1
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Nementzik LR, Thumbadoo KM, Murray HC, Gordon D, Yang S, Blair IP, Turner C, Faull RLM, Curtis MA, McLean C, Nicholson GA, Swanson MEV, Scotter EL. Distribution of ubiquilin 2 and TDP-43 aggregates throughout the CNS in UBQLN2 p.T487I-linked amyotrophic lateral sclerosis and frontotemporal dementia. Brain Pathol 2024; 34:e13230. [PMID: 38115557 PMCID: PMC11007053 DOI: 10.1111/bpa.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.
Collapse
Affiliation(s)
- Laura R. Nementzik
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Kyrah M. Thumbadoo
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Helen C. Murray
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - David Gordon
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Shu Yang
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Ian P. Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Clinton Turner
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
- Department of Anatomical Pathology, LabPlusAuckland City HospitalAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Maurice A. Curtis
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Catriona McLean
- Department of Anatomical PathologyAlfred HealthMelbourneVictoriaAustralia
| | - Garth A. Nicholson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyAustralia
- Molecular Medicine LaboratoryConcord Repatriation General HospitalSydneyAustralia
| | - Molly E. V. Swanson
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Emma L. Scotter
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Wu W, Lin L, Zhao Y, Li H, Zhang R. Protein modification regulated autophagy in Bombyx mori and Drosophila melanogaster. Front Physiol 2023; 14:1281555. [PMID: 38028759 PMCID: PMC10665574 DOI: 10.3389/fphys.2023.1281555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Post-translational modifications refer to the chemical alterations of proteins following their biosynthesis, leading to changes in protein properties. These modifications, which encompass acetylation, phosphorylation, methylation, SUMOylation, ubiquitination, and others, are pivotal in a myriad of cellular functions. Macroautophagy, also known as autophagy, is a major degradation of intracellular components to cope with stress conditions and strictly regulated by nutrient depletion, insulin signaling, and energy production in mammals. Intriguingly, in insects, 20-hydroxyecdysone signaling predominantly stimulates the expression of most autophagy-related genes while concurrently inhibiting mTOR activity, thereby initiating autophagy. In this review, we will outline post-translational modification-regulated autophagy in insects, including Bombyx mori and Drosophila melanogaster, in brief. A more profound understanding of the biological significance of post-translational modifications in autophagy machinery not only unveils novel opportunities for autophagy intervention strategies but also illuminates their potential roles in development, cell differentiation, and the process of learning and memory processes in both insects and mammals.
Collapse
Affiliation(s)
- Wenmei Wu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luobin Lin
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Mengnan L, Xianwen Y, Shuyan Z, Shuiqing C, Wenjuan X, Xuan W, Jia W, Chunshuai L, Linlin Y, Xinfang X, Xiangri L. Homotherapy for heteropathy of Alzheimer's disease and anemia through reducing the expression of toll-like receptor and TNF by steamed Panax notoginseng. Biomed Pharmacother 2023; 165:115075. [PMID: 37385213 DOI: 10.1016/j.biopha.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND One of the effects of Steamed Panax notoginsen (SPN) is to replenish blood, which is mostly used to treat anemia in clinic. SPN has the effect of treating anemia and Alzheimer's disease (AD) in clinical and basic research. In traditional Chinese medicine, anemia and AD have the same characteristics, and their symptoms are qi and blood deficiency. METHODS First, data analysis was carried out through network pharmacology to predict the action targets of SPN homotherapy in the treatment of AD and anemia. Specifically, TCMSP and relevant literature were used to screen the main active ingredients of Panax notoginseng, and SuperPred was used to predict the action targets of the active ingredients. Disease targets related to AD and anemia were collected through Genecards database, and STRING and protein interaction (PPI) was used for enrichment analysis, Analyze the characteristics of the active ingredient target network on the Cytascape 3.9.0 platform, and use Metascape to enrich the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment (KEGG pathway). Then Drosophila was used as the AD animal model, and the effects of SPN on the climbing ability, olfactory memory and brain Aβ, with rats as anemia animal models, the improvement effect of SPN on blood routine and organ index of rats with blood deficiency induced by CTX and APH was analyzed to further explain the therapeutic effect of SPN on these two diseases. Finally, the regulatory effect of SPN on the key active target of allotherapy for AD and anemia was verified by PCR. RESULTS After the screening, 17 active components and 92 action targets of SPN were obtained. The degree values of components and the first 15 targets are NFKB1, IL10, PIK3CA, PTGS2, SRC, ECFR, CASP3, MTOR, IL1B, ESR1, AKT1, HSP90AA1, IL6, TNF, and Toll-like receptor, it is mainly related to inflammatory response, immune regulation and antioxidation. SPN improved the climbing ability, olfactory memory ability, and Aβ42 content in the brain of Aβ flies, and significantly reduced the expression of TNF and Toll-like receptor in the brain after treatment. SPN can significantly improve the blood routine index and organ index of anemia rats, and also significantly reduce the expression of TNF and Toll-like receptor in the brain after treatment. CONCLUSION SPN can regulate the expression of TNF and Toll-like receptor to achieve the same treatment of AD and anemia.
Collapse
Affiliation(s)
- Liu Mengnan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ye Xianwen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang Shuyan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cheng Shuiqing
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Wenjuan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wang Xuan
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen Jia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Li Chunshuai
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Linlin
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Xinfang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Li Xiangri
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Lo Piccolo L, Umegawachi T, Yeewa R, Potikanond S, Nimlamool W, Prachayasittikul V, Gotoh Y, Yoshida H, Yamaguchi M, Jantrapirom S. A Novel Drosophila-based Drug Repurposing Platform Identified Fingolimod As a Potential Therapeutic for TDP-43 Proteinopathy. Neurotherapeutics 2023; 20:1330-1346. [PMID: 37493896 PMCID: PMC10480388 DOI: 10.1007/s13311-023-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Pathogenic changes to TAR DNA-binding protein 43 (TDP-43) leading to alteration of its homeostasis are a common feature shared by several progressive neurodegenerative diseases for which there is no effective therapy. Here, we developed Drosophila lines expressing either wild type TDP-43 (WT) or that carrying an Amyotrophic Lateral Sclerosis /Frontotemporal Lobar Degeneration-associating G384C mutation that recapitulate several aspects of the TDP-43 pathology. To identify potential therapeutics for TDP-43-related diseases, we implemented a drug repurposing strategy that involved three consecutive steps. Firstly, we evaluated the improvement of eclosion rate, followed by the assessment of locomotive functions at early and late developmental stages. Through this approach, we successfully identified fingolimod, as a promising candidate for modulating TDP-43 toxicity. Fingolimod exhibited several beneficial effects in both WT and mutant models of TDP-43 pathology, including post-transcriptional reduction of TDP-43 levels, rescue of pupal lethality, and improvement of locomotor dysfunctions. These findings provide compelling evidence for the therapeutic potential of fingolimod in addressing TDP-43 pathology, thereby strengthening the rationale for further investigation and consideration of clinical trials. Furthermore, our study demonstrates the utility of our Drosophila-based screening pipeline in identifying novel therapeutics for TDP-43-related diseases. These findings encourage further scale-up screening endeavors using this platform to discover additional compounds with therapeutic potential for TDP-43 pathology.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Musculoskeletal Science and Translational Research Centre (MSTR), Chiang Mai University, Chiang Mai, Thailand
| | | | - Ranchana Yeewa
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Chiang Mai, Thailand
| | - Yusuke Gotoh
- Platform Technology Research Unit, Sumitomo Pharma Co., Ltd, Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Temviriyanukul P, Kittibunchakul S, Trisonthi P, Kunkeaw T, Inthachat W, Siriwan D, Suttisansanee U. Mangifera indica ‘Namdokmai’ Prevents Neuronal Cells from Amyloid Peptide Toxicity and Inhibits BACE-1 Activities in a Drosophila Model of Alzheimer’s Amyloidosis. Pharmaceuticals (Basel) 2022; 15:ph15050591. [PMID: 35631418 PMCID: PMC9146065 DOI: 10.3390/ph15050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological illness with few effective treatments. Thus, ameliorating the effects of AD using natural products has attracted global attention with promising efficacy and safety. In this study, ten tropical fruits including Ananas comosus ‘Phulae’, Ananas comosus ‘Pattavia’, Carica papaya ‘Khaekdum’, Carica papaya ‘Khaeknuan’, Durio zibethinus ‘Monthong’, Durio zibethinus ‘Chanee’, Psidium guajava ‘Kimju’, Psidium guajava ‘Keenok’, Mangifera indica ‘Kaew’ and Mangifera indica ‘Namdokmai’ were screened for their inhibitory activities against the key enzymes, cholinesterases and β-secretase (BACE-1), involved in AD pathogenesis. The top three fruit extracts with promising in vitro anti-AD activities were further investigated using rat pheochromocytoma PC-12 neuronal cell line and Drosophila AD model. Data showed that M. indica ‘Kaew’, M. indica ‘Namdokmai’ and P. guajava ‘Kimju’ reduced Aβ1–42-mediated neurotoxicity by promoting glutathione-dependent enzymes, while M. indica ‘Namdokmai’ limited Aβ1–42 peptide formation via BACE-1 inhibition and amended locomotory behavior of the Drosophila AD model. Results indicated the potential anti-AD properties of tropical fruits, particularly M. indica ‘Namdokmai’ in the prevention of Aβ1–42-mediated neurotoxicity and as a BACE-1 blocker.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (T.K.); (W.I.)
| | - Suwapat Kittibunchakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (T.K.); (W.I.)
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Thanit Kunkeaw
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (T.K.); (W.I.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (T.K.); (W.I.)
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
- Correspondence: (D.S.); (U.S.)
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (S.K.); (T.K.); (W.I.)
- Correspondence: (D.S.); (U.S.)
| |
Collapse
|
8
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
9
|
Kunkeaw T, Suttisansanee U, Trachootham D, Karinchai J, Chantong B, Potikanond S, Inthachat W, Pitchakarn P, Temviriyanukul P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer's disease. Sci Rep 2021; 11:23796. [PMID: 34893659 PMCID: PMC8664832 DOI: 10.1038/s41598-021-03142-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/26/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aβ), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aβ-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aβ42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.
Collapse
Affiliation(s)
- Thanit Kunkeaw
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Dunyaporn Trachootham
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Preclinical Science and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand.
| |
Collapse
|
10
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2021; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| |
Collapse
|
11
|
Choi S, Song B, Shin H, Won C, Kim T, Yoshida H, Lee D, Chung J, Cho KS, Lee IS. Drosophila NSD deletion induces developmental anomalies similar to those seen in Sotos syndrome 1 patients. Genes Genomics 2021; 43:737-748. [PMID: 33864616 DOI: 10.1007/s13258-021-01091-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Haploinsufficiency of the human nuclear receptor binding suppressor of variegation 3-9, enhancer of zeste, and trithorax (SET) domain 1 (NSD1) gene causes a developmental disorder called Sotos syndrome 1 (SOTOS1), which is associated with overgrowth and macrocephaly. NSD family proteins encoding histone H3 lysine 36 (H3K36) methyltransferases are conserved in many species, and Drosophila has a single NSD homolog gene, NSD. OBJECTIVE To gain insight into the biological functions of NSD1 deficiency in the developmental anomalies seen in SOTOS1 patients using an NSD-deleted Drosophila mutant. METHODS We deleted Drosophila NSD using CRISPR/Cas9-mediated targeted gene knock-out, and analyzed pleiotropic phenotypes of the homozygous mutant of NSD (NSD-/-) at various developmental stages to understand the roles of NSD in Drosophila. RESULTS The site-specific NSD deletion was confirmed in the mutant. The H3K36 di-methylation levels were dramatically decreased in the NSD-/- fly. Compared with the control, the NSD-/- fly displayed an increase in the body size of larvae, similar to the childhood overgrowth phenotype of SOTOS1 patients. Although the NSD mutant flies survived to adulthood, their fecundity was dramatically decreased. Furthermore, the NSD-/- fly showed neurological dysfunctions, such as lower memory performance and motor defects, and a diminished extracellular signal-regulated kinase (ERK) activity. CONCLUSIONS The NSD-deleted Drosophila phenotype resembles many of the phenotypes of SOTOS1 patients, such as learning disability, deregulated ERK signaling, and overgrowth; thus, this mutant fly is a relevant model organism to study various SOTOS1 phenotypes.
Collapse
Affiliation(s)
- Saeyan Choi
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Bokyeong Song
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyewon Shin
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chihyun Won
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Taejoon Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Daewon Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
12
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
13
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
14
|
Yu G, Hyun S. Proteostasis-associated aging: lessons from a Drosophila model. Genes Genomics 2020; 43:1-9. [PMID: 33111208 DOI: 10.1007/s13258-020-01012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
As cells age, they lose their ability to properly fold proteins, maintain protein folding, and eliminate misfolded proteins, which leads to the accumulation of abnormal protein aggregates and loss of protein homeostasis (proteostasis). Loss of proteostasis can accelerate aging and the onset of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Mechanisms exist to prevent the detrimental effects of abnormal proteins that incorporate chaperones, autophagy, and the ubiquitin-proteasome system. These mechanisms are evolutionarily conserved across various species. Therefore, the effect of impaired proteostasis on aging has been studied using model organisms that are appropriate for aging studies. In this review, we focus on the relationship between proteostasis and aging, and factors that affect proteostasis in Drosophila. The manipulation of proteostasis can alter lifespan, modulate neurotoxicity, and delay the onset of neurodegeneration, indicating that proteostasis may be a novel pharmacological target for the development of treatments for various age-associated diseases.
Collapse
Affiliation(s)
- Garbin Yu
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea.
| |
Collapse
|
15
|
Takai A, Chiyonobu T, Ueoka I, Tanaka R, Tozawa T, Yoshida H, Morimoto M, Hosoi H, Yamaguchi M. A novel Drosophila model for neurodevelopmental disorders associated with Shwachman-Diamond syndrome. Neurosci Lett 2020; 739:135449. [PMID: 33115644 DOI: 10.1016/j.neulet.2020.135449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Genetic defects in ribosome biogenesis result in a group of diseases called ribosomopathies. Patients with ribosomopathies manifest multiorgan phenotypes, including neurological impairments. A well-characterized ribosomopathy, Shwachman-Diamond syndrome (SDS), is mainly associated with loss-of-function mutations in the causal gene SBDS. Children with SDS have neurodevelopmental disorders; however, the neurological consequences of SBDS dysfunction remain poorly defined. In the present study, we investigated the phenotype of Drosophila melanogaster following knockdown of CG8549, the Drosophila ortholog of human SBDS, to provide evidence for the neurological consequences of reduction in physiological SBDS functions. The pan-neuron-specific knockdown of CG8549 was associated with locomotive disabilities, mechanically induced seizures, hyperactivity, learning impairments, and anatomical defects in presynaptic terminals. These results provide the first evidence of a direct link between a reduction in physiological SBDS function and neurological impairments.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Masafumi Morimoto
- Department of Medical Science, School of Nursing, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
16
|
Honeybee products and edible insect powders improve locomotive and learning abilities of Ubiquilin-knockdown Drosophila. BMC Complement Med Ther 2020; 20:267. [PMID: 32867756 PMCID: PMC7457359 DOI: 10.1186/s12906-020-03054-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the human Ubiquilin 2 gene are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD), the fatal neurodegenerative disease that progressively affected neuronal cells in both brain and spinal cord. There is currently no effective therapy for these diseases. Over the last decade, researchers have focused on the potential use of natural products especially in neurodegenerative studies. Insect products have been used as traditional medicines, however, scientific information is still lacking. Fruit fly is recently used as a model organism to investigate degenerative diseases related to the nervous system because it has a short life span and produces a large number of offspring. METHODS The present study investigated the effects of honeybee products and edible insect powders on the locomotive and learning abilities, neuromuscular junctions (NMJs) structure, and reactive oxygen species (ROS) in larval brains of Ubiquilin- knockdown Drosophila. RESULTS dUbqn knockdown flies showed defects in locomotive and learning abilities accompanied with structural defects in NMJs. The results obtained revealed that the recovery of locomotive defects was significantly greater in dUbqn knockdown flies fed with coffee honey from Apis cerana (1% v/v) or Apis dorsata melittin (0.5 μg/ml) or wasp powder (2 mg/ml) than that of in untreated dUbqn knockdown flies. Furthermore, dUbqn knockdown flies fed with coffee honey showed the partial rescue of structural defects in NMJs, improved learning ability, and reduced the accumulation of ROS caused by dUbqn depletion in the brain over the untreated group. CONCLUSION These results suggest that coffee honey from Apis cerana contains a neuroprotective agent that will contribute to the development of a novel treatment for ALS/FTD.
Collapse
|
17
|
Jantrapirom S, Lo Piccolo L, Pruksakorn D, Potikanond S, Nimlamool W. Ubiquilin Networking in Cancers. Cancers (Basel) 2020; 12:E1586. [PMID: 32549375 PMCID: PMC7352256 DOI: 10.3390/cancers12061586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquilins or UBQLNs, members of the ubiquitin-like and ubiquitin-associated domain (UBL-UBA) protein family, serve as adaptors to coordinate the degradation of specific substrates via both proteasome and autophagy pathways. The UBQLN substrates reveal great diversity and impact a wide range of cellular functions. For decades, researchers have been attempting to uncover a puzzle and understand the role of UBQLNs in human cancers, particularly in the modulation of oncogene's stability and nucleotide excision repair. In this review, we summarize the UBQLNs' genetic variants that are associated with the most common cancers and also discuss their reliability as a prognostic marker. Moreover, we provide an overview of the UBQLNs networks that are relevant to cancers in different ways, including cell cycle, apoptosis, epithelial-mesenchymal transition, DNA repairs and miRNAs. Finally, we include a future prospective on novel ubiquilin-based cancer therapies.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
| | - Luca Lo Piccolo
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (L.L.P.); (D.P.)
| | - Dumnoensun Pruksakorn
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (L.L.P.); (D.P.)
- Department of Orthopedics, Orthopedic Laboratory and Research Network Center (OLARN), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Excellence Center in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.J.); (S.P.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Kim T, Shin H, Song B, Won C, Yoshida H, Yamaguchi M, Cho KS, Lee I. Overexpression of
H3K36
methyltransferase
NSD
in glial cells affects brain development in
Drosophila. Glia 2020; 68:2503-2516. [DOI: 10.1002/glia.23867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Taejoon Kim
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hyewon Shin
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Bokyeong Song
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Chihyun Won
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Hideki Yoshida
- Department of Applied Biology Kyoto Institute of Technology Kyoto Japan
| | | | - Kyoung Sang Cho
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| | - Im‐Soon Lee
- Department of Biological Sciences, CHANS Research Center Konkuk University Seoul South Korea
| |
Collapse
|
19
|
Ali MS, Suda K, Kowada R, Ueoka I, Yoshida H, Yamaguchi M. Neuron-specific knockdown of solute carrier protein SLC25A46a induces locomotive defects, an abnormal neuron terminal morphology, learning disability, and shortened lifespan. IBRO Rep 2020; 8:65-75. [PMID: 32140609 PMCID: PMC7047145 DOI: 10.1016/j.ibror.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/21/2023] Open
Abstract
Various mutations in the SLC25A46 gene have been reported in mitochondrial diseases that are sometimes classified as type 2 Charcot-Marie-Tooth disease, optic atrophy, and Leigh syndrome. Although human SLC25A46 is a well-known transporter that acts through the mitochondrial outer membrane, the relationship between neurodegeneration in these diseases and the loss-of-function of SLC25A46 remains unclear. Two Drosophila genes, CG8931 (dSLC25A46a) and CG5755 (dSLC25A46b) have been identified as candidate homologs of human SLC25A46. We previously characterized the phenotypes of pan-neuron-specific dSLC25A46b knockdown flies. In the present study, we developed pan-neuron-specific dSLC25A46a knockdown flies and examined their phenotypes. Neuron-specific dSLC25A46a knockdown resulted in reduced mobility in larvae as well as adults. An aberrant morphology for neuromuscular junctions (NMJs), such as a reduced synaptic branch length and decreased number and size of boutons, was observed in dSLC25A46a knockdown flies. Learning ability was also reduced in the larvae of knockdown flies. In dSLC25A46a knockdown flies, mitochondrial hyperfusion was detected in NMJ synapses together with the accumulation of reactive oxygen species and reductions in ATP. These phenotypes were very similar to those of dSLC25A46b knockdown flies, suggesting that dSLC25A46a and dSLC25A46b do not have redundant roles in neurons. Collectively, these results show that the depletion of SLC25A46a leads to mitochondrial defects followed by an aberrant synaptic morphology, resulting in locomotive defects and learning disability. Thus, the dSLC25A46a knockdown fly summarizes most of the phenotypes in patients with mitochondrial diseases, offering a useful tool for studying these diseases.
Collapse
Affiliation(s)
- Md Saheb Ali
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Faculty of Agriculture, Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka, 1207, Bangladesh
| | - Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryosuke Kowada
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ibuki Ueoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
20
|
Suttisansanee U, Charoenkiatkul S, Jongruaysup B, Tabtimsri S, Siriwan D, Temviriyanukul P. Mulberry Fruit Cultivar 'Chiang Mai' Prevents Beta-Amyloid Toxicity in PC12 Neuronal Cells and in a Drosophila Model of Alzheimer's Disease. Molecules 2020; 25:E1837. [PMID: 32316271 PMCID: PMC7221829 DOI: 10.3390/molecules25081837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by chronic neuron loss and cognitive problems. Aggregated amyloid beta (Aβ) peptides, a product of cleaved amyloid precursor protein (APP) by beta-secretase 1 (BACE-1), have been indicated for the progressive pathogenesis of AD. Currently, screening for anti-AD compounds in foodstuffs is increasing, with promising results. Hence, the purpose of this study was to investigate the extraction conditions, phytochemical contents, and anti-AD properties, targeting Aβ peptides of Morus cf. nigra 'Chiang Mai' (MNCM) both in vitro and in vivo. Data showed that the aqueous extract of MNCM contained high amounts of cyanidin, keracyanin, and kuromanin as anthocyanidin and anthocyanins. The extract also strongly inhibited cholinesterases and BACE-1 in vitro. Moreover, MNCM extract prevented Aβ-induced neurotoxicity and promoted neurite outgrowth in neuronal cells. Interestingly, MNCM extract reduced Aβ1-42 peptides and improved locomotory coordination of Drosophila co-expressing human APP and BACE-1, specifically in the brain. These findings suggest that MNCM may be useful as an AD preventive agent by targeting Aβ formation.
Collapse
Affiliation(s)
- Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (U.S.); (S.C.)
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (U.S.); (S.C.)
| | - Butsara Jongruaysup
- Office of Sericulture Conservation and Standard Conformity Assessment, The Queen Sirikit Department of Sericulture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Somying Tabtimsri
- The Queen Sirikit Department of Sericulture Center (Kanchanaburi), Nong Ya, Mueang Kanchanaburi District, Kanchanaburi 71000, Thailand;
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (U.S.); (S.C.)
| |
Collapse
|
21
|
Jantrapirom S, Enomoto Y, Karinchai J, Yamaguchi M, Yoshida H, Fukusaki E, Shimma S, Yamaguchi M. The depletion of ubiquilin in Drosophila melanogaster disturbs neurochemical regulation to drive activity and behavioral deficits. Sci Rep 2020; 10:5689. [PMID: 32231214 PMCID: PMC7105486 DOI: 10.1038/s41598-020-62520-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster is a useful and highly tractable model organism for understanding the molecular mechanisms of human diseases. We previously characterized a new dUbqn knockdown model that induces learning-memory and locomotive deficits mediated by impaired proteostasis. Although proteinopathies are the main causes of neurodegenerative diseases, limited information is currently available on the relationship between proteostasis and neurodegenerative-related behavioral perturbations, such as locomotion, wakefulness, and sexual activities. Thus, the present study aimed to elucidate the mechanisms by which dUbqn depletion which is known to cause proteinopathies, affects neurodegenerative-related behavioral perturbations. Pan-neuronal dUbqn-depleted flies showed significantly reduced evening activity along with altered pre- and postsynaptic structural NMJ's proteins by attenuating signals of Bruchpilot puncta and GluRIIA clustering. In addition, the neurochemical profiles of GABA, glutamate, dopamine, and serotonin were disturbed and these changes also affected courtship behaviors in dUbqn-depleted flies. Collectively, these results extend our understanding on how dUbqn depletion affects neurochemical regulation to drive behavioral disturbances that are generally found in the early stage of neurodegenerative diseases. Moreover, the present study may contribute a novel finding to the design of new agents that prevent disease progression or even treat diseases related to neurodegeneration.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Yosuke Enomoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mizuki Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto, 606-8585, Japan.
| |
Collapse
|
22
|
Gupta I, Khan S. The recognition of proteasomal receptors by Plasmodium falciparum DSK2. Mol Biochem Parasitol 2020; 236:111266. [PMID: 32057831 DOI: 10.1016/j.molbiopara.2020.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/26/2022]
Abstract
One of the pathways by which proteins are targeted for degradation by the proteasome involve transport by shuttle proteins to proteasomal receptors. The malaria parasite Plasmodium falciparum has recently been found to possess a similar pathway, with the shuttle protein PfDsk2 being the major player. In this study, we have demonstrated how PfDsk2 and its recognition by proteasomal receptors differ from the mammalian system. Our crystal structure of unbound PfDsk2 UBL domain at 1.30 Å revealed an additional 310-helix compared to the human homolog, as well as a few significant differences in its putative binding interface with the proteasome receptors, PfRpn10 and PfRpn13. Moreover, the non-binding face of UBL showed a reversal of surface charge compared to HsDsk2 shuttle protein, instead resembling HOIL-like E3 ligase UBL domain. The affinity of the interaction with the proteasomal receptors remained similar to the human system, and dissociation constants of the same order of magnitude. On the other hand, we have found evidence of a novel interaction between PfRpn13DEUBAD with the PfDsk2UBL suggesting that PfDsk2 may work in cooperation with deubiquitinating enzymes for proofreading ubiquitinated substrates. Our study provides the first molecular look at shuttle proteins in Apicomplexan parasites and hints at how their interaction landscape might be broader than what we may expect.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India; Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
23
|
Novel genetic link between the ATP-binding cassette subfamily A gene and hippo gene in Drosophila. Exp Cell Res 2020; 386:111733. [DOI: 10.1016/j.yexcr.2019.111733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/16/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022]
|
24
|
Drosophila Alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage. Neuroreport 2019; 30:1039-1047. [PMID: 31503204 DOI: 10.1097/wnr.0000000000001323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AlkB family proteins are enzymes that repair alkylated DNA and RNA by oxidative demethylation. Nine homologs have been identified and characterized in mammals. ALKBH1 is conserved among metazoans including Drosophila. Although the ALKBH1 mouse homolog, Alkbh1 functions in neurogenesis, it currently remains unclear whether ALKBH1 plays a role in neuronal disorders induced by ultraviolet-induced DNA damage. We herein demonstrated that the Drosophila ALKBH1 homolog, AlkB contributed to recovery from neuronal disorders induced by ultraviolet damage. The knockdown of AlkB resulted in not only learning defects but also altered crawling behavior in Drosophila larvae after ultraviolet irradiation. A molecular analysis revealed that AlkB contributed to the repair of ultraviolet-induced DNA damage in the central nervous system of larvae. Therefore, we propose that ALKBH1 plays a role in the repair of ultraviolet-induced DNA damage in central nervous system. Ultraviolet-induced DNA damage is involved in the pathogenesis of xeroderma pigmentosum, and has recently been implicated in Parkinson's disease. The present results will contribute to our understanding of neuronal diseases induced by ultraviolet-induced DNA damage.
Collapse
|
25
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
26
|
Li J, Suda K, Ueoka I, Tanaka R, Yoshida H, Okada Y, Okamoto Y, Hiramatsu Y, Takashima H, Yamaguchi M. Neuron-specific knockdown of Drosophila HADHB induces a shortened lifespan, deficient locomotive ability, abnormal motor neuron terminal morphology and learning disability. Exp Cell Res 2019; 379:150-158. [DOI: 10.1016/j.yexcr.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
|
27
|
Non-Proteasomal UbL-UbA Family of Proteins in Neurodegeneration. Int J Mol Sci 2019; 20:ijms20081893. [PMID: 30999567 PMCID: PMC6514573 DOI: 10.3390/ijms20081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin-like/ubiquitin-associated proteins (UbL-UbA) are a well-studied family of non-proteasomal ubiquitin receptors that are evolutionarily conserved across species. Members of this non-homogenous family facilitate and support proteasomal activity by promoting different effects on proteostasis but exhibit diverse extra-proteasomal activities. Dysfunctional UbL-UbA proteins render cells, particularly neurons, more susceptible to stressors or aging and may cause earlier neurodegeneration. In this review, we summarized the properties and functions of UbL-UbA family members identified to date, with an emphasis on new findings obtained using Drosophila models showing a direct or indirect role in some neurodegenerative diseases.
Collapse
|
28
|
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E, Walters KJ. Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome. J Mol Biol 2019; 431:939-955. [PMID: 30664872 PMCID: PMC6389388 DOI: 10.1016/j.jmb.2019.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a highly complex 2.5-MDa molecular machine responsible for regulated protein degradation. Proteasome substrates are typically marked by ubiquitination for recognition at receptor sites contributed by Rpn1/S2/PSMD2, Rpn10/S5a, and Rpn13/Adrm1. Each receptor site can bind substrates directly by engaging conjugated ubiquitin chains or indirectly by binding to shuttle factors Rad23/HR23, Dsk2/PLIC/UBQLN, or Ddi1, which contain a ubiquitin-like domain (UBL) that adopts the ubiquitin fold. Previous structural studies have defined how each of the proteasome receptor sites binds to ubiquitin chains as well as some of the interactions that occur with the shuttle factors. Here, we define how hRpn10 binds to the UBQLN2 UBL domain, solving the structure of this complex by NMR, and determine affinities for each UIM region by a titration experiment. UBQLN2 UBL exhibits 25-fold stronger affinity for the N-terminal UIM-1 over UIM-2 of hRpn10. Moreover, we discover that UBQLN2 UBL is fine-tuned for the hRpn10 UIM-1 site over the UIM-2 site by taking advantage of the additional contacts made available through the longer UIM-1 helix. We also test hRpn10 versatility for the various ubiquitin chains to find less specificity for any particular linkage type compared to hRpn1 and hRpn13, as expected from the flexible linker region that connects the two UIMs; nonetheless, hRpn10 does exhibit some preference for K48 and K11 linkages. Altogether, these results provide new insights into the highly complex and complementary roles of the proteasome receptor sites and shuttle factors.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon J Wright
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evan Hooper
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Linganore High School, Frederick, MD 21701, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
29
|
Huang S, Dong X, Wang J, Ding J, Li Y, Li D, Lin H, Wang W, Zhao M, Chang Q, Zhou N, Cui W, Huang C. Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway. Med Sci Monit 2018; 24:3564-3570. [PMID: 29807370 PMCID: PMC6004079 DOI: 10.12659/msm.909621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. MATERIAL AND METHODS We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. RESULTS Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. CONCLUSIONS These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells.
Collapse
Affiliation(s)
- Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Jia Wang
- Department of Clinical Laboratory, Meitan General Hospital, Beijing, China (mainland)
| | - Jie Ding
- State Key Laboratory of Cardiovascular Disease, Anesthesia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wenjie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ning Zhou
- The Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China (mainland)
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| |
Collapse
|
30
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|