1
|
Zhang Y, Chen J, Tian J, Zhou Y, Liu Y. Role and function of plakophilin 3 in cancer progression and skin disease. Cancer Sci 2024; 115:17-23. [PMID: 38048779 PMCID: PMC10823275 DOI: 10.1111/cas.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jiahui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jia Tian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yehui Zhou
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
2
|
Li Y, Wu H, Guo Y, Wei C, Guan L, Ju W, Lian F. Cangfu Daotan Wan alleviates polycystic ovary syndrome with phlegm-dampness syndrome via disruption of the PKP3/ERCC1/MAPK axis. J Ovarian Res 2023; 16:134. [PMID: 37420272 DOI: 10.1186/s13048-023-01200-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND/AIM Cangfu Daotan Wan (CFDTW) has been widely used for polycystic ovary syndrome (PCOS) patients in the type of stagnation of phlegm and dampness. In this study, we aimed to evaluate the mechanism underlying the therapeutic effect of CFDTW on PCOS with phlegm-dampness syndrome (PDS). METHODS In silico analysis was adopted to identify CFDTW potential targets and the downstream pathways in the treatment of PCOS. Expression of PKP3 was examined in the ovarian granulosa cells from PCOS patients with PDS and rat PCOS models induced by dehydroepiandrosterone (DHEA). PKP3/ERCC1 was overexpressed or underexpressed or combined with CFDTW treatment in ovarian granulosa cells to assay the effect of CFDTW on ovarian granulosa cell functions via the PKP3/MAPK/ERCC1 axis. RESULTS Clinical samples and ovarian granulosa cells of rat models were characterized by hypomethylated PKP3 promoter and upregulated PKP3 expression. CFDTW reduced PKP3 expression by enhancing the methylation of PKP3 promoter, leading to proliferation of ovarian granulosa cells, increasing S and G2/M phase-arrested cells, and arresting their apoptosis. PKP3 augmented ERCC1 expression by activating the MAPK pathway. In addition, CFDTW facilitated the proliferation of ovarian granulosa cells and repressed their apoptosis by regulating PKP3/MAPK/ERCC1 axis. CONCLUSION Taken together, this study illuminates how CFDTW confers therapeutic effects on PCOS patients with PDS, which may offer a novel theranostic marker in PCOS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250011, Shandong Province, P. R. China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250011, Shandong Province, P. R. China
| | - Ying Guo
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250011, Shandong Province, P. R. China
| | - Chaofeng Wei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Lu Guan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P. R. China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250011, Shandong Province, P. R. China.
| |
Collapse
|
3
|
Choudhary BS, Chaudhary N, Shah M, Dwivedi N, P K S, Das M, Dalal SN. Lipocalin 2 inhibits actin glutathionylation to promote invasion and migration. FEBS Lett 2023; 597:1086-1097. [PMID: 36650979 DOI: 10.1002/1873-3468.14572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Invasive and metastatic tumor cells show an increase in migration and invasion, making the processes contributing to these phenotypes potential therapeutic targets. Lipocalin 2 (LCN2; also known as neutrophil gelatinase-associated lipocalin) is a putative therapeutic target in multiple tumor types and promotes invasion and migration, although the mechanisms underlying these phenotypes are unclear. The data in this report demonstrate that LCN2 promotes actin polymerization, invasion, and migration by inhibiting actin glutathionylation. LCN2 inhibits actin glutathionylation by decreasing the levels of reactive oxygen species (ROS) and by reducing intracellular iron levels. Inhibiting LCN2 function leads to increased actin glutathionylation, decreased migration, and decreased invasion. These results suggest that LCN2 is a potential therapeutic target in invasive tumors.
Collapse
Affiliation(s)
- Bhagya Shree Choudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nazia Chaudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Manya Shah
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nehanjali Dwivedi
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Smitha P K
- Product Research Group, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Exhaled breath condensate proteomic signatures potentially distinguish adenocarcinoma from benign cystic lesions of the pancreas. Curr Res Transl Med 2022; 70:103361. [PMID: 35963150 DOI: 10.1016/j.retram.2022.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 01/31/2023]
|
5
|
Chaudhary N, Joshi N, Doloi R, Shivashankar A, Thorat R, Dalal SN. Plakophilin3 loss leads to an increase in autophagy and radio-resistance. Biochem Biophys Res Commun 2022; 620:1-7. [DOI: 10.1016/j.bbrc.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
6
|
Raghavan R, Koyande N, Beher R, Chetlangia N, Ramadwar M, Pawade S, Thorat R, van Hengel J, Sklyarova T, van Roy F, Dalal SN. Plakophilin3 loss leads to increased adenoma formation and rectal prolapse in APC min mice. Biochem Biophys Res Commun 2022; 586:14-19. [PMID: 34823217 DOI: 10.1016/j.bbrc.2021.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Plakophilin3 (PKP3) loss leads to tumor progression and metastasis of colon cancer cells. The goal of this report was to determine if PKP3 loss led to increased disease progression in mice. We generated a colonocyte-specific knockout of PKP3 in APCmin mice, which led to increased adenoma formation, the formation of rectal prolapse, and a significant decrease in survival. The observed increase in rectal prolapse formation and decrease in survival correlated with an increase in the expression of Lipocalin2 (LCN2). Increased disease progression was observed even upon treatment with 5-fluorouracil (5FU). These results suggest that an increase in LCN2 expression might lead to therapy resistance and that LCN2 might serve as a potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Rahul Raghavan
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Navami Koyande
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Rohit Beher
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Neha Chetlangia
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Mukda Ramadwar
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, 400012, India
| | - Shital Pawade
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Jolanda van Hengel
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; VIB Center of Inflammation Research, VIB, Ghent, Belgium; Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tetyana Sklyarova
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; VIB Center of Inflammation Research, VIB, Ghent, Belgium; Laboratory of Molecular Medical Oncology, Oncology Research Centre, Free University of Brussels, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; VIB Center of Inflammation Research, VIB, Ghent, Belgium
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
7
|
The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int J Mol Sci 2021; 23:ijms23010370. [PMID: 35008796 PMCID: PMC8745478 DOI: 10.3390/ijms23010370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, β, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.
Collapse
|
8
|
Katopodis P, Kerslake R, Zikopoulos A, Beri N, Anikin V. p38β - MAPK11 and its role in female cancers. J Ovarian Res 2021; 14:84. [PMID: 34174910 PMCID: PMC8236201 DOI: 10.1186/s13048-021-00834-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background The p38MAPK family of Mitogen Activated Protein Kinases are a group of signalling molecules involved in cell growth, survival, proliferation and differentiation. The widely studied p38α isoform is ubiquitously expressed and is implicated in a number of cancer pathologies, as are p38γ and p38δ. However, the mechanistic role of the isoform, p38β, remains fairly elusive. Recent studies suggest a possible role of p38β in both breast and endometrial cancer with research suggesting involvement in bone metastasis and cancer cell survival. Female tissue specific cancers such as breast, endometrial, uterine and ovary account for over 3,000,000 cancer related incidents annually; advancements in therapeutics and treatment however require a deeper understanding of the molecular aetiology associated with these diseases. This study provides an overview of the MAPK signalling molecule p38β (MAPK11) in female cancers using an in-silico approach. Methods A detailed gene expression and methylation analysis was performed using datasets from cBioportal, CanSar and MEXPRESS. Breast, Uterine Endometrial, Cervical, Ovarian and Uterine Carcinosarcoma TCGA cancer datasets were used and analysed. Results Data using cBioportal and CanSAR suggest that expression of p38β is lower in cancers: BRCA, UCEC, UCS, CESC and OV compared to normal tissue. Methylation data from SMART and MEXPRESS indicate significant probe level variation of CpG island methylation status of the gene MAPK11. Analysis of the genes’ two CpG islands shows that the gene was hypermethylated in the CpG1 with increased methylation seen in BRCA, CESC and UCEC cancer data sets with a slight increase of expression recorded in cancer samples. CpG2 exhibited hypomethylation with no significant difference between samples and high levels of expression. Further analysis from MEXPRESS revealed no significance between probe methylation and altered levels of expression. In addition, no difference in the expression of BRCA oestrogen/progesterone/HER2 status was seen. Conclusion This data provides an overview of the expression of p38β in female tissue specific cancers, showing a decrease in expression of the gene in BRCA, UCEC, CESC, UCS and OV, increasing the understanding of p38β MAPK expression and offering insight for future in-vitro investigation and therapeutic application. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00834-9.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK. .,Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London, UB9 6JH, UK.
| | - Rachel Kerslake
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Athanasios Zikopoulos
- Obstetrics and Gynaecology Department, Royal Cornwall Hospitals NHS Foundation Trust, Royal Cornwall Hospital, Truro, TR1 3LJ, UK
| | - Nefeli Beri
- Department of Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vladimir Anikin
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London, UB9 6JH, UK.,Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119146
| |
Collapse
|
9
|
Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020; 21:ijms21207524. [PMID: 33053909 PMCID: PMC7589630 DOI: 10.3390/ijms21207524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38β (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38β in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38β might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Collapse
Affiliation(s)
- Olga Roche
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Elena Arconada-Luque
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Natalia García-Flores
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Liliana F. Mellor
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-420
| |
Collapse
|
10
|
Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 2020; 135:155214. [PMID: 32712458 DOI: 10.1016/j.cyto.2020.155214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is one of the most common and deadly cancers in men worldwide. The surrounding tumor microenvironment (TME) is important in tumor progression, as cytokines and soluble mediators including tumor necrosis factor (TNF-α) or lipocalin-2 (LCN2) can influence tumor growth and formation of metastasis. The exact mechanisms on how these pleiotropic factors affect PCa are still unknown. In this study, we showed for the first time that LCN2 mRNA and protein expression are strongly inducible by TNF-α in the highly metastatic human PCa cell line PC-3. In addition, we observed higher levels of secreted LCN2 in cell culture medium of TNF-α-treated PC-3 cells. We found that different signaling pathways such as p38, NF-κB or JNK were activated shortly after TNF-α treatment. Moreover, the mRNA levels of IL-1β and IL-8 were also significantly increased after 24 h stimulation. Mechanistically, the NF-κB pathway and the JNK signaling axis are directly responsible for LCN2 upregulation. This was shown by the fact that pretreatment with the JNK inhibitors SP600125 or JNK-IN-8 strongly downregulated phosphorylation of c-Jun protein and markedly reduced TNF-α-mediated LCN2 upregulation in PC-3 cells. Likewise, the NF-κB inhibitor QNZ was able to repress TNF-α-induced LCN2 expression in PC-3 cells. Taking into consideration that LCN2 has been described as a tumor promoting factor in PCa, our results indicate that JNK regulates LCN2 expression and unmasks the JNK signaling axis as a possible therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
11
|
Fuchs M, Foresti M, Radeva MY, Kugelmann D, Keil R, Hatzfeld M, Spindler V, Waschke J, Vielmuth F. Plakophilin 1 but not plakophilin 3 regulates desmoglein clustering. Cell Mol Life Sci 2019; 76:3465-3476. [PMID: 30949721 PMCID: PMC11105395 DOI: 10.1007/s00018-019-03083-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering. As revealed by atomic force microscopy (AFM), both Pkp-deficient keratinocyte cell lines showed reduced membrane availability and binding frequency of Dsg1 and 3 at cell borders. Extracellular crosslinking and AFM cluster mapping demonstrated that Pkp1 but not Pkp3 is required for Dsg3 clustering. Accordingly, Dsg3 overexpression reconstituted cluster formation in Pkp3- but not Pkp1-deficient keratinocytes as shown by AFM and STED experiments. Taken together, these data demonstrate that both Pkp1 and 3 regulate Dsg membrane availability, whereas Pkp1 but not Pkp3 is required for Dsg3 clustering.
Collapse
Affiliation(s)
- Michael Fuchs
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Marco Foresti
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Daniela Kugelmann
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Rene Keil
- Division of Pathobiochemistry, Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Division of Pathobiochemistry, Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Waschke
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany.
| | - Franziska Vielmuth
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 11, 80336, Munich, Germany.
| |
Collapse
|
12
|
Miki M, Oono T, Fujimori N, Takaoka T, Kawabe K, Miyasaka Y, Ohtsuka T, Saito D, Nakamura M, Ohkawa Y, Oda Y, Suyama M, Ito T, Ogawa Y. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors. Cancer Med 2019; 8:3748-3760. [PMID: 31129920 PMCID: PMC6639196 DOI: 10.1002/cam4.2232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/23/2022] Open
Abstract
Although the postoperative recurrence rate for pancreatic neuroendocrine tumors (PNETs) is reported to be 13.5%-30%, the paucity of valuable biomarkers to predict recurrence poses a problem for the early detection of relapse. Hence, this study aimed to identify new biomarkers to predict the recurrence of PNETs. We performed RNA sequencing (RNA-Seq) on RNA isolated from frozen primary tumors sampled from all localized G1/G2 PNETs resected curatively from 1998 to 2015 in our institution. We calculated differentially expressed genes (DEGs) in tumor with and without recurrence (≥3 years) for the propensity-matched cohort. Gene ontology analysis for the identified DEGs was also performed. Furthermore, we evaluated the expression levels of candidate genes as recurrence predictors via immunostaining. Comparison of transcriptional levels in tumors with and without recurrence identified 166 DEGs. Up- and downregulated genes with high significance in these tumors were mainly related to extracellular organization and cell adhesion, respectively. We observed the top three upregulated genes, C-type lectin domain family 3 member A (CLEC3A), matrix metalloproteinase-7 (MMP7), and lipocalin2 (LCN2) immunohistochemically and compared their levels in recurrent and nonrecurrent tumors. Significantly higher recurrence rate was shown in patients with positive expression of CLEC3A (P = 0.028), MMP7 (P = 0.003), and LCN2 (P = 0.040) than that with negative expression. We identified CLEC3A, MMP7, and LCN2 known to be associated with the phosphatidylinositol-3-kinase/Akt pathway, as potential novel markers to predict the postoperative recurrence of PNETs.
Collapse
Affiliation(s)
- Masami Miki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Takaoka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kawabe
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Saito
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Neuroendocrine Tumor Centre, Fukuoka Sanno Hospital, Internal University of Health and Welfare, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
13
|
Qian H, Yuan D, Bao J, Liu F, Zhang W, Yang X, Han G, Huang J, Sheng H, Yu H. Increased expression of plakophilin 3 is associated with poor prognosis in ovarian cancer. Medicine (Baltimore) 2019; 98:e14608. [PMID: 30855445 PMCID: PMC6417525 DOI: 10.1097/md.0000000000014608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Considering the essential role of plakophilin 3 (PKP3) in the maintenance cell-cell adhesion, dysregulation of PKP3 is involved in human diseases. This study aimed to explore the clinical significance of PKP3 in ovarian cancer. Immunohistochemistry was performed to examine the PKP3 expression in 157 cancer specimens from primary ovarian cancer patients. PKP3 was expressed in both the cytoplasm and nucleus. Eighty-one (51.6%) out of 157 ovarian cancer tissues showed PKP3 expression, while absent expression was observed in normal ovarian tissues. High PKP3 expression was associated with lymph node metastasis (LNM, P = .004) and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P = .013). Patients with high PKP3 expression had shorter overall survival (OS) than those with low PKP3 expression (60.2 months vs 74.2 months, P = .021). However, no association between PKP3 expression and progression-free survival (PFS) was observed (P = .790). Cox regression analysis indicated that PKP3 expression was an independently predictive factor for the OS of patient with ovarian cancer (adjusted HR = 1.601, 95%CI: 1.014-2.528, P = .043), especially those with FIGO stages III and IV disease (adjusted HR = 1.607, 95%CI: 1.006-2.567, P = .047). The gene expression profiling interactive analysis (GEPIA) databases also showed that PKP3 was upregulated in ovarian cancer (P < .001) and patients with high PKP3 expression had shorter OS (P = .004). In conclusion, our findings suggest that PKP3 is upregulated in ovarian cancer and is likely involved in the progression of ovarian cancer. PKP3 might therefore serve as a prognostic biomarker for patients with ovarian cancer.
Collapse
Affiliation(s)
- Hua Qian
- Department of Obstetrics and Gynecology
| | | | | | | | | | | | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Haihui Sheng
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | | |
Collapse
|