol 2023:125541. [PMID: 37355076 DOI: 10.1016/j.ijbiomac.2023.125541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Fucoidan (FU) is a natural polymer from marine organisms, which has been widely studied and applied in drug delivery. In this study, FU nanoparticles loaded with proanthocyanidins (PCs) (FU/PCs NPs) were prepared and their effect and mechanism in protecting cisplatin-induced acute kidney injury (AKI) were studied. The in vitro studies confirmed that FU/PCs NPs increased the antioxidant activity of free PCs and protected the death of human kidney proximal tubule (HK-2) cells induced by cisplatin. Further mechanism studies showed that FU/PCs NPs protected the mitochondrial damage induced by cisplatin, activated mitophagy, inhibited the release of mitochondrial DNA (mtDNA), and inhibited the cGAS/STING signal pathway. The in vivo results also indicated that FU/PCs NPs protected cisplatin-induced AKI, including inhibiting the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels induced by cisplatin. The mechanism studies confirmed that cisplatin induced an increase in the expression of mitophagy-related protein Pink/Pakrin, mitochondrial mtDNA release and cGAS/STING expression in mice kidney tissues. Pre-administration of FU/PCs NPs further activated mitophagy, as well as inhibiting mtDNA release and cGAS/STING expression. In conclusion, our research proved the role of mitophagy-mtDNA-cGAS/STING signal was involved in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266273, Shandong, China.
| |
Collapse
|
5
|
Liu S, Gao X, Yin Y, Wang J, Dong K, Shi D, Wu X, Guo C. Silk fibroin peptide self-assembled nanofibers delivered naringenin to alleviate cisplatin-induced acute kidney injury by inhibiting mtDNA-cGAS-STING pathway. Food Chem Toxicol 2023; 177:113844. [PMID: 37244599 DOI: 10.1016/j.fct.2023.113844] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Barbero NM, Oller J, Sanz AB, Ramos AM, Ortiz A, Ruiz-Ortega M, Rayego-Mateos S. Mitochondrial Dysfunction in the Cardio-Renal Axis. Int J Mol Sci 2023; 24:ijms24098209. [PMID: 37175915 PMCID: PMC10179675 DOI: 10.3390/ijms24098209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Nerea Mendez Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Ana B Sanz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Adrian M Ramos
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Marta Ruiz-Ortega
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| |
Collapse
|
7
|
Wang JQ, Liu XX, Zhang JJ, Shuai-Zhang, Jiang C, Zheng SW, Wang Z, Li DY, Li W, Shi DF. Amelioration of Cisplatin-Induced kidney injury by Arabinogalactan based on network pharmacology and molecular docking. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
8
|
Zhang L, Ding F, Wu X, Wang R, Wan Y, Hu J, Zhang X, Wu Q. Melatonin ameliorates glyphosate- and hard water-induced renal tubular epithelial cell senescence via PINK1-Parkin-dependent mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114719. [PMID: 37032573 DOI: 10.1016/j.ecoenv.2023.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The combination of glyphosate (Gly) and hard water (Hwt) is a suspected risk factor for chronic interstitial nephritis in agricultural communities (CINAC). Accumulated mitochondrial damage and proximal tubular epithelial (PTE) cell senescence have been implicated in CINAC pathogenesis. Melatonin (Mel) has potential mitochondrial function and renoprotective properties, but its role and mechanism in CINAC are unknown. Here, we detected PTE cell senescence and PTEN-induced putative protein kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (Parkin)-dependent mitophagy in mice orally administered with different doses of Gly combined with Hwt (Gly: 100 mg/kg·bw and 0.7 mg/L; Hwt: 2,500 mg/L CaCO3 and 250 mg/L Ca2+) for different durations (12 and 36 w) using histological examination, transmission electron microscopy (TEM), immunofluorescence (IF) analysis, and immunohistochemistry (IHC), immunoblotting, ELISA and biochemical assays with kits. The same assays were performed after combination treatment with Mdivi-1 (an inhibitor of mitophagy, i.p. 10 mg/kg·bw, twice a week for 12 w) or Mel (i.p. 10 mg/kg·bw, once a day for 12 w) under high-level exposure. Gly combined with Hwt (Gly-Hwt) significantly increased P16-P21-dependent PTE cell senescence, mitochondrial fission and oxidative stress, and activated PINK1-Parkin-mediated mitophagy, accompanied by defective autophagic flux at high doses but unaltered autophagic flux at low doses. Improved senescence occurred after Mdivi-1 administration, suggesting that mitophagy is involved in cellular senescence. Mel significantly decreased senescence induced by Gly-Hwt. Furthermore, PINK1-Parkin-dependent mitophagy and autophagic flux were markedly enhanced, and mitochondrial function was improved, as evidenced by reductions in mitochondrial fission and subsequent oxidative damage. Thus, Gly and Hwt synergistically promote PTE cell senescence through PINK1-Parkin-mediated mitophagy, and Mel exerts renoprotective effects by modulating mitophagy, suggesting therapeutic applications in ageing-related CINAC.
Collapse
Affiliation(s)
- Lin Zhang
- School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Ding
- School of Public Health, Fudan University, Shanghai, China
| | - Xuan Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Ruojing Wang
- School of Public Health, Fudan University, Shanghai, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Qing Wu
- School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Wang Y, Song D, Tang L. Mitophagy, Inflammasomes and Their Interaction in Kidney Diseases: A Comprehensive Review of Experimental Studies. J Inflamm Res 2023; 16:1457-1469. [PMID: 37042016 PMCID: PMC10083013 DOI: 10.2147/jir.s402290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Mitophagy is an important mechanism for mitochondrial quality control by regulating autophagosome-specific phagocytosis, degradation and clearance of damaged mitochondria, and involved in cell damage and diseases. Inflammasomes are important inflammation-related factors newly discovered in recent years, which are involved in cell innate immunity and inflammatory response, and play an important role in kidney diseases. Based on the current studies, we reviewed the progress of mitophagy, inflammasomes and their interaction in kidney diseases.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Dongxu Song
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Lin Tang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
- Correspondence: Lin Tang, Department of Nephrology, Zhengzhou University First Affiliated Hospital, 1 Jianshe Road, Zhengzhou, Henan, 450052, People’s Republic of China, Email
| |
Collapse
|
11
|
Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023; 19:401-414. [PMID: 35678504 PMCID: PMC9851232 DOI: 10.1080/15548627.2022.2084862] [Citation(s) in RCA: 197] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Mitophagy is an essential mitochondrial quality control mechanism that eliminates damaged mitochondria and the production of reactive oxygen species (ROS). The relationship between mitochondria oxidative stress, ROS production and mitophagy are intimately interwoven, and these processes are all involved in various pathological conditions of acute kidney injury (AKI). The elimination of damaged mitochondria through mitophagy in mammals is a complicated process which involves several pathways. Furthermore, the interplay between mitophagy and different types of cell death, such as apoptosis, pyroptosis and ferroptosis in kidney injury is unclear. Here we will review recent advances in our understanding of the relationship between ROS and mitophagy, the different mitophagy pathways, the relationship between mitophagy and cell death, and the relevance of these processes in the pathogenesis of AKI.Abbreviations: AKI: acute kidney injury; AMBRA1: autophagy and beclin 1 regulator 1; ATP: adenosine triphosphate; BAK1: BCL2 antagonist/killer 1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BH3: BCL2 homology domain 3; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CASP1: caspase 1; CAT: catalase; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CI-AKI: contrast-induced acute kidney injury; CISD1: CDGSH iron sulfur domain 1; CL: cardiolipin; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; DNM1L/DRP1: dynamin 1 like; E3: enzyme 3; ETC: electron transport chain; FA: folic acid; FUNDC1: FUN14 domain containing 1; G3P: glycerol-3-phosphate; G6PD: glucose-6-phosphate dehydrogenase; GPX: glutathione peroxidase; GSH: glutathione; GSK3B: glycogen synthase kinase 3 beta; GSR: glutathione-disulfide reductase; HIF1A: hypoxia inducible factor 1 subunit alpha; HUWE1: HECT, UBA and WWE domain containing 1; IL1B: interleukin 1 beta; IMM: inner mitochondrial membrane; IPC: ischemic preconditioning; IRI: ischemia-reperfusion injury; LIR: LC3-interacting region; LPS: lipopolysaccharide; MA: malate-aspartate; MPT: mitochondrial permeability transition; MUL1: mitochondrial E3 ubiquitin protein ligase 1; mtROS: mitochondrial ROS; NLR: NOD-like receptor; NLRP3: NLR family pyrin domain containing 3; NOX: NADPH oxidase; OGD-R: oxygen-glucose deprivation-reperfusion; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PARL: presenilin associated rhomboid like; PINK1: PTEN induced kinase 1; PLSCR3: phospholipid scramblase 3; PMP: peptidase, mitochondrial processing; PRDX: peroxiredoxin; PRKN: parkin RBR E3 ubiquitin protein ligase; RPTC: rat proximal tubular cells; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SOD: superoxide dismutase; SOR: superoxide reductase; SQSTM1/p62: sequestosome 1; TCA: tricarboxylic acid; TIMM: translocase of inner mitochondrial membrane; TOMM: translocase of outer mitochondrial membrane; TXN: thioredoxin; VDAC: voltage dependent anion channel; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthNeuro-Oncology, Bethesda, Maryland, USA
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Hernando Gomez
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan430071, China
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
12
|
Xiang Y, Fu Y, Wu W, Tang C, Dong Z. Autophagy in acute kidney injury and maladaptive kidney repair. BURNS & TRAUMA 2023; 11:tkac059. [PMID: 36694860 PMCID: PMC9867874 DOI: 10.1093/burnst/tkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/23/2023]
Abstract
Acute kidney injury (AKI) is a major renal disease characterized by a sudden decrease in kidney function. After AKI, the kidney has the ability to repair, but if the initial injury is severe the repair may be incomplete or maladaptive and result in chronic kidney problems. Autophagy is a highly conserved pathway to deliver intracellular contents to lysosomes for degradation. Autophagy plays an important role in maintaining renal function and is involved in the pathogenesis of renal diseases. Autophagy is activated in various forms of AKI and acts as a defense mechanism against kidney cell injury and death. After AKI, autophagy is maintained at a relatively high level in kidney tubule cells during maladaptive kidney repair but the role of autophagy in maladaptive kidney repair has been controversial. Nonetheless, recent studies have demonstrated that autophagy may contribute to maladaptive kidney repair after AKI by inducing tubular degeneration and promoting a profibrotic phenotype in renal tubule cells. In this review, we analyze the role and regulation of autophagy in kidney injury and repair and discuss the therapeutic strategies by targeting autophagy.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | | |
Collapse
|
13
|
Zhu D, Zhong J, Gong X, Wu X. Augmenter of liver regeneration reduces mitochondria-derived ROS and NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy in ischemia-reperfusion-induced renal tubular injury. Apoptosis 2022; 28:335-347. [PMID: 36370259 DOI: 10.1007/s10495-022-01794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Ischemia-reperfusion (IR) injury is one of the main causes of acute kidney disease (AKI). Several studies have shown that mitochondrial damage, which leads to increased production of reactive oxygen species (ROS), plays a vital role in the pathogenesis of IR-induced AKI. Increased ROS production can cause oxidative damage and activate the inflammasome in renal tubular cells, ultimately resulting in apoptosis or necrosis. Mitophagy is a type of selective autophagy that plays a protective role in AKI by regulating the quality of mitochondria and reducing the production of ROS. We previously reported that the augmenter of liver regeneration (ALR) exhibits antiapoptotic and antioxidant functions, although the precise mechanisms of action need to be studied further. In the current study, ALR was overexpressed and an in vitro model of IR injury was constructed. The overexpression of ALR reduced the production of mitochondria-derived ROS (mtROS), the activation of the NLRP3 inflammasome, and the rate of apoptosis. Moreover, this suppression of mtROS production and inflammasome activation was mediated through the PTEN-induced kinase 1 (PINK1)/Parkin pathway of mitophagy. These results suggest that ALR can alleviate IR-induced apoptosis via the PINK1/Parkin mitophagy pathway to reduce the production of mtROS and limit the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Dongju Zhu
- Department of Nephrology, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jie Zhong
- Department of Nephrology, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Xuefeng Gong
- Department of Nephrology, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Xiang Wu
- Department of Pediatrics, Panzhihua Central Hospital, Panzhihua, China.
| |
Collapse
|
14
|
Zhang Q, Bian ZX, Song Y, Wang X, Zhang H, Ren Q, Chen S. Regulation of mitophagy through HIF-1α/miR-140-5p/PARKIN axis in acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2022; 37:1759-1767. [PMID: 35312153 DOI: 10.1002/tox.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Mitochondria homeostasis plays an important role in acute kidney injury (AKI). In this study, we aimed at identifying the mechanism of mitophagy regulation in AKI. Activation of mitophagy after ischemic kidney injury was visualized with increased expression of LC3, PINK1, PARKIN expression and with a subsequent decline in p62 levels. Immuohistochemistry staining showed higher LC3 levels in ischemic kidney injury mice. Further, differential expression of PARKIN targeting miRNAs revealed that miR-140-5p was significantly downregulated followed by ischemic kidney injury. miR-140-5p mimics suppressed PARKIN expressions and their mitochondrial translocation. Further, miR-140-5p mimics under hypoxia prevented mitophagosome formation. These effects on hypoxia-induced PARKIN expression and LC3/TOMM20 levels were reversed by antagomiR miR-140-5p treatment. Dual-luciferase reporter assay revealed that miR-140-5p had significant interaction with 3'UTR of PARKIN. Our findings show that HIF-1α is bound to miR-140-5p promoter and down regulates its expression and thereby promotes mitophagy process under hypoxic conditions. These results cumulatively show that HIF-1α regulates mitophagy during AKI through the regulation of miR-140-5p/PARKIN axis.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhi Xiang Bian
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yanan Song
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiangxiang Wang
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Haili Zhang
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qifang Ren
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
15
|
Duan D, Qin J, Wang X, Fan Y, Ji L, Feng M. OPA1 protected against IL-1β-induced chondrocyte dysfunction by alleviating mitochondrial dysfunction and oxidative stress through activation of Parkin-mediated mitophagy. Immunobiology 2022. [DOI: 10.1016/j.imbio.2022.152235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Yao L, Liang X, Qiao Y, Chen B, Wang P, Liu Z. Mitochondrial dysfunction in diabetic tubulopathy. Metabolism 2022; 131:155195. [PMID: 35358497 DOI: 10.1016/j.metabol.2022.155195] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) is a devastating microvascular complication associated with diabetes mellitus. Recently, the major focus of glomerular lesions of DKD has partly shifted to diabetic tubulopathy because of renal insufficiency and prognosis of patients is closely related to tubular atrophy and interstitial fibrosis. Indeed, the proximal tubule enriching in mitochondria for its high energy demand and dependence on aerobic metabolism has given us pause to focus primarily on the mitochondria-centric view of early diabetic tubulopathy. Multiple studies suggest that diabetes condition directly damages renal tubules, resulting in mitochondria dysfunction, including decreased bioenergetics, overproduction of mitochondrial reactive oxygen species (mtROSs), defective mitophagy and dynamics disturbances, which in turn trigger a series of metabolic abnormalities. However, the precise mechanism underlying mitochondrial dysfunction of renal tubules is still in its infancy. Understanding tubulointerstitial's pathobiology would facilitate the search for new biomarkers of DKD. In this Review, we summarize the current literature and postulate that the potential effects of mitochondrial dysfunction may accelerate initiation of early-stage diabetic tubulopathy, as well as their potential therapeutic strategies.
Collapse
Affiliation(s)
- Lan Yao
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xianhui Liang
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjin Qiao
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Bohan Chen
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Wang
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Blood Purification Center & Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
17
|
Regulation of Mitochondrial Homeostasis and Nrf2 in Kidney Disease: Timing Is Critical. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9275056. [PMID: 35528519 PMCID: PMC9072027 DOI: 10.1155/2022/9275056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Abnormal regulation of mitochondrial homeostasis plays a critical role in the progression of renal disease. Recent studies have shown that activation of nuclear factor erythroid 2-related factor 2 (Nrf2) has time-dependent protective effects, which can be explained by the differing regulation of mitochondrial homeostasis during the various stages of kidney disease. In this review, we summarize the mechanisms whereby mitochondrial homeostasis is regulated and the nature of the dysregulation of mitochondrial homeostasis in renal disease. In addition, we summarize the dual roles of Nrf2 in kidney disease by discussing the studies that have shown the importance of the timing of its activation in the regulation of mitochondrial homeostasis. This should provide a theoretical basis for therapeutic strategies aimed at activating Nrf2 in kidney disease.
Collapse
|
18
|
Zhang X, Du J, Li B, Huo S, Zhang J, Cui Y, Song M, Shao B, Li Y. PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity. Food Chem Toxicol 2022; 164:113078. [PMID: 35489469 DOI: 10.1016/j.fct.2022.113078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
T-2 toxin can cause mitochondrial impairment and subsequent renal damage. PINK1/Parkin-mediated mitophagy can mitigate renal impairment by alleviating mitochondrial damage. Nevertheless, the impact of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced renal injury remains unclear. Here, we studied the role of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced nephrotoxicity. Mitochondrial damage was accompanied by NLRP3-inflammasome activation and PINK1/Parkin-mediated mitophagy in the kidney of T-2 toxin-exposed C57BL/6N mice. Knocking out Parkin inhibited the mitophagy but aggravated the structural and functional damage, NLRP3-inflammasome activation, mitochondrial damage, and apoptosis. Correlation analysis revealed that NLRP3-inflammasome activation was correlated with apoptosis. These results show that PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Wang Y, Song M, Wang Q, Guo C, Zhang J, Zhang X, Cui Y, Cao Z, Li Y. PINK1/Parkin-mediated mitophagy is activated to protect against AFB 1-induced kidney damage in mice. Chem Biol Interact 2022; 358:109884. [PMID: 35304092 DOI: 10.1016/j.cbi.2022.109884] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
Aflatoxin B1 (AFB1) is a toxic food pollutant that has extensive deleterious impacts on the kidney. Oxidative stress represents the primary mechanism of AFB1 nephrotoxicity and can also cause mitochondrial damage. Damaged mitochondria can trigger apoptosis leading to kidney injury. PINK1/Parkin-mediated mitophagy can alleviate mitochondrial injury to maintain cellular homeostasis, however, its role in AFB1-induced kidney damage is unknown. To investigate the effect of PINK1/Parkin-mediated mitophagy on kidney impairment triggered by AFB1, 40 male wild-type (WT) C57BL/6N mice were first assigned to 4 groups and orally exposed to AFB1 at 0, 0.5, 0.75, and 1 mg/kg body weight (BW) for 28 days. The results revealed that AFB1 induced kidney damage, oxidative stress, mitochondrial damage, apoptosis and activated PINK1/Parkin-mediated mitophagy with a dose-dependent effect. Then, 20 male WT C57BL/6N mice and 20 male Parkin knockout (Parkin-/-) C57BL/6N mice were assigned to 4 groups and orally exposed to AFB1 at 0, 1, 0, and 1 mg/kg BW for 28 days. The results revealed that Parkin-/- suppressed mitophagy and exacerbated kidney damage, oxidative stress, mitochondrial damage, and apoptosis under AFB1 exposure. The aforementioned evidences demonstrate that PINK1/Parkin-mediated mitophagy is activated by AFB1 and protects against kidney damage in mice.
Collapse
Affiliation(s)
- Yuping Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Liu P, Guo C, Cui Y, Zhang X, Xiao B, Liu M, Song M, Li Y. Activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by aluminum. J Inorg Biochem 2022; 230:111765. [PMID: 35182845 DOI: 10.1016/j.jinorgbio.2022.111765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Aluminum (Al) induces apoptosis via oxidative stress and/or mitochondrial damage. Kidney is the main organ of Al excretion, but whether Al causes apoptosis in kidney of mice remains unclear. Mitophagy maintains cell homeostasis via clearing damaged mitochondria and reducing oxidative stress, but the role in kidney damage caused by Al has also not been investigated. In this study, firstly, forty wild type (WT) male C57 mice were randomly exposed to AlCl3 at 0, 44.825, 89.65 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. Our results confirmed that Al induced apoptosis, and activated PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase1)/Parkin (E3 ubiquitin ligase PARK2)-mediated mitophagy with the dose increased. And secondly, to further assess the role of PINK1/Parkin-mediated mitophagy in Al-induced kidney damage, twenty Parkin knockout (Parkin-/-) mice and twenty WT mice were divided into WT group, WT + Al group, Parkin-/- group, and Parkin-/- + Al group, and they were provided with AlCl3 at a dose of 0 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. The results showed that Parkin-/- induced more severe kidney injury caused by Al. Besides, Parkin-/- aggravated oxidative stress and apoptosis caused by Al. Overall, our findings indicate that the activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by Al.
Collapse
Affiliation(s)
- Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Li S, He X, Ruan L, Ye T, Wen Y, Song Z, Hu S, Chen Y, Peng B, Li S. Protective Effect of Mannitol on Cisplatin-Induced Nephrotoxicity: A Systematic Review and Meta-Analysis. Front Oncol 2022; 11:804685. [PMID: 34976843 PMCID: PMC8716592 DOI: 10.3389/fonc.2021.804685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Cisplatin, a chemotherapeutic drug, is widely used for the treatment of various malignant tumors with good effects. However, cisplatin-induced nephrotoxicity is a major dose-limiting factor and a significant adverse event. Mannitol is used to reduce cisplatin-induced nephrotoxicity, which is controversial. This study aimed to evaluate the efficacy and safety of a hydration regimen containing mannitol against cisplatin-induced nephrotoxicity through a meta-analysis. METHODS Potential records from PubMed, EMBASE, Cochrane Library, and ClinicalTrials that met the inclusion criteria were included from inception to May 2021. Cochrane Collaboration tools were used to assess the risk of bias in the included studies. Jadad's and NOS scores were applied to assess the quality of randomized controlled trials (RCTs) and case-control studies. A random-effects model or fixed-effects model was used depending on the heterogeneity. Subgroup analyses were performed to evaluate the potential study characteristics. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated. RESULTS Four RCTs and seven case-control studies involving 4168 patients were included. Pooled results showed that mannitol use could reduce the incidence of cisplatin-induced nephrotoxicity (OR = 0.66, 95% CI [0.45-0.97], p = 0.03), especially reducing grade 3 nephrotoxicity events according to CTCAE 4.0 (OR = 0.37,95% CI [0.16-0.84]). Moreover, mannitol use was not significantly associated with creatinine clearance, serum creatine, and electrolyte disturbance (p > 0.05). Gastrointestinal cancer (OR = 0.36, 95% CI [0.15-0.83], p = 0.02) and urinary tract cancer (OR = 0.32,95% CI [0.14-0.73], p = 0.007) may be more sensitive to mannitol, although the test for overall effect was significantly different (OR = 0.66, 95% CI [0.49-0.89], p = 0.007). For patients with diabetes and hypertension, mannitol may worsen renal function (OR = 1.80, 95% CI [1.18-2.72], p = 0.006; OR = 2.19, 95% CI [1.50, 3.19], p < 0.0001, respectively). Mannitol may have a better protective effect when doses of mannitol were ≥ 25 g (OR = 0.58, 95% CI [0.39-0.88], p = 0.01) and doses of cisplatin < 75 mg/m2 (OR = 0.59, 95% CI [0.36-0.94], p = 0.03). It revealed that mannitol use was likely to cause nausea or vomiting (OR = 1.86, 95% CI [1.20-2.89], p = 0.006). CONCLUSION Current evidence revealed that mannitol was an effective and safe drug to reduce cisplatin-induced nephrotoxicity events, especially Grade 3 events. However, it may cause more nausea/vomiting events and deteriorate renal function in patients with diabetes or hypertension. We also found that mannitol had the best effect when mannitol was ≥ 25 g in total or cisplatin was < 75 mg/m2. Meanwhile, mannitol may have a better effect on gastrointestinal and urinary tract cancers. SYSTEMATIC REVIEW REGISTRATION crd. york. ac. uk/PROSPERO, CRD 42021253990.
Collapse
Affiliation(s)
- Songtao Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyun He
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjie Ruan
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ting Ye
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhihua Song
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siying Hu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Peng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijie Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Yang YY, Gao ZX, Mao ZH, Liu DW, Liu ZS, Wu P. Identification of ULK1 as a novel mitophagy-related gene in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1079465. [PMID: 36743936 PMCID: PMC9889542 DOI: 10.3389/fendo.2022.1079465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that mitophagy is crucial for the development of diabetic nephropathy (DN). However, little is known about the key genes involved. The present study is to identify the potential mitophagy-related genes (MRGs) in DN. METHODS Five datasets were obtained from the Gene Expression Omnibus (GEO) database and were split into the training and validation set. Then the differentially expressed MRGs were screened and further analyzed for GO and KEGG enrichment. Next, three algorithms (SVM-RFE, LASSO and RF) were used to identify hub genes. The ROC curves were plotted based on the hub genes. We then used the CIBERSORT algorithm to assess the infiltration of 22 types of immune cells and explore the correlation between hub genes and immune cells. Finally, the Nephroseq V5 tool was used to analyze the correlation between hub genes and GFR in DN patients. RESULTS Compared with the tubulointerstitium, the expression of MRGs was more noticeably varied in the glomeruli. Twelve DE-MRGs were identified in glomerular samples, of which 11 genes were down-regulated and only MFN1 was up-regulated. GO and KEGG analysis indicated that several enrichment terms were associated with changes in autophagy. Three genes (MFN1, ULK1 and PARK2) were finally determined as potential hub genes by three algorithms. In the training set, the AUROC of MFN1, ULK1 and PARK2 were 0.839, 0.906 and 0.842. However, the results of the validation set demonstrated that MFN1 and PARK2 had no significant difference in distinguishing DN samples from healthy controls, while the AUROC of ULK1 was 0.894. Immune infiltration analysis using CIBERSORT showed that ULK1 was positively related to neutrophils, whereas negatively related to M1 and M2 macrophages. Finally, ULK1 was positively correlated with GFR in Nephroseq database. CONCLUSIONS ULK1 is a potential biomarker for DN and may influence the development of diabetic nephropathy by regulating mitophagy.
Collapse
Affiliation(s)
- Yuan-Yuan Yang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
23
|
Ma N, Wei Z, Hu J, Gu W, Ci X. Farrerol Ameliorated Cisplatin-Induced Chronic Kidney Disease Through Mitophagy Induction via Nrf2/PINK1 Pathway. Front Pharmacol 2021; 12:768700. [PMID: 34858188 PMCID: PMC8631930 DOI: 10.3389/fphar.2021.768700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Previously, Our study has showed that farrerol can activate Nrf2 and ameliorate cisplatin-induced acute kidney injury (AKI). Mitophagy reportedly can prevent diabetic nephropathy, cisplatin-induced AKI and other related nephropathy. In this study, we evaluated the correlation between mitophagy and the protective effect of the Nrf2 activator farrerol on cisplatin-induced CKD by using C57BL/6 wild-type and Nrf2 knockout mice. We confirmed that Nrf2 and PINK1/Parkin-mediated mitophagy was significantly increased on the 3rd day of cisplatin stimulation but was reduced on the 38th day of cisplatin stimulation. Similar to previous results, farrerol activated Nrf2 on the 38th day of cisplatin administration, subsequently stimulating the Nrf2-targeted antioxidant enzymes HO-1 and NQO1. In addition, farrerol triggered PINK1/Parkin-mediated mitophagy by recruiting the receptor proteins LC3 and p62/SQSTM1, thereby eliminating damaged mitochondria. Furthermore, genetic deletion of Nrf2 reduced PINK1/Parkin-mediated mitophagy activation and led to increased renal tubular necrosis and renal fibrosis. We also found that farrerol alleviated inflammation and renal fibrosis by inhibiting p-NF-κB/NLRP3 and TGF-β/Smad signaling. These data indicated that farrerol effectively inhibited cisplatin-induced inflammation and renal fibrosis by activating Nrf2 and PINK1/Parkin-mediated mitophagy, which provides a potential novel therapeutic target for CKD.
Collapse
Affiliation(s)
- Ning Ma
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Jianqiang Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wenjing Gu
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Galvan DL, Mise K, Danesh FR. Mitochondrial Regulation of Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:745279. [PMID: 34646847 PMCID: PMC8502854 DOI: 10.3389/fmed.2021.745279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The role and nature of mitochondrial dysfunction in diabetic kidney disease (DKD) has been extensively studied. Yet, the molecular drivers of mitochondrial remodeling in DKD are poorly understood. Diabetic kidney cells exhibit a cascade of mitochondrial dysfunction ranging from changes in mitochondrial morphology to significant alterations in mitochondrial biogenesis, biosynthetic, bioenergetics and production of reactive oxygen species (ROS). How these changes individually or in aggregate contribute to progression of DKD remain to be fully elucidated. Nevertheless, because of the remarkable progress in our basic understanding of the role of mitochondrial biology and its dysfunction in DKD, there is great excitement on future targeted therapies based on improving mitochondrial function in DKD. This review will highlight the latest advances in understanding the nature of mitochondria dysfunction and its role in progression of DKD, and the development of mitochondrial targets that could be potentially used to prevent its progression.
Collapse
Affiliation(s)
- Daniel L Galvan
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States
| | - Koki Mise
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Yu LP, Shi TT, Li YQ, Mu JK, Yang YQ, Li WX, Yu J, Yang XX. The impact of Traditional Chinese Medicine on mitophagy in disease models. Curr Pharm Des 2021; 28:488-496. [PMID: 34620055 DOI: 10.2174/1381612827666211006150410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.
Collapse
Affiliation(s)
- Li-Ping Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ting-Ting Shi
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023. China
| | - Yan-Qin Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jian-Kang Mu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ya-Qin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Wei-Xi Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| |
Collapse
|
27
|
Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res 2021; 70:915-930. [PMID: 34244821 DOI: 10.1007/s00011-021-01481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. Inflammation is an important factor that causes immune cell dysfunction in the pathogenesis of sepsis. Autophagy is involved in the process of inflammation and also occurs in response to cell and tissue injury in several diseases. We previously demonstrated that hydrogen alleviated the inflammation-induced cell injury and organ damage in septic mice. AIM The focus of the present study was to elucidate whether mitophagy mediates the inflammatory response or oxidative injury in sepsis in vitro and in vivo. Furthermore, we evaluated the role of mitophagy in the protective effects of hydrogen against cell injury or organ dysfunction in sepsis. METHOD RAW 264.7 macrophages induced by lipopolysaccharide (LPS) were used as an in vitro model for inflammation, and cecal ligation and puncture (CLP)-induced acute lung injury mice were used as an in vivo model for sepsis. The key protein associated with mitophagy, PTEN-induced putative kinase 1 (PINK1), was knocked down by PINK1 shRNA transfection in RAW 264.7 macrophages or mice. RESULTS Hydrogen ameliorated cell injury and enhanced mitophagy in macrophages stimulated by LPS. PINK1 was required for the mitigation of the cell impairment in LPS-stimulated macrophages by hydrogen treatment. PINK1 knockdown abrogated the beneficial effects of hydrogen on mitophagy in LPS-stimulated macrophages. Hydrogen inhibited acute lung injury in CLP mice via activation of PINK1-mediated mitophagy. CONCLUSION These results suggest that PINK1-mediated mitophagy plays a key role in the protective effects of hydrogen against cell injury in LPS-induced inflammation and CLP-induced acute lung injury.
Collapse
|
28
|
An Experimentally Induced Mutation in the UBA Domain of p62 Changes the Sensitivity of Cisplatin by Up-Regulating HK2 Localisation on the Mitochondria and Increasing Mitophagy in A2780 Ovarian Cancer Cells. Int J Mol Sci 2021; 22:ijms22083983. [PMID: 33924293 PMCID: PMC8070143 DOI: 10.3390/ijms22083983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023] Open
Abstract
The study of cisplatin sensitivity is the key to the development of ovarian cancer treatment strategies. Mitochondria are one of the main targets of cisplatin, its self-clearing ability plays an important role in determining the fate of ovarian cancer cells. First, we proved that the sensitivity of ovarian cancer cells to cisplatin depends on mitophagy, and p62 acts as a broad autophagy receptor to regulate this process. However, p62′s regulation of mitophagy does not depend on its location on the mitochondria. Our research shows that the mutation of the UBA domain of p62 increases the localisation of HK2 on the mitochondria, thereby increasing the phosphorylated ubiquitin form of parkin, then stabilising the process of mitophagy and ultimately cell survival. Collectively, our results showed that a mutation in the UBA domain of p62 regulates the level of apoptosis stimulated by cisplatin in ovarian cancer.
Collapse
|
29
|
Yuan L, Yuan Y, Liu F, Li L, Liu J, Chen Y, Cheng J, Lu Y. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury. Aging (Albany NY) 2021; 13:8421-8439. [PMID: 33714196 PMCID: PMC8034953 DOI: 10.18632/aging.202653] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Because of the key role of impaired mitochondria in the progression of acute kidney injury (AKI), it is striking that peroxisome proliferator γ coactivator 1-α (PGC-1α), a transcriptional coactivator of genes involved in mitochondrial biogenesis and autophagy, protects from kidney injury. However, the specific mechanism involved in PGC-1α-mediated autophagy remains elusive. In vivo, along with the severe kidney damage, the expression of PGC-1α was decreased in cisplatin-induced AKI mice. Conversely, PGC-1α activator (ZLN005) administration could alleviate kidney injury. Consistently, in vitro overexpression of PGC-1α or ZLN005 treatment inhibited cell apoptosis and mitochondrial dysfunction induced by cisplatin. Moreover, ZLN005 treatment increased the expression of LC3-II and co-localization between LC3 and mitochondria, suggesting that the mitophagy was activated. Furthermore, PGC-1α-mediated the activation of mitophagy was reliant on the increased expression of TFEB, and the protective effects were abrogated in TFEB-knockdown cells. These data suggest that the activation of PGC-1α could alleviate mitochondrial dysfunction and kidney injury in AKI mice via TFEB-mediated autophagy.
Collapse
Affiliation(s)
- Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Department of Nephrology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Yu S, Palanisamy K, Sun K, Li X, Wang Y, Lin F, Chen K, Wang I, Yu T, Li C. Human antigen R regulates hypoxia-induced mitophagy in renal tubular cells through PARKIN/BNIP3L expressions. J Cell Mol Med 2021; 25:2691-2702. [PMID: 33496385 PMCID: PMC7933924 DOI: 10.1111/jcmm.16301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dysfunction contributes to the pathophysiology of acute kidney injury (AKI). Mitophagy selectively degrades damaged mitochondria and thereby regulates cellular homeostasis. RNA-binding proteins (RBPs) regulate RNA processing at multiple levels and thereby control cellular function. In this study, we aimed to understand the role of human antigen R (HuR) in hypoxia-induced mitophagy process in the renal tubular cells. Mitophagy marker expressions (PARKIN, p-PARKIN, PINK1, BNIP3L, BNIP3, LC3) were determined by western blot analysis. Immunofluorescence studies were performed to analyze mitophagosome, mitolysosome, co-localization of p-PARKIN/TOMM20 and BNIP3L/TOMM20. HuR-mediated regulation of PARKIN/BNIP3L expressions was determined by RNA-immunoprecipitation analysis and RNA stability experiments. Hypoxia induced mitochondrial dysfunction by increased ROS, decline in membrane potential and activated mitophagy through up-regulated PARKIN, PINK1, BNIP3 and BNIP3L expressions. HuR knockdown studies revealed that HuR regulates hypoxia-induced mitophagosome and mitolysosome formation. HuR was significantly bound to PARKIN and BNIP3L mRNA under hypoxia and thereby up-regulated their expressions through mRNA stability. Altogether, our data highlight the importance of HuR in mitophagy regulation through up-regulating PARKIN/BNIP3L expressions in renal tubular cells.
Collapse
Affiliation(s)
- Shao‐Hua Yu
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Department of Emergency MedicineChina Medical University HospitalTaichungTaiwan
| | | | - Kuo‐Ting Sun
- Department of Pediatric DentistryChina Medical University HospitalTaichungTaiwan
- School of Dentistry, College of DentistryChina Medical UniversityTaichungTaiwan
| | - Xin Li
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Yao‐Ming Wang
- Department of RadiologyTaichung Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationTaichungTaiwan
| | - Feng‐Yen Lin
- Department of Internal MedicineSchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Division of Cardiology and Cardiovascular Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Kuen‐Bao Chen
- School of MedicineChina Medical UniversityTaichungTaiwan
- Department of AnesthesiologyChina Medical University HospitalTaichungTaiwan
| | - I‐Kuan Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
- Division of NephrologyChina Medical University HospitalTaichungTaiwan
| | - Tung‐Min Yu
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Division of NephrologyDepartment of Internal MedicineTaichung Veterans General HospitalTaichungTaiwan
| | - Chi‐Yuan Li
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Department of AnesthesiologyChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
31
|
Huang C, Yi H, Shi Y, Cao Q, Shi Y, Cheng D, Braet F, Chen XM, Pollock CA. KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Front Cell Dev Biol 2021; 9:573814. [PMID: 33681190 PMCID: PMC7933228 DOI: 10.3389/fcell.2021.573814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic kidney disease. Mitochondrial quality control is primarily mediated by mitochondrial turnover and repair through mitochondrial fission/fusion and mitophagy. We have previously shown that blockade of the calcium-activated potassium channel KCa3.1 ameliorates diabetic renal fibrosis. However, the mechanistic link between KCa3.1 and mitochondrial quality control in diabetic kidney disease is not yet known. Transforming growth factor β1 (TGF-β1) plays a central role in diabetic kidney disease. Recent studies indicate an emerging role of TGF-β1 in the regulation of mitochondrial function. However, the molecular mechanism mediating mitochondrial quality control in response to TGF-β1 remains limited. In this study, mitochondrial function was assessed in TGF-β1-exposed renal proximal tubular epithelial cells (HK2 cells) transfected with scrambled siRNA or KCa3.1 siRNA. In vivo, diabetes was induced in KCa3.1+/+ and KCa3.1−/− mice by low-dose streptozotocin (STZ) injection. Mitochondrial fission/fusion-related proteins and mitophagy markers, as well as BCL2 interacting protein 3 (BNIP3) (a mitophagy regulator) were examined in HK2 cells and diabetic mice kidneys. The in vitro results showed that TGF-β1 significantly inhibited mitochondrial ATP production rate and increased mitochondrial ROS (mtROS) production when compared to control, which was normalized by KCa3.1 gene silencing. Increased fission and suppressed fusion were found in both TGF-β1-treated HK2 cells and diabetic mice, which were reversed by KCa3.1 deficiency. Furthermore, our results showed that mitophagy was inhibited in both in vitro and in vivo models of diabetic kidney disease. KCa3.1 deficiency restored abnormal mitophagy by inhibiting BNIP3 expression in TGF-β1-induced HK2 cells as well as in the diabetic mice. Collectively, these results indicate that KCa3.1 mediates the dysregulation of mitochondrial quality control in diabetic kidney disease.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Hao Yi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Ying Shi
- Division of Nephrology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qinghua Cao
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Yin Shi
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Delfine Cheng
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Filip Braet
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
32
|
Shen T, Xu F, Fang Z, Loor JJ, Ouyang H, Chen M, Jin B, Wang X, Shi Z, Zhu Y, Liang Y, Ju L, Song Y, Wang Z, Li X, Du X, Liu G. Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis. J Dairy Sci 2021; 104:4847-4857. [PMID: 33551163 DOI: 10.3168/jds.2020-19150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood β-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.
Collapse
Affiliation(s)
- Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Feng Xu
- Department of Renal Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin Province, 130041, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Meng Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Bo Jin
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinghui Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Lingxue Ju
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
33
|
Catalpol-Induced AMPK Activation Alleviates Cisplatin-Induced Nephrotoxicity through the Mitochondrial-Dependent Pathway without Compromising Its Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7467156. [PMID: 33510841 PMCID: PMC7826214 DOI: 10.1155/2021/7467156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/15/2020] [Accepted: 12/24/2020] [Indexed: 01/19/2023]
Abstract
Nephrotoxicity is a common complication of cisplatin chemotherapy and, thus, limits the clinical application of cisplatin. In this work, the effects of catalpol (CAT), a bioactive ingredient extracted from Rehmannia glutinosa, on cisplatin-induced nephrotoxicity and antitumor efficacy were comprehensively investigated. Specifically, the protective effect of CAT on cisplatin-induced injury was explored in mice and HK-2 cells. In vivo, CAT administration strikingly suppressed cisplatin-induced renal dysfunction, morphology damage, apoptosis, and inflammation. In vitro, CAT induced activation of adenosine 5′-monophosphate- (AMP-) activated protein kinase (AMPK), improved mitochondrial function, and decreased generation of cellular reactive oxygen species (ROS), leading to a reduction in inflammation and apoptosis, which ultimately protected from cisplatin-induced injury. However, the beneficial effects of CAT were mostly blocked by coincubation with compound C. Furthermore, molecular docking results indicated that CAT had a higher affinity for AMPK than other AMPK activators such as danthron, phenformin, and metformin. Importantly, CAT possessed the ability to reverse drug resistance without compromising the antitumor properties of cisplatin. These findings suggest that CAT exerts positive effects against cisplatin-induced renal injury through reversing drug resistance via the mitochondrial-dependent pathway without affecting the anticancer activity of cisplatin.
Collapse
|
34
|
Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. Eur J Pharm Biopharm 2021; 160:42-54. [PMID: 33440242 DOI: 10.1016/j.ejpb.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchaeosomes are non-hydrolysable nanovesicles made of archaeolipids, naturally functionalised with ligand for scavenger receptor class 1. We hypothesized that nitrogenate bisphosphonate alendronate (ALN) loaded nanoarchaeosomes (nanoarchaeosomes(ALN)) may constitute more efficient macrophage targeted apoptotic inducers than ALN loaded nanoliposomes (nanoliposomes (ALN)). To that aim, ALN was loaded in cholesterol containing (nanoARC-chol(ALN)) or not (nanoARC(ALN)) nanoarchaeosomes. Nanoarchaeosomes(ALN) (220-320 nm sized, ~ -40 mV ξ potential, 38-50 μg ALN/mg lipid ratio) displayed higher structural stability than nanoliposomes(ALN) of matching size and ξ potential, retaining most of ALN against a 1/200 folds dilution. The cytotoxicity of nanoARC(ALN) on J774A.1 cells, resulted > 30 folds higher than free ALN and nanoliposomes(ALN) and was reduced by cholesterol in nanoARC-chol(ALN). Devoid of ALN, nanoARC-chol was non-cytotoxic, exhibited pronounced anti-inflammatory activity on J774.1 cells, strongly reducing reactive oxygen species (ROS) and IL-6 induced by LPS. Nanoarchaeosomes bilayer extensively interacted with serum proteins but resulted refractory to phospholipases. Upon J774A.1 cells uptake, nanoarchaeosomes induced cytoplasmic acid vesicles, reduced the mitochondrial membrane potential by 20-40 % without consuming ATP neither damaging lysosomes and increasing pERK. Refractory to chemoenzymatic attacks, either void or drug loaded, nanoarchaeosomes induced either anti-inflammation or macrophages apoptosis, constituting promising targeted nanovesicles for multiple therapeutic purposes.
Collapse
|
35
|
Wang Y, Zhu J, Liu Z, Shu S, Fu Y, Liu Y, Cai J, Tang C, Liu Y, Yin X, Dong Z. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Redox Biol 2021; 38:101767. [PMID: 33137712 PMCID: PMC7606859 DOI: 10.1016/j.redox.2020.101767] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sepsis is the major cause of acute kidney injury (AKI) associated with high mortality rates. Mitochondrial dysfunction contributes to the pathophysiology of septic AKI. Mitophagy is an important mitochondrial quality control mechanism that selectively eliminates damaged mitochondria, but its role and regulation in septic AKI remain largely unknown. Here, we demonstrate the induction of mitophagy in mouse models of septic AKI induced by lipopolysaccharide (LPS) treatment or by cecal ligation and puncture. Mitophagy was also induced in cultured proximal tubular epithelial cells exposed to LPS. Induction of mitophagy under these experimental setting was suppressed by pink1 or park2 knockout, indicating the role of the PINK1/PARK2 pathway of mitophagy in septic AKI. In addition, sepsis induced more severe kidney injury and cell apoptosis in pink1 or park2 knockout mice than in wild-type mice, suggesting a beneficial role of mitophagy in septic AKI. Furthermore, in cultured renal tubular cells treated with LPS, knockdown of pink1 or park2 inhibited mitochondrial accumulation of the autophagy adaptor optineurin (OPTN) and silencing Optn inhibited LPS-induced mitophagy. Taken together, these findings suggest that the PINK1/PARK2 pathway of mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function in septic AKI.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yuxue Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Xiaoming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
36
|
Guo J, Wang R, Liu D. Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Sepsis-Induced Acute Kidney Injury by Promoting Mitophagy of Renal Tubular Epithelial Cells via the SIRT1/Parkin Axis. Front Endocrinol (Lausanne) 2021; 12:639165. [PMID: 34248837 PMCID: PMC8267935 DOI: 10.3389/fendo.2021.639165] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a common risk factor for acute kidney injury (AKI). Bone marrow-derived mesenchymal stem cells (BMSCs) bear multi-directional differentiation potential. This study explored the role of BMSCs in sepsis-induced AKI (SI-AKI). A rat model of SI-AKI was established through cecal ligation and perforation. The SI-AKI rats were injected with CM-DiL-labeled BMSCs, followed by evaluation of pathological injury of kidney tissues and kidney injury-related indicators and inflammatory factors. HK-2 cells were treated with lipopolysaccharide (LPS) to establish SI-SKI model in vitro. Levels of mitochondrial proteins, autophagy-related proteins, NLRP3 inflammasome-related protein, and expressions of Parkin and SIRT1 in renal tubular epithelial cells (RTECs) of kidney tissues and HK-2 cells were detected. The results showed that BMSCs could reach rat kidney tissues and alleviate pathological injury of SI-SKI rats. BMSCs inhibited inflammation and promoted mitophagy of RTECs and HK-2 cells in rats with SI-AKI. BMSCs upregulated expressions of Parkin and SIRT1 in HK-2 cells. Parkin silencing or SIRT1 inhibitor reversed the promoting effect of BMSCs on mitophagy. BMSCs inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin. In conclusion, BMSCs promoted mitophagy and inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin, thereby ameliorating SI-AKI.
Collapse
|
37
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Chen K, Chen J, Wang L, Yang J, Xiao F, Wang X, Yuan J, Wang L, He Y. Parkin ubiquitinates GATA4 and attenuates the GATA4/GAS1 signaling and detrimental effects on diabetic nephropathy. FASEB J 2020; 34:8858-8875. [PMID: 32436607 DOI: 10.1096/fj.202000053r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023]
Abstract
Renal tubular injury contributes to the progression of diabetic nephropathy (DN). This study explored the role and mechanisms of E3-ubiquitin ligase Parkin in the renal tubular injury of DN. We found that Parkin expression gradually decreased and was inversely associated with IL-6, TGF-β1, and GATA4 expression in the kidney during the progression of DN. Parkin over-expression (OE) reduced inflammation, fibrosis, premature senescence of renal tubular epithelial cells (RTECs), and improved renal function while Parkin knockout (KO) had opposite effects in DN mice. Parkin-OE decreased GATA4 protein, but not its mRNA transcripts in the kidney of DN mice and high glucose (HG)-treated RTECs. Immunoprecipitation indicated that Parkin directly interacted with GATA4 in DN kidney. Parkin-OE enhanced GATA4 ubiquitination. Furthermore, Parkin-KO upregulated growth arrest-specific gene 1 (GAS1) expression in renal tubular tissues of DN mice and GATA4-OE enhanced the HG-upregulated GAS1 expression in RTECs. Conversely, GAS1-OE mitigated the effect of Parkin-OE on HG-induced P21, IL-6, and TGF-β1 expression in RTECs. These results indicate that Parkin inhibits the progression of DN by promoting GATA4 ubiquitination and downregulating the GATA4/GAS1 signaling to inhibit premature senescence, inflammation, and fibrosis in DN mice. Thus, these findings uncover new mechanisms underlying the action of Parkin during the process of DN.
Collapse
Affiliation(s)
- Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ling Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fei Xiao
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianyue Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Yuan
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Limin Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
39
|
Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med 2020; 152:632-649. [PMID: 31825802 DOI: 10.1016/j.freeradbiomed.2019.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Mitophagy is a principle mechanism to degrade damaged mitochondria through PARK2-dependent or PARK2-independent pathway. Mitophagy has been identified to play an important role in acute kidney disease, whereas its role in renal fibrosis remains ill-defined. We sought to investigate the involvement and regulation of mitophagy in renal tubular epithelial cell(RTEC) injury and renal fibrosis after unilateral ureteral obstruction(UUO). Mitochondrial damageand mitochondrial reactive oxygen species (ROS) production was increased in kidney after obstruction of the left ureter. Mitophagy was increased in kidneys following UUO and HK-2 cells under hypoxia exposure, assessed by electron microscopy of mitophagosome, colocalization of MitotrackerRed-stained mitochondria and LC3 staining. The upregulation of PINK1, PARK2, and LC3 II in mitochondrial fraction was observed in the obstructed kidney and hypoxia-exposed HK-2 cells. Pink1 or Park2 gene deletion markedly increased mtROS production, mitochondrial damage, TGFβ1 expression in RTEC, and renal fibrosis in UUO. Mitochondrial recruitment of Drp1 was also induced after UUO. The Drp1 inhibitor, Mdivi-1, decreased mitochondrial PINK1, PARK2 and LC3II level, increased mtROS production both in vivo and in vitro, activated TGFβ1-Smad2/3 signaling in HK-2 cells under hypoxia and worsened renal fibrosis following UUO. The upregulation of TGFβ1 signaling in hypoxia-treated HK-2 cells due to PINK1 or PARK2 silencing, or worsened renal fibrosis after UUO due to Pink1-or Park2-KO mice was rescued by mitoTEMPO, a mitochondria-targeted antioxidant. The findings of this study suggest that Drp1-regulated PARK2-dependent mitophagy plays a critical role in hypoxia-induced renal tubular epithelial cell injury and renal fibrosis in UUO.
Collapse
Affiliation(s)
- Shu Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qisheng Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuying Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingkui Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bei Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Minfang Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijun Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haijiao Jin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhen Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chaojun Qi
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
40
|
Zhu DJ, Liao XH, Huang WQ, Sun H, Zhang L, Liu Q. Augmenter of Liver Regeneration Protects Renal Tubular Epithelial Cells From Ischemia-Reperfusion Injury by Promoting PINK1/Parkin-Mediated Mitophagy. Front Physiol 2020; 11:178. [PMID: 32231587 PMCID: PMC7082309 DOI: 10.3389/fphys.2020.00178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia–reperfusion (I/R) is the most common cause of acute kidney injury (AKI) and can induce apoptosis in renal epithelial tubule cells. Mitochondrial dysfunction is one of the main reasons for I/R-induced apoptosis. Accumulating evidence suggests that PINK1/Parkin-mediated mitophagy possibly plays a renoprotective role in kidney disease by removing impaired mitochondria and preserving a healthy population of mitochondria. Our previous study showed that augmenter of liver regeneration (ALR) alleviates tubular epithelial cells apoptosis in rats with AKI, although the specific mechanism remains unclear. In this study, we investigated the role of ALR in I/R-induced mitochondrial pathway of apoptosis. We knocked down ALR with short hairpin RNA lentiviral and established an I/R model in human kidney proximal tubular (HK-2) cells in vitro. We observed that the knockdown of ALR aggravated mitochondrial dysfunction and increased the mitochondrial reactive oxygen species (ROS) levels, leading to an increase in cell apoptosis via inhibition of mitophagy. We also found that the PINK1/Parkin pathway was activated by I/R via confocal microscopy and Western blot. Furthermore, the knockdown of ALR suppressed the activation of PINK1 and Parkin. These findings collectively indicate that ALR may protect HK-2 cells from I/R injury by promoting mitophagy, and the mechanism by which ALR regulates mitophagy seems to be related to PINK1 and Parkin. Consequently, ALR may be used as a potential therapeutic agent for AKI in the future.
Collapse
Affiliation(s)
- Dong-Ju Zhu
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Nephrology, The Affiliated Hospital, Panzhihua University, Panzhihua, China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wen-Qi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Intensive Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, Cao Y, Li T, Lin B. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med 2020; 18:114. [PMID: 32131850 PMCID: PMC7055075 DOI: 10.1186/s12967-020-02283-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We have reported that polydatin (PD) alleviates mitochondrial dysfunction in rat models of sepsis-induced acute kidney injury (SI-AKI), but the mechanism is not well understood. Here, we investigated the role of Parkin-mediated mitophagy in the protective effects of PD in SI-AKI in mice. METHODS Sepsis was induced in the mice by caecal ligation and puncture. Mitophagy was determined by mitochondrial mass. NLRP3 inflammasome activation was determined by NLRP3, ASC and caspase-1. Mitophagy was blocked by treatment with mitochondrial division inhibitor-1 and Parkin knockout. KEY RESULTS PD treatment increased the sepsis-induced loss of mitochondrial mass, indicating the upregulation of mitophagy. Furthermore, PD treatment mediated Parkin translocation from the cytoplasm to the mitochondria. This suggests that Parkin-mediated mitophagy is an underlying mechanism. This was confirmed by the suppression of PD-induced mitophagy in Parkin-/- mice and in mice that were treated with a mitophagy inhibitor. PD-induced Parkin translocation and mitophagy were blocked by inhibiting SIRT1; thus, activation of SIRT1 might be an important molecular mechanism that is triggered by PD. Additionally, PD treatment protected against sepsis-induced kidney injury. These effects were blocked by inhibition of Parkin-dependent mitophagy. Furthermore, PD also protected against mitochondrial dysfunction and mitochondria-dependent apoptosis, and the effect was blocked when Parkin-dependent mitophagy was inhibited. Finally, PD suppressed NLRP3 inflammasome activation that was also dependent on Parkin-mediated mitophagy. CONCLUSIONS These findings indicate that Parkin-mediated mitophagy is important for the protective effect of PD in SI-AKI, and the underlying mechanisms include the inhibition of mitochondrial dysfunction and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Youguang Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Xingui Dai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Yunfeng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Guicheng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Xianzhong Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China
| | - Chenmu Ai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Yuanyuan Cao
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, No. 102 Luojiajing, Chenzhou, 423000, China.
| | - Bo Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
42
|
Mitophagy in Acute Kidney Injury and Kidney Repair. Cells 2020; 9:cells9020338. [PMID: 32024113 PMCID: PMC7072358 DOI: 10.3390/cells9020338] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.
Collapse
|
43
|
Kang L, Liu S, Li J, Tian Y, Xue Y, Liu X. Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses. Life Sci 2019; 243:117244. [PMID: 31891721 DOI: 10.1016/j.lfs.2019.117244] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023]
Abstract
AIMS Endplate chondrocyte apoptosis is an important contributor to the pathogenesis of cartilaginous endplate (CEP) degeneration that leads to the initiation and development of intervertebral disc degeneration (IDD). In this study, we hypothesized that Parkin-mediated mitophagy and nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant system played an important role in endplate chondrocyte survival under pathological conditions. MATERIALS AND METHODS Human endplate chondrocytes were stimulated with H2O2 to mimic pathological conditions. Western blotting, immunofluorescence staining, and flow cytometry were applied to detect the indicators related to mitochondrial dynamics, mitophagy, Nrf2 signaling, and apoptosis. The puncture-induced rat models were established to evaluate the changes in vivo. KEY FINDINGS Our results showed that H2O2 induced oxidative stress, mitochondrial dysfunction, and apoptosis in endplate chondrocytes. These H2O2-induced detrimental effects were inhibited by pretreatment with the mitochondria-targeted antioxidant Mito-TEMPO. In addition, mitochondrial dynamics, Parkin-mediated elimination of dysfunctional mitochondria, and Nrf2-mediated antioxidant system were promoted by H2O2. Knockdown of Parkin or Nrf2 increased H2O2-induced detrimental effects. Moreover, upregulation of Parkin and Nrf2 by polydatin protected endplate chondrocytes against H2O2-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Finally, puncture-induced rat models showed that polydatin exerted a protective effect on CEP and disc degeneration. SIGNIFICANCE Targeting Parkin and Nrf2 to improve mitochondrial homeostasis, redox balance and endplate chondrocyte survival may represent a potential therapeutic strategy for preventing IDD.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Shiwei Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Jingchao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China; Department of Orthopedics, Tianjin Jinghai District Hospital, Tianjin 301600, China
| | - Yueyang Tian
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China
| | - Yuan Xue
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin 300052, China.
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| |
Collapse
|
44
|
Zhang Y, Liu Q, Li Y, Li C, Zhu Y, Xia F, Xu S, Li W. PTEN-Induced Putative Kinase 1 (PINK1)/Parkin-Mediated Mitophagy Protects PC12 Cells Against Cisplatin-Induced Neurotoxicity. Med Sci Monit 2019; 25:8797-8806. [PMID: 31748499 PMCID: PMC6882296 DOI: 10.12659/msm.918536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The pathogenesis of chemotherapy-induced neuropathy, a dose-dependent adverse effect of cisplatin, involves mitochondrial dysfunction. PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy removes damaged mitochondria under various pathological conditions. The objective of this study was to determine mitophagy status and its effects on mitochondrial function and neuronal cell damage after cisplatin treatment using an in vitro model of cisplatin-induced neurotoxicity. Material/Methods PC12 cells were transfected with Parkin or Parkin siRNA using lentiviral particles and Lipofectamine 3000™, respectively, and then were exposed to 10 μM cisplatin. The expression of autophagic proteins was measured by Western blot analysis. Mitophagy in PC12 cells was detected by confocal microscopy analysis of mitochondria-lysosomes colocalization and autophagic flux. The effects of PINK1/Parkin-mediated mitophagy on cisplatin-induced neurotoxicity were assessed via mitochondrial function, neuritic length, nuclear diameter, and apoptosis. Results Cisplatin activated PINK1/Parkin-mediated mitophagy in PC12 cells. Autophagic flux analysis revealed that cisplatin inhibits the late stage of the autophagic process. The knockdown of Parkin suppressed cisplatin-induced mitophagy, aggravating cisplatin-induced depolarization of mitochondria, cellular ATP deficits, reactive oxygen species outburst, neuritic shortening, nuclear diameter reduction, and apoptosis, while Parkin overexpression enhanced mitophagy and reversed these effects. Conclusions PINK1/Parkin-regulated mitophagy can protect against cisplatin-related neurotoxicity, suggesting therapeutic enhancement of mitophagy as a potential intervention for cisplatin-induced peripheral neuropathies. The interference of cisplatin with autophagosome-lysosome fusion may be partly responsible for cisplatin-induced neurotoxicity.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Qingzhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China (mainland)
| | - Yongle Li
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China (mainland)
| | - Caijuan Li
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Yunhe Zhu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Fan Xia
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Shiqin Xu
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China (mainland)
| | - Weiyan Li
- Department of Anesthesiology, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
45
|
Palese F, Pontis S, Realini N, Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci Rep 2019; 9:15927. [PMID: 31685899 PMCID: PMC6828692 DOI: 10.1038/s41598-019-51799-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) catalyzes the cleavage of membrane NAPEs into bioactive fatty-acid ethanolamides (FAEs). Along with this precursor role, NAPEs might also serve autonomous signaling functions. Here, we report that injections of 6-hydroxydopamine (6-OHDA) into the mouse striatum cause a local increase in NAPE and FAE levels, which precedes neuronal cell death. NAPE, but not FAE, accumulation is enhanced in mice lacking NAPE-PLD, which display a substantial reduction in 6-OHDA-induced neurotoxicity, as shown by increased survival of substantia nigra dopamine neurons, integrity of striatal dopaminergic fibers, and striatal dopamine metabolite content. Reduced damage is accompanied by attenuation of the motor response evoked by apomorphine. Furthermore, NAPE-PLD silencing protects cathecolamine-producing SH-SY5Y cells from 6-OHDA-induced reactive oxygen species formation, caspase-3 activation and death. Mechanistic studies in mice suggest the existence of multiple molecular contributors to the neuroprotective effects of NAPE-PLD deletion, including suppression of Rac1 activity and attenuated transcription of several genes (Cadps, Casp9, Egln1, Kcnj6, Spen, and Uchl1) implicated in dopamine neuron survival and/or Parkinson's disease. The findings point to a previously unrecognized role for NAPE-PLD in the regulation of dopamine neuron function, which may be linked to the control of NAPE homeostasis in membranes.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA
| | - Silvia Pontis
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
46
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019; 317:F1255-F1264. [DOI: 10.1152/ajprenal.00346.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
47
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019. [DOI: 10.1152/ajprenal.00346.2019 pmid: 31532243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
48
|
Dai XG, Xu W, Li T, Lu JY, Yang Y, Li Q, Zeng ZH, Ai YH. Involvement of phosphatase and tensin homolog-induced putative kinase 1-Parkin-mediated mitophagy in septic acute kidney injury. Chin Med J (Engl) 2019; 132:2340-2347. [PMID: 31567378 PMCID: PMC6819035 DOI: 10.1097/cm9.0000000000000448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies have reported mitophagy activation in renal tubular epithelial cells (RTECs) in acute kidney injury (AKI). Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and E3 ubiquitin-protein ligase Parkin are involved in mitophagy regulation; however, little is known about the role of PINK1-Parkin mitophagy in septic AKI. Here we investigated whether the PINK1-Parkin mitophagy pathway is involved in septic AKI and its effects on cell apoptosis in vitro and on renal functions in vivo. METHODS Mitophagy-related gene expression was determined using Western blot assay in human RTEC cell line HK-2 stimulated with bacterial lipopolysaccharide (LPS) and in RTECs from septic AKI rats induced by cecal ligation and perforation (CLP). Autophagy-related ultrastructural features in rat RTECs were observed using electron microscopy. Gain- and loss-of-function approaches were performed to investigate the role of the PINK1-Parkin pathway in HK-2 cell mitophagy. Autophagy activators and inhibitors were used to assess the effects of mitophagy modulation on cell apoptosis in vitro and on renal functions in vivo. RESULTS LPS stimulation could significantly induce LC3-II and BECN-1 protein expression (LC3-II: 1.72 ± 0.05 vs. 1.00 ± 0.05, P < 0.05; BECN-1: 5.33 ± 0.57 vs. 1.00 ± 0.14, P < 0.05) at 4 h in vitro. Similarly, LC3-II, and BECN-1 protein levels were significantly increased and peaked at 2 h after CLP (LC3-II: 3.33 ± 0.12 vs. 1.03 ± 0.15, P < 0.05; BECN-1: 1.57 ± 0.26 vs. 1.02 ± 0.11, P < 0.05) in vivo compared with those after sham operation. Mitochondrial deformation and mitolysosome-mediated mitochondria clearance were observed in RTECs from septic rats. PINK1 knockdown significantly attenuated LC3-II protein expression (1.35 ± 0.21 vs. 2.38 ± 0.22, P < 0.05), whereas PINK1 overexpression markedly enhanced LC3-II protein expression (2.07 ± 0.21 vs. 1.29 ± 0.19, P < 0.05) compared with LPS-stimulated HK-2 cells. LPS-induced proapoptotic protein expression remained unchanged in autophagy activator-treated HK-2 cells and was significantly attenuated in PINK1-overexpressing cells, but was remarkably upregulated in autophagy inhibitor-treated and in PINK1-depleted cells. Consistent results were observed in flow cytometric apoptosis assay and in renal function indicators in rats. CONCLUSION PINK1-Parkin-mediated mitophagy might play a protective role in septic AKI, serving as a potential therapeutic target for septic AKI.
Collapse
Affiliation(s)
- Xin-Gui Dai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Wei Xu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Jia-Ying Lu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yang Yang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Qiong Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Zhen-Hua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu-Hang Ai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
49
|
Pandhita BAW, Rahmi DNI, Sumbung NK, Waworuntu BM, Utami RP, Louisa M, Soetikno V. A glance at molecular mechanisms underlying cisplatin-induced nephrotoxicity and possible renoprotective strategies: a narrative review. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i3.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Cisplatin is a platinum-based drug that is usually used for the treatment of many carcinomas. However, it comes with several devastating side effects, including nephrotoxicity. Cisplatin toxicity is a very complex process, which is exacerbated by the accumulation of cisplatin in renal tubular cells via passive diffusion and transporter-mediated processes. Once cisplatin enters these cells, it induces the formation of reactive oxygen species that cause cellular damage, including DNA damage, inflammation, and eventually cell death. On a small scale, these damages can be mitigated by cellular antioxidant defense mechanism. However, on a large scale, such as in chemotherapy, this defense mechanism may fail, resulting in nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and possible renoprotective strategies to determine novel therapeutic interventions for alleviating this toxicity.
Collapse
|
50
|
Zhou L, Zhang L, Zhang Y, Yu X, Sun X, Zhu T, Li X, Liang W, Han Y, Qin C. PINK1 Deficiency Ameliorates Cisplatin-Induced Acute Kidney Injury in Rats. Front Physiol 2019; 10:1225. [PMID: 31607953 PMCID: PMC6773839 DOI: 10.3389/fphys.2019.01225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Mitophagy plays a key role in cleaning damaged and depolarized mitochondria to maintain cellular homeostasis and viability. Although it was originally found in neurodegenerative diseases, mitophagy is reported to play an important role in acute kidney injury. PINK1 and Parkin are key molecules in mitophagy pathway. Here, we used PINK1 knockout rats to examine the role of PINK1/Parkin-mediated mitophagy in cisplatin nephrotoxicity. After cisplatin treatment, PINK1 knockout rats showed lower plasma creatinine and less tubular damage when compared with wild-type rats. Meanwhile, mitophagy indicated by autophagosome formation and LC3B-II accumulation was also attenuated in PINK1 knockout rats. Renal expression of PINK1 and Parkin were down-regulated while BNIP3L was up-regulated by cisplatin treatment, indicating a major role of BNIP3/BNIP3L pathway in cisplatin-induced mitophagy. Transmission electron microscopy showed that PINK1 deficiency inhibited cisplatin-induced mitochondrial fragmentation indicating an involvement of mitochondrial fusion and fission. Renal expression of mitochondrial dynamics related proteins including Fis1, Drp1, Mfn1, Mfn2, and Opa1 were checked by real-time PCR and western blots. The results showed PINK1 deficiency distinctly prevented cisplatin-induced up-regulation of DRP1. Finally, PINK1 deficiency alleviated cisplatin-induced tubular apoptosis indicated by TUNEL assay as well as the expression of caspase3 and cleaved caspase3. Together, these results suggested PINK1 deficiency ameliorated cisplatin-induced acute kidney injury in rats, possibly via inhibiting DRP1-mediated mitochondrial fission and excessive mitophagy.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Ling Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yu Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xuan Yu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Tao Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Xianglei Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Wei Liang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Yunlin Han
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Peking Union Medicine College (PUMC), Beijing, China
| |
Collapse
|