1
|
Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment. Bioact Mater 2022; 24:236-250. [PMID: 36606257 PMCID: PMC9803906 DOI: 10.1016/j.bioactmat.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
|
2
|
Inhibiting Endothelin Receptors with Macitentan Strengthens the Bone Protective Action of RANKL Inhibition and Reduces Metastatic Dissemination in Osteosarcoma. Cancers (Basel) 2022; 14:cancers14071765. [PMID: 35406536 PMCID: PMC8997105 DOI: 10.3390/cancers14071765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The efficacy of current osteosarcoma therapy is diminished by two adverse events, namely resistance to chemotherapy and metastatic dissemination. In recent decades, research has been devoted to reducing these adverse events. Inhibiting bone resorption has shown promising effects on metastatic dissemination and tumor growth, with, however, the formation of significant tumoral mineralized tissue. Endothelin signaling is implicated in activating the cell that forms the mineralized tissues, consequently the impact of inhibiting it alone and in combination with the inhibition of bone resorption was evaluated using osteosarcoma models. The results obtained showed that inhibiting endothelin signaling significantly reduced the formation of mineralized tumor tissue concomitantly to metastatic dissemination without affecting sensitivity to chemotherapy. This inhibition appears to be a promising new therapeutic tool in the fight against osteosarcoma. Abstract Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient’s lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.
Collapse
|
3
|
Wang C, Dong L, Wang Y, Jiang Z, Zhang J, Yang G. Bioinformatics Analysis Identified miR-584-5p and Key miRNA-mRNA Networks Involved in the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Front Genet 2021; 12:750827. [PMID: 34646313 PMCID: PMC8503254 DOI: 10.3389/fgene.2021.750827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human periodontal ligament cells (PDLCs) play an important role in periodontal tissue stabilization and function. In the process of osteogenic differentiation of PDLSCs, the regulation of molecular signal pathways are complicated. In this study, the sequencing results of three datasets on GEO were used to comprehensively analyze the miRNA-mRNA network during the osteogenic differentiation of PDLSCs. Using the GSE99958 and GSE159507, a total of 114 common differentially expressed genes (DEGs) were identified, including 62 up-regulated genes and 52 down-regulated genes. GO enrichment analysis was performed. The up-regulated 10 hub genes and down-regulated 10 hub genes were screened out by protein-protein interaction network (PPI) analysis and STRING in Cytoscape. Similarly, differentially expressed miRNAs (DEMs) were selected by limma package from GSE159508. Then, using the miRwalk website, we further selected 11 miRNAs from 16 DEMs that may have a negative regulatory relationship with hub genes. In vitro RT-PCR verification revealed that nine DEMs and 18 hub genes showed the same trend as the RNA-seq results during the osteogenic differentiation of PDLSCs. Finally, using miR-584-5p inhibitor and mimics, it was found that miR-584-5p negatively regulates the osteogenic differentiation of PDLSCs in vitro. In summary, the present results found several potential osteogenic-related genes and identified candidate miRNA-mRNA networks for the further study of osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoli Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ibrahimi Disha S, Furlani B, Drevensek G, Plut A, Yanagisawa M, Hudoklin S, Prodan Žitnik I, Marc J, Drevensek M. The role of endothelin B receptor in bone modelling during orthodontic tooth movement: a study on ET B knockout rats. Sci Rep 2020; 10:14226. [PMID: 32848199 PMCID: PMC7450079 DOI: 10.1038/s41598-020-71159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.
Collapse
Affiliation(s)
- S Ibrahimi Disha
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia
| | - B Furlani
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G Drevensek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - A Plut
- Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - I Prodan Žitnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M Drevensek
- Department of Orthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Department of Orthodontics, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
6
|
Zareian M, Oskoueian E, Majdinasab M, Forghani B. Production of GABA-enriched idli with ACE inhibitory and antioxidant properties using Aspergillus oryzae: the antihypertensive effects in spontaneously hypertensive rats. Food Funct 2020; 11:4304-4313. [DOI: 10.1039/c9fo02854d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study aimed to develop a fermented food (idli) with enhanced γ-aminobutyric acid (GABA) and angiotensin I-converting enzyme (ACE) inhibitory properties using a GABA-producing fungus.
Collapse
Affiliation(s)
- Mohsen Zareian
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Ehsan Oskoueian
- Mashhad Branch
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- Agricultural Research
- Education, and Extension Organization (AREEO)
- Mashhad
| | - Marjan Majdinasab
- Department of Food Science and Technology
- College of Agriculture
- Shiraz University
- Shiraz
- Iran
| | - Bita Forghani
- Division of Food and Nutrition Sciences
- Chalmers University of Technology
- Göteborg
- Sweden
| |
Collapse
|
7
|
Hansen KE, Johnson MG, Carter TC, Mayer J, Keuler NS, Blank RD. The -839(A/C) Polymorphism in the ECE1 Isoform b Promoter Associates With Osteoporosis and Fractures. J Endocr Soc 2019; 3:2041-2050. [PMID: 31637345 PMCID: PMC6795020 DOI: 10.1210/js.2019-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 11/19/2022] Open
Abstract
Context We previously found that variation in a quantitative trait locus, including the gene-encoding endothelin-converting enzyme 1 (Ece1), accounted for 40% of the variance in bone biomechanics and bone mineral density (BMD) in an intercross of recombinant congenic mouse strains. Objective We hypothesized that single nucleotide polymorphisms (SNPs) within the human ECE1 isoform b promoters, at ECE1 b -338(G/T) and ECE1 b -839(A/C), would associate with osteoporosis in postmenopausal women. Design We genotyped DNA for the ECE1 -338(G/T) and -839(A/C) SNPs. Setting A community medical center. Participants Postmenopausal women (3564) with ≥1 dual-energy X-ray absorptiometry scan ≥60 years of age. Main Outcome Measures BMD, osteoporosis, and clinical fractures. Results In multivariate models controlling for age, weight, healthcare duration, and tobacco, the CC genotype reduced the odds of lifetime fracture (OR 0.33, 95% CI 0.12, 0.87) and fracture ≥50 years of age (OR 0.31, 95% CI 0.11, 0.87), whereas the AC genotype increased odds of osteoporosis (OR 1.34, 95% CI 1.02 1.78) relative to the AA genotype. However, when controlling the false-discovery rate, findings were no longer significant. We found no consistent relationship between the ECE1 b -338(G/T) and study outcomes. Conclusions The CC genotype was associated with fewer fractures, whereas the AC genotype was associated with osteoporosis. Our small sample size and few minorities are study limitations. Findings should be tested in another cohort to confirm a link between the ECE1 -839(A/C) SNPs and osteoporosis.
Collapse
Affiliation(s)
- Karen E Hansen
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | | | - Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - John Mayer
- Office of Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Nicholas S Keuler
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Robert D Blank
- Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medicine Service, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Less Vertebral Bone Mass after Treatment with Macitentan in Mice: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2075968. [PMID: 30911541 PMCID: PMC6399551 DOI: 10.1155/2019/2075968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 02/03/2019] [Indexed: 11/18/2022]
Abstract
Purpose Blood vessels and skeleton interact together. Endothelin-1 is a potent vasoconstrictor and also has an effect on bone metabolism. The dual antagonist to both endothelin-1 type A and B receptors, Macitentan, has been approved for clinical management of pulmonary arterial hypertension while little is known about the secondary effect of the drug on spine. We aimed to answer how vertebral bone mass responded to Macitentan treatment in mice. Methods Sixteen male balb/c mice at 6 months were randomly assigned into 2 groups. Vehicle and Macitentan were administrated via intraperitoneal injection to Control group and Treatment group, respectively, for 4 months. At sacrifice, plasma endothelin-1 was evaluated with ELISA and vertebral bone mass was evaluated with Microcomputed Tomography and histological analysis. Results We found higher plasma endothelin-1 level (p<0.01) and less vertebral bone mass (p<0.05) in Treatment group compared to controls. Moreover, less osteoblasts and more osteoclasts were observed in the vertebral trabecular bone in the Treatment group compared to controls, by immunohistochemistry of the cell-specific markers. Conclusions Treatment with Macitentan is associated with significant lower vertebral bone mass and therefore the secondary effect of dual antagonists to endothelin-1 receptors on the skeleton should be monitored and investigated in clinical practice. Both osteoblasts and osteoclasts may be involved while the molecular mechanism needs to be further explored.
Collapse
|
9
|
The impact of implant abutment surface treatment with TiO 2 on peri-implant levels of angiogenesis and bone-related markers: a randomized clinical trial. Int J Oral Maxillofac Surg 2019; 48:962-970. [PMID: 30661944 DOI: 10.1016/j.ijom.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
The goal of this randomized, blinded, split-mouth controlled clinical trial was to assess the influence of abutment surface treatment on tissue healing. Fifteen patients received two implants distributed randomly to two groups: test (TiO2 abutment surface), control (standard abutment surface). Levels of epidermal growth factor (EGF), bone morphogenetic protein 9 (BMP-9), endothelin 1 (ET-1), fibroblast growth factor (FGF), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were quantified in the peri-implant fluid after 3, 14, 30, and 60 days. Inter-group comparisons indicated higher levels of EGF, BMP-9, ET-1, FGF, and PlGF in the test group after 30days (P<0.05). PlGF levels were also higher in the test group after 60 days. In the test group, intra-group analysis revealed different levels of ET-1 and FGF between days 3 and 30, and days 3 and 60 (P<0.05); furthermore, VEGF levels were significantly higher on day 60 than on day 3 (P <0.05). In the control group, intra-group analysis demonstrated significantly different levels of ET-1, FGF, and PlGF between days 3 and 60 and of PlGF between days 14 and 60 (P<0.05). In conclusion, abutment surfaces treated with TiO2 influenced the levels of angiogenesis and bone-related markers.
Collapse
|
10
|
Park HC, Son YB, Lee SL, Rho GJ, Kang YH, Park BW, Byun SH, Hwang SC, Cho IA, Cho YC, Sung IY, Woo DK, Byun JH. Effects of Osteogenic-Conditioned Medium from Human Periosteum-Derived Cells on Osteoclast Differentiation. Int J Med Sci 2017; 14:1389-1401. [PMID: 29200953 PMCID: PMC5707756 DOI: 10.7150/ijms.21894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
Stem/progenitor cell-based regenerative medicine using the osteoblast differentiation of mesenchymal stem cells (MSCs) is regarded as a promising approach for the therapeutic treatment of various bone defects. The effects of the osteogenic differentiation of stem/progenitor cells on osteoclast differentiation may have important implications for use in therapy. However, there is little data regarding the expression of osteoclastogenic proteins during osteoblastic differentiation of human periosteum-derived cells (hPDCs) and whether factors expressed during this process can modulate osteoclastogenesis. In the present study, we measured expression of RANKL in hPDCs undergoing osteoblastic differentiation and found that expression of RANKL mRNA was markedly increased in these cells in a time-dependent manner. RANKL protein expression was also significantly enhanced in osteogenic-conditioned media from hPDCs undergoing osteoblastic differentiation. We then isolated and cultured CD34+ hematopoietic stem cells (HSCs) from umbilical cord blood (UCB) mononuclear cells (MNCs) and found that these cells were well differentiated into several hematopoietic lineages. Finally, we co-cultured human trabecular bone osteoblasts (hOBs) with CD34+ HSCs and used the conditioned medium, collected from hPDCs during osteoblastic differentiation, to investigate whether factors produced during osteoblast maturation can affect osteoclast differentiation. Specifically, we measured the effect of this osteogenic-conditioned media on expression of osteoclastogenic markers and osteoclast cell number. We found that osteoclastic marker gene expression was highest in co-cultures incubated with the conditioned medium collected from hPDCs with the greatest level of osteogenic maturation. Although further study will be needed to clarify the precise mechanisms that underlie osteogenic-conditioned medium-regulated osteoclastogenesis, our results suggest that the osteogenic maturation of hPDCs could promote osteoclastic potential.
Collapse
Affiliation(s)
- Hyun-Chang Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - In-Ae Cho
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|