1
|
Li Z, Li X, Xia H, Wang Y, Wei N. NEK2 promotes the progression of osteoarthritis by stabilizing ATF2 through phosphorylation at Ser-112 and inhibiting autophagy. Int Immunopharmacol 2024; 146:113833. [PMID: 39693952 DOI: 10.1016/j.intimp.2024.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
NEK2 (NIMA-related kinase 2) has recently gained attention for its potential role in osteoarthritis (OA) chondrocytes, however, its specific involvement remains unclear. This study aimed to investigate the role of NEK2 in OA progression and the underlying molecular mechanisms. Primary mouse knee chondrocytes were stimulated with IL-1β to establish an in vitro OA model, followed by the knockdown of NEK2 or ATF2. The results indicated that silencing NEK2 or ATF2 impeded the IL-1β-induced decrease in cell proliferation and increase in inflammation, extracellular matrix (ECM) degradation, and apoptosis in chondrocytes. NEK2 or ATF2 knockdown restored IL-1β-induced autophagy defects. Mechanistically, NEK2 interacts with ATF2 to reduce its ubiquitylation level and enhance its stability by phosphorylating ATF2 at Ser-112. Consistently, ATF2 overexpression reversed the protective effect of NEK2 silencing on IL-1β-induced autophagy defects and chondrocyte injury. Additionally, a mouse OA model was established using medial meniscus destabilization (DMM) surgery, and NEK2 was knocked down by intra-articular injection of an adenovirus-mediated NEK2 interference vector. Downregulation of NEK2 mitigated cartilage degradation andautophagy defects ina mouse OA model. In conclusion, NEK2 promoted OA progression by enhancing ATF2 stability by phosphorylating it at Ser-112.
Collapse
Affiliation(s)
- Zhiqin Li
- Rheumatology and Immunology Department, Xi'an Third Hospital, Xi'an, China
| | - Xiaofeng Li
- Cardiovascular Surgery, Xianyang First People's Hospital, Xianyang, China
| | - Hongli Xia
- Rheumatology and Immunology Department, Xi'an Third Hospital, Xi'an, China
| | - Yiqi Wang
- Rheumatology and Immunology Department, Xi'an Third Hospital, Xi'an, China
| | - Ning Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00986-0. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
3
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zheng H, Liu M, Shi S, Huang H, Yang X, Luo Z, Song Y, Xu Q, Li T, Xue L, Lu F, Wang J. MAP4K4 and WT1 mediate SOX6-induced cellular senescence by synergistically activating the ATF2-TGFβ2-Smad2/3 signaling pathway in cervical cancer. Mol Oncol 2024; 18:1327-1346. [PMID: 38383842 PMCID: PMC11076992 DOI: 10.1002/1878-0261.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
SRY-box transcription factor 6 (SOX6) is a member of the SOX gene family and inhibits the proliferation of cervical cancer cells by inducing cell cycle arrest. However, the final cell fate and significance of these cell-cycle-arrested cervical cancer cells induced by SOX6 remains unclear. Here, we report that SOX6 inhibits the proliferation of cervical cancer cells by inducing cellular senescence, which is mainly mediated by promoting transforming growth factor beta 2 (TGFB2) gene expression and subsequently activating the TGFβ2-Smad2/3-p53-p21WAF1/CIP1-Rb pathway. SOX6 promotes TGFB2 gene expression through the MAP4K4-MAPK (JNK/ERK/p38)-ATF2 and WT1-ATF2 pathways, which is dependent on its high-mobility group (HMG) domain. In addition, the SOX6-induced senescent cervical cancer cells are resistant to cisplatin treatment. ABT-263 (navitoclax) and ABT-199 (venetoclax), two classic senolytics, can specifically eliminate the SOX6-induced senescent cervical cancer cells, and thus significantly improve the chemosensitivity of cisplatin-resistant cervical cancer cells. This study uncovers that the MAP4K4/WT1-ATF2-TGFβ2 axis mediates SOX6-induced cellular senescence, which is a promising therapeutic target in improving the chemosensitivity of cervical cancer.
Collapse
Affiliation(s)
- Han Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Mingchen Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shu Shi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Hongxin Huang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xingwen Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Ziheng Luo
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Yarong Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Lixiang Xue
- Department of Radiation OncologyCancer Center of Peking University Third Hospital, Peking University Third HospitalBeijingChina
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| |
Collapse
|
5
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Ji Y, Gao B, Zhao D, Wang Y, Zhang L, Wu H, Xie Y, Shi Q, Guo W. Involvement of Sep38β in the Insecticidal Activity of Bacillus thuringiensis against Beet Armyworm, Spodoptera exigua (Lepidoptera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2321-2333. [PMID: 38206329 DOI: 10.1021/acs.jafc.3c06667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The p38 mitogen-activated protein kinases (MAPKs) are associated with insect immunity, tissue repair, and the insecticidal activity of Bacillus thuringiensis (Bt). Here, a p38 MAPK family gene (Sep38β) was identified from Spodoptera exigua. Among the developmental stages, the transcription level of Sep38β was the highest in egg, followed by that in prepupa and pupa. Sep38β expression peaked in Malpighian tubules and the hemolymph of fifth instar larvae. Knockdown of Sep38β or injection of SB203580 (a p38 MAPK inhibitor) significantly downregulated the SeDUOX expression and reactive oxygen species (ROS) level in the midgut, accounting for deterioration of the midgut to scavenge pathogens and enhancement of Bt insecticidal activity. In conclusion, all the results demonstrate that Sep38β regulates the immune-related ROS level in the insect midgut, which suppresses the insecticidal activity of Bt against S. exigua by 17-22%. Our study highlights that Sep38β is essential for insect immunity and the insecticidal activity of Bt to S. exigua and is a potential target for pest control.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Xie W, Hou J, Li C, Zhang Q. Sodium aescinate ameliorates chronic neuropathic pain in male mice via suppressing JNK/p38-mediated microglia activation. Brain Inj 2024; 38:126-135. [PMID: 38324656 DOI: 10.1080/02699052.2024.2307966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE A study confirmed that sodium aescinate (SA) can effectively relieve bone cancer pain, but its role in neuropathic pain (NP) remains confused. METHODS Eighty male mice were randomly divided into four groups: sham+vehicle, sham+SA (40 μg/L, intrathecal injection), chronic contraction injury (CCI)+vehicle, CCI+SA. Behavioral assessments were used to evaluate the locomotor activity and paw withdrawal threshold (PWT) of mice. At the end of the study, spinal cord tissues were collected for histopathological analysis. The JNK/p38 signaling activation, Iba-1 expression, pro-inflammatory cytokines levels, and microglia subtype were assessed by western blotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and flow cytometry with CD86/CD206, respectively. RESULTS Early treatment with SA delayed the development of mechanical allodynia in CCI mice. Repeated SA treatment could prominently increase the reduction of PWT induced by CCI, and improve the locomotor activity of CCI mice. Mechanically, CCI surgery induced significant up-regulation of p-JNK and p-p38 protein levels, increased number and M1/M2 ratio of microglia, as well as pro-inflammatory factors in the spinal cords of mice, which could be blocked after SA administration. CONCLUSIONS SA might suppress the activation of microglia and neuroinflammation by selectively inhibiting the JNK/p38 signaling pathway, thereby alleviating CCI-induced NP in male mice.
Collapse
Affiliation(s)
- Wenqiang Xie
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jie Hou
- Department of Quality Management, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Changke Li
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Qiang Zhang
- Department of Anesthesiology, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
8
|
Mustafa AM, Shaheen AM, Zaki HF, Rabie MA. Nicorandil and carvedilol mitigates motor deficits in experimental autoimmune encephalomyelitis-induced multiple sclerosis: Role of TLR4/TRAF6/MAPK/NF-κB signalling cascade. Int Immunopharmacol 2024; 127:111387. [PMID: 38134593 DOI: 10.1016/j.intimp.2023.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating neurodegenerative disease that negatively affects neurotransmission. It can be pathologically mimicked by experimental autoimmune encephalomyelitis (EAE) animal model. ATP-sensitive potassium channels (KATP) plays a crucial role in the control of neuronal damage, however their role in MS are still obscure. Additionally, Carvedilol showed a promising neuroprotective activity against several neurological disorders. Therefore, the present study aimed to investigate the potential neuroprotective effect of KATP channel opener (nicorandil) as well as α and β adrenoceptor antagonist (Carvedilol) against EAE induced neurodegeneration in mice. Mice was treated with nicorandil (6 mg/kg/day; p.o.) and carvedilol (10 mg/kg/day; p.o.) for 14 days. Nicorandil and carvedilol showed improvement in clinical scoring, behaviour and motor coordination as established by histopathological investigation and immunohistochemical detection of MBP. Furthermore, both treatments downregulated the protein expression of TLR4/ MYD88/TRAF6 signalling cascade with downstream inhibition of (pT183/Y185)-JNK/p38 (pT180/Y182)-MAPK axis leading to reduction of neuroinflammatory status, as witnessed by reduction of NF-κB, TNF-α, IL-1β and IL-6 contents. Moreover, nicorandil and carvedilol attenuated oxidative damage by increasing Nrf2 content and SOD activity together with reduction of MDA content. In addition, an immunomodulating effect via inhibiting the gene expression of CD4, TGF-β, and IL-17 as well as TGF-β, IL-17, and IL-23 contents along with anti-apoptotic effect by decreasing Bax protein expression and Caspase-3 content and increasing Bcl-2 protein expression was observed with nicorandil and carvedilol treatments. In conclusion, nicorandil and carvedilol exerted a neuroprotective activity against EAE induced neuronal loss via inhibition of TLR4/MYD88/TRAF6/JNK/p38-MAPK axis besides antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Zhang P, Feng Q, Chen W, Bai X. Catalpol antagonizes LPS-mediated inflammation and promotes osteoblast differentiation through the miR-124-3p/DNMT3b/TRAF6 axis. Acta Histochem 2024; 126:152118. [PMID: 38039796 DOI: 10.1016/j.acthis.2023.152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Dysregulated inflammation and osteoblast differentiation are implicated in osteoporosis. Exploring the activity of catalpol in inflammation and osteoblast differentiation deepens the understanding of osteoporosis pathogenesis. METHODS LPS was used to treated hFOB1.19 cells to induce inflammation and repress osteoblast differentiation. FOB1.19 cells were induced in osteoblast differentiation medium and treated with LPS and catalpol. Cell viability was assessed using CCK-8. ALP and Alizarin red S staining were conducted for analyzing osteoblast differentiation. The levels of IL-1β, TNF-α and IL-6 were examined by ELISA. The methylation of TRAF6 promoter was examined through MS-PCR. The binding of miR-124-3p to DNMT3b and DNMT3b to TRAF6 promoter was determined with dual luciferase reporter and ChIP assays. RESULTS LPS enhanced secretion of inflammatory cytokines and suppressed osteoblast differentiation. MiR-124-3p and TRAF6 were upregulated and DNMT3b was downregulated in LPS-induced hFOB1.19 cells. Catalpol protected hFOB1.19 cells against LPS via inhibiting inflammation and promoting osteoblast differentiation. MiR-124-3p targeted DNMT3b, and its overexpression abrogated catalpol-mediated protection in LPS-treated hFOB1.19 cells. In addition, DNMT3b methylated TRAF6 promoter to restrain its expression. Catalpol exerted protective effects through suppression of the miR-124-3p/DNMT3b/TRAF6 axis in hFOB1.19 cells. CONCLUSION Catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation via controlling the miR-124-3p/DNMT3b/TRAF6 axis.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Qun Feng
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Wenxiao Chen
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
11
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
12
|
Sun J, Hu JR, Liu CF, Li Y, Wang W, Fu R, Guo M, Wang HL, Pang M. ANKRD49 promotes the metastasis of NSCLC via activating JNK-ATF2/c-Jun-MMP-2/9 axis. BMC Cancer 2023; 23:1108. [PMID: 37964204 PMCID: PMC10644579 DOI: 10.1186/s12885-023-11612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Ankyrin repeat domain 49 (ANKRD49) has been found to be highly expressed in multiple cancer including lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). However, the function of ANKRD49 in the pathogenesis of NSCLC still remains elusive. Previously, ANKRD49 has been demonstrated to promote the invasion and metastasis of A549 cells, a LUAD cell line, via activating the p38-ATF-2-MMP2/MMP9 pathways. Considering the heterogeneity of tumor cells, the function and mechanism of ANKRD49 in NSCLC need more NSCLC-originated cells to clarify. METHODS Real-time qPCR was employed to test ANKRD49 expression levels in nine pairs of fresh NSCLC tissues and the corresponding adjacent normal tissues. The function of ANKRD49 was investigated using overexpression and RNA interference assays in lung adenocarcinoma cell line (NCI-H1299) and lung squamous carcinoma cell line (NCI-H1703) through gelatin zymography, cell counting kit-8, colony formation, wound healing, migration and invasion assays mmunoprecipitation was performed to in vitro. Immunoprecipitation was performed to test the interaction of c-Jun and ATF2. Chromatin immunoprecipitation was conducted to assess the transcriptional regulation of ATF2/c-Jun on MMP-2/9. Moreover, the tumorigenicity of ANKRD49 was evaluated in nude mice models and the involved signal molecular was also measured by immunohistochemical method. RESULTS We found that the levels of ANKRD49 in cancerous tissues were higher than those in adjacent normal tissues. in vitro assay showed that ANKRD49 promoted the migration and invasion of NCI-H1299 and NCI-H1703 cells via enhancing the levels of MMP-2 and MMP-9. Furthermore, ANKRD49 elevated phosphorylation of JNK and then activated c-Jun and ATF2 which interact in nucleus to promote the binding of ATF2:c-Jun with the promoter MMP-2 or MMP-9. In vivo assay showed that ANKRD49 promoted lung metastasis of injected-NSCLC cells and the high metastatic rate was positively correlated with the high expression of ANKRD49, MMP-2, MMP-9, p-JNK, p-c-Jun and p-ATF2. CONCLUSION The present study indicated that ANKRD49 accelerated the invasion and metastasis of NSCLC cells via JNK-mediated transcription activation of c-Jun and ATF2 which regulated the expression of MMP-2/MMP-9. The molecular mechanisms of ANKRD49's function is different from those found in A549 cells. The current study is a supplement and improvement to the previous research.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
- Department of Laboratorial Medicine, Changzhi Traditional Chinese Medicine Hospital, Changzhi, 046000, China
| | - Jin-Rui Hu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Chao-Feng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Department of Respiratory Medicine 1, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Wei Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Rong Fu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China.
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China.
- Department of Pulmonary and Critical Care Medicine, the First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
13
|
Zhang W, Chen H, Xu Z, Zhang X, Tan X, He N, Shen J, Dong J. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol 2023; 122:110563. [PMID: 37392573 DOI: 10.1016/j.intimp.2023.110563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Liensinine is mainly derived from alkaloids extracted and isolated from lotus seeds (Nelumbo nucifera Gaertn). It possesses anti-inflammatory, and antioxidant, according to contemporary pharmacological investigations. However, the effects and therapeutic mechanisms of liensinine on acute kidney injury (AKI) models of sepsis are unclear. To gain insight into these mechanisms, we established a sepsis kidney injury model by LPS injection of mice treated with liensinine, and stimulation of HK-2 with LPS in vitro and treated with liensinine and inhibitors of p38 MAPK, JNK MAPK. We first found that liensinine significantly reduced kidney injury in sepsis mice, while suppressing excessive inflammatory responses, restoring renal oxidative stress-related biomarkers, reducing increased apoptosis in TUNEL-positive cells and excessive autophagy, and that this process was accompanied by an increase in JNK/ p38-ATF 2 axis. In vitro experiments further demonstrated that lensinine reduced the expression of KIM-1, NGAL, inhibited pro- and anti-inflammatory secretion disorders, regulated the activation of the JNK/p38-ATF 2 axis, and reduced the accumulation of ROS, as well as the reduction of apoptotic cells detected by flow cytometry, and that this process played the same role as that of p38 MAPK, JNK MAPK inhibitors. We speculate that liensinine and p38 MAPK, JNK MAPK inhibitors may act on the same targets and could be involved in the mechanism of alleviating sepsis kidney injury in part through modulation of the JNK/p38-ATF 2 axis. Our study demonstrates that lensinine is a potential drug and thus provides a potential avenue for the treatment of AKI.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Zhaoyun Xu
- Blood Transfusion Department, Ganyu District People's Hospital of Lianyungang City, Lianyungang 222100, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinyang Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
14
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
15
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
16
|
Nicotine rebalances NAD + homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun 2023; 14:900. [PMID: 36797299 PMCID: PMC9935903 DOI: 10.1038/s41467-023-36543-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Imbalances in NAD+ homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD+ metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD+ synthesis. 18F-FDG PET imaging revealed that nicotine is also capable of efficiently inhibiting glucose hypermetabolism in aging male mice. Additionally, nicotine ameliorated cellular energy metabolism disorders and deferred age-related deterioration and cognitive decline by stimulating neurogenesis, inhibiting neuroinflammation, and protecting organs from oxidative stress and telomere shortening. Collectively, these findings provide evidence for a mechanism by which low-dose nicotine can activate NAD+ salvage pathways and improve age-related symptoms.
Collapse
|
17
|
Xie W, Li C, Hou J, Zhang Q. Sodium aescinate ameliorates chronic neuropathic pain in mice via suppressing JNK/p-38-mediated microglia activation.. [DOI: 10.21203/rs.3.rs-2469196/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
A study confirmed that sodium aescinate (SA), a traditional Chinese medicine extracted from the dried ripe fruits of the aescin plant chestnut, can effectively relieve bone cancer pain, but its role in neuropathic pain (NP) remains confused. This study aimed to investigate whether SA has a protective effect on NP and its underlying mechanisms. Thirty mice were randomly divided into three groups (n = 10 per group): sham + vehicle, chronic contraction injury (CCI) + vehicle, CCI + SA. SA (40 µg/L, intrathecal injection) was administered once daily for 5 consecutive days starting on day 7 after surgery. The mechanical withdrawal thresholds (paw withdraw threshold, PWT) of the contralateral and ipsilateral paws of mice in each group were subsequently detected daily. The results displayed that repeated SA treatment could prominently increase the reduction of PWT induced by CCI in the ipsilateral paw of mice. Downregulation of p- c-Jun N-terminal kinase (JNK) and p-p38 protein levels and reduction of microglial activation marker Iba-1-positive ratio, M1/M2 ratio of microglia, and proinflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, in the spinal cords of CCI-mice was observed after intrathecal SA. The above data illustrated that SA might suppress the activation of microglia and neuroinflammation by selectively inhibiting the JNK/p38 signaling pathway, which in turn alleviated CCI-induced NP in mice.
Collapse
Affiliation(s)
| | | | - Jie Hou
- Shantou University Medical College
| | | |
Collapse
|
18
|
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety. Adv Pharmacol Pharm Sci 2023; 2023:1387665. [PMID: 36891541 PMCID: PMC9988374 DOI: 10.1155/2023/1387665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The liver is the body's most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol's chemical structure, natural source, bioavailability, and safety.
Collapse
|
19
|
Changes of signaling molecules in the axotomized rat facial nucleus. J Chem Neuroanat 2022; 126:102179. [DOI: 10.1016/j.jchemneu.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/15/2022]
|
20
|
Xu L, Wang J, Zhang D, Song L, Wu H, Wang J, Miao J, Guo H, Fang S, Si L, Chen J, Wu Y, Wu Y, Wang L, Zhang N, Chard L, Wang Y, Cheng Z. The two-faced role of ATF2 on cisplatin response in gastric cancer depends on p53 context. Cell Biosci 2022; 12:77. [PMID: 35641966 PMCID: PMC9153165 DOI: 10.1186/s13578-022-00802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Activating transcription factor-2 (ATF2) is a member of the basic leucine zipper family of DNA-binding proteins, which exhibits both oncogenic and tumor suppression activity in different tumors. However, the molecular mechanism of its dual function in cancer chemotherapy especially in gastric cancer has still not been elucidated. Methods The protein expression and location of ATF2 in gastric cancer tissues was detected with immunohistochemistry assay, and the clinical significance was analyzed using TCGA and GEO database. The activation and impact of ATF2 in cisplatin treated cells were evaluated with western blot, incucyte live cell analysis, clone formation and tumor xenografts assays. Interaction between ATF2 and p53 was confirmed with immunoprecipitation and GST-pull down. Potential molecular mechanism of ATF2 in different p53 status cells was analyzed with RNA sequencing and real-time quantitative PCR. Results ATF2 mainly located in the nucleus of cancer cells, higher ATF2 level was associated with poor five-year survival of gastric patients, especially in those undergone chemotherapy treatment. Cisplatin treatment significantly activated ATF2 in p53 mutant cells. ATF2 could interact with the trans-activation domain of p53 and enhance cisplatin sensitivity in p53 wild type cell lines, while promoted cell survival in mutant p53 cancer cells by affecting ERK1/2 pathway. Conclusions This study confirmed the effect of ATF2 on cisplatin sensitivity was associated with the functional status of p53 in gastric cancer cells. Integrated analysis of ATF2 expression and P53 status could be used to evaluate the chemotherapy sensitivity and prognosis of gastric cancer patients. Supplementary information The online version contains supplementary material available at 10.1186/s13578-022-00802-w.
Collapse
|
21
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
22
|
Qi L, Wang Y, Hu H, Li P, Hu H, Li Y, Wang K, Zhao Y, Feng M, Lyu H, Yin J, Shi Y, Wang Y, Li X, Yan S. m 6A methyltransferase METTL3 participated in sympathetic neural remodeling post-MI via the TRAF6/NF-κB pathway and ROS production. J Mol Cell Cardiol 2022; 170:87-99. [PMID: 35717715 DOI: 10.1016/j.yjmcc.2022.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Sudden cardiac death caused by ventricular arrhythmias (VAs) is the main cause of high mortality in patients with myocardial infarction (MI). Sympathetic neural remodeling caused by inflammation after MI is closely associated with the occurrence of VAs. METTL3, the earliest identified m6A methyltransferase, is critical in mediating inflammatory responses. Our aim was to investigate whether the m6A methyltransferase METTL3 was involved in sympathetic remodeling post-MI and its specific mechanism. METHODS AND RESULTS A rat MI model was established via left coronary artery ligation. The expression of METTL3, TRAF6, NOX2, and NF-κB increased at 3 days and remained elevated at 7 days after MI, as determined via Western blotting. METTL3 was primarily present in macrophages, as determined via immunofluorescence. Intramyocardial injection of lentivirus carrying METTL3-shRNA inhibited METTL3 expression in vivo. Methylated immunoprecipitation-qPCR determined the METTL3 knockdown inhibited the m6A level of TRAF6 mRNA 3'-UTR. The co-immunoprecipitation experiment proved that METTL3 combines with TRAF6. Western blotting showed that silencing METTL3 inhibited TRAF6 level, NF-κB activation, and ROS production; decreased cytokine release (TNF-α and IL-1β); and downregulated nerve growth factor expression. Finally, METTL3 knockdown reduced sympathetic remodeling after MI, as determined via immunofluorescence assays of tyrosine hydroxylase and growth-associated protein 43. Programmed electrical stimulation, renal sympathetic nerve activity recording, and haemodynamic measurements showed that METTL3 inhibition decreased sympathetic activity and improved cardiac function. CONCLUSIONS Downregulation of METTL3 expression attenuated the excessive sympathetic neural remodeling induced by MI, further reducing the incidence of VAs and improving cardiac function. This was partly associated with the inhibition of the TRAF6/NF-κB pathway and ROS production.
Collapse
Affiliation(s)
- Lei Qi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Hui Hu
- Department of Cardiology, Jining No. 1 People' Hospital, Jining, China
| | - Pingjiang Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yan Li
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuepeng Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Feng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hangji Lyu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Suhua Yan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
| |
Collapse
|
23
|
Wang L, Wang J, Guo H, Wang Y, Xu B, Guo X, Wang C. Activating transcription factor 2 (AccATF2) regulates tolerance to oxidative stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105179. [PMID: 35973768 DOI: 10.1016/j.pestbp.2022.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Activating transcription factor 2 (ATF2), a basic leucine zipper (bZIP) transcription factor, plays a crucial role in immune and DNA damage response in mammals. However, the function of ATF2 in insects remains unknown. Here, we isolated the ATF2 gene from Apis cerana cerana (AccATF2) and found that AccATF2 was a main regulator of the honeybee response to oxidative stress. Our results showed that AccATF2 was highly expressed in the head, thorax and integument. AccATF2 was expressed throughout the development period of honeybees, and the highest AccATF2 transcript level was noted in brown-eyed pupae, indicating its indispensable roles in honeybee survival. Antioxidant function analysis showed that AccATF2 expression was markedly induced in response to oxidative stress caused by various environmental stresses. AccATF2 overexpression substantially enhanced the tolerance to oxidative stress of Escherichia coli cells compared with control cells. AccATF2 knockdown significantly increased the production of malondialdehyde (MDA), the transcription of antioxidant genes and the activity of antioxidant enzymes in honeybees, suggesting that AccATF2 knockdown resulted in oxidative damage to honeybees. Moreover, AccATF2 knockdown decreased honeybee resistance to oxidative stress caused by high temperature. Overall, AccATF2 plays an important role in maintaining redox homeostasis and protecting honeybees from oxidative stress caused by various environmental stimuli. Our discoveries add to a growing understanding of how honeybees cope with various adverse environmental conditions to ensure their survival.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
24
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
25
|
Liu H, Chen Y, Zhou L, Jiang X, Zhou X. MicroRNA-642b-3p functions as an oncomiR in gastric cancer by down-regulating the CUB and sushi multiple domains protein 1/smad axis. Bioengineered 2022; 13:9613-9627. [PMID: 35412956 PMCID: PMC9208452 DOI: 10.1080/21655979.2022.2056813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs or miRs) has been involved in the progression of gastric cancer (GC). Our analysis of GC-related gene expression profiles identified the significantly up-regulated miR-642b-3p expression, which has been reported as a mediator in various cancers but rarely mentioned in researches on GC. Herein, this study intends to investigate the role of miR-642b-3p in GC development. Bioinformatics analysis was conducted to predict the downstream target gene of miR-642b-3p. Expression patterns of miR-642b-3p and CUB and sushi multiple domains protein 1 (CSMD1) in GC tissues and cell lines was then determined. Immunofluorescence, wound healing and Transwell invasion assays were performed to observe the malignant behaviors of GC cells with altered expression of miR-642b-3p and CSMD1. Nude mice with xenograft tumors were developed for in vivo validation. miR-642b-3p expression was increased in GC tissues and cell lines. miR-642b-3p targeted CSMD1 and reduced the expression of CSMD1, thereby inhibiting the activation of Smad signaling pathway. By this mechanism, the epithelial–mesenchymal transition (EMT), invasive and migratory potentials of GC cells were repressed. Meanwhile, in vivo data verified that miR-642b-3p enhanced the tumor growth of GC cells, which was associated with blockade of CSMD1-dependent activation of the Smad signaling pathway. Overall, miR-642b-3p acts as an oncomiR promoting tumor development in GC through suppressing CSMD1 expression and inactivating the Smad signaling pathway, which may enable the development of new therapeutic strategies for treatment of GC.
Collapse
Affiliation(s)
- Haofeng Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China.,Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Yuan Chen
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Linsen Zhou
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng P.R. China
| | - Xiaohui Jiang
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China
| |
Collapse
|
26
|
Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat Commun 2022; 13:945. [PMID: 35177618 PMCID: PMC8854573 DOI: 10.1038/s41467-022-28593-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation triggers secondary brain damage after stroke. The meninges and other CNS border compartments serve as invasion sites for leukocyte influx into the brain thus promoting tissue damage after stroke. However, the post-ischemic immune response of border compartments compared to brain parenchyma remains poorly characterized. Here, we deeply characterize tissue-resident leukocytes in meninges and brain parenchyma and discover that leukocytes respond differently to stroke depending on their site of residence. We thereby discover a unique phenotype of myeloid cells exclusive to the brain after stroke. These stroke-associated myeloid cells partially resemble neurodegenerative disease-associated microglia. They are mainly of resident microglial origin, partially conserved in humans and exhibit a lipid-phagocytosing phenotype. Blocking markers specific for these cells partially ameliorates stroke outcome thus providing a potential therapeutic target. The injury-response of myeloid cells in the CNS is thus compartmentalized, adjusted to the type of injury and may represent a therapeutic target.
Collapse
|
27
|
Xu X, Zhi T, Hua L, Jiang K, Chen C. IRAK4 exacerbates traumatic brain injury via activation of TAK1 signaling pathway. Exp Neurol 2022; 351:114007. [PMID: 35149117 DOI: 10.1016/j.expneurol.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Although multiple signaling pathways contributing to the pathophysiological process have been investigated, treatments for traumatic brain injury (TBI) against present targets have not acquired significant clinical progress. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important factor involved in regulating immunity and inflammation. However, the role of IRAK4 in TBI still remains largely unknown. Therefore, using a controlled cortical impact model (CCI), we investigated the function and molecular mechanism of IRAK4 in the context of TBI. IRAK4 was found to be activated in a time-dependent manner after TBI and mainly expressed in neurons. Inhibition of IRAK4 by siRNAs could significantly alleviates neuroinflammation, neuron apoptosis, brain edema, brain-blood barrier (BBB) dysfunction and improves neurological deficit in the context of CCI. Mechanistically, IRAK4 exacerbates CCI via activation of TAK1 signaling pathway. Interestingly, PF-0665083, an IRAK4 inhibitor, inhibits phosphorylation of IRAK4 and attenuates CCI-induced secondary injury. It could be conclude that IRAK4 plays a critical role in TBI-induced secondary injury and the underlining mechanism may be related to activation of TAK1 signaling pathway. PF-0665083 may serve as a potential treatment strategy to relieve TBI.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, the Fourth Affiliated Hospital of Nantong University, Yancheng 224006, Jiangsu Province, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Chen Chen
- Department of Cardiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
28
|
Young AP, Denovan-Wright EM. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front Pharmacol 2022; 12:806417. [PMID: 35185547 PMCID: PMC8854262 DOI: 10.3389/fphar.2021.806417] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.
Collapse
|
29
|
Xu Y, Tang Z, Dai H, Hou J, Li F, Tang Z, Zhang D. MiR-195 promotes pancreatic β-cell dedifferentiation by targeting Mfn2 and impairing Pi3k/Akt signaling in type 2 diabetes. Obesity (Silver Spring) 2022; 30:447-459. [PMID: 35088561 DOI: 10.1002/oby.23360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study was to research the role and underlying mechanism of miR-195 involved in pancreatic β-cell dedifferentiation induced by hyperlipemia in type 2 diabetes mellitus. METHODS High-fat-diet-induced obese C57BL/6J mice and palmitate-stimulated Min6 cells were used as the models of β-cell dedifferentiation in vivo and in vitro, respectively. The expression of miR-195 and insulin secretion during β-cell dedifferentiation were measured. Also, the influence of regulated miR-195 expression on β-cell dedifferentiation was examined. Meanwhile, the IRS-1/2/Pi3k/Akt pathway and mitofusin-2 (Mfn2) expression were investigated during β-cell dedifferentiation. RESULTS MiR-195 was upregulated during lipotoxicity-induced β-cell dedifferentiation in both in vivo and in vitro experiments, and miR-195 functionally contributed to lipotoxicity-induced β-cell dedifferentiation. Furthermore, miR-195 inhibited IRS-1/2/Pi3k/Akt pathway activation, which accompanied β-cell dedifferentiation. Mfn2, a target of miR-195, was found to be downregulated and was associated with increased mitochondrial production of reactive oxygen species during β-cell dedifferentiation. Instructively, inhibition of miR-195, at least partially, reversed the downregulation of Mfn2, restored IRS-1/2/Pi3k/Akt pathway activation, and prevented β-cell dedifferentiation. CONCLUSIONS MiR-195 promoted β-cell dedifferentiation through negatively regulating Mfn2 expression and inhibiting the IRS-1/2/Pi3k/Akt pathway, providing a promising treatment for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuhua Xu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zixuan Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Hui Dai
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jue Hou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangqin Li
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Jiangsu, China
| |
Collapse
|
30
|
Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F, Wang X, Su J, Zhang D. Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol 2021; 140:250-266. [PMID: 34798593 DOI: 10.1016/j.molimm.2021.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, reportedly plays an important role in tumorigenesis and the inflammatory response by regulating the metabolic reprogramming. However, its contribution to microglial activation during neuroinflammation is still unknown. In this study, we observed an enhanced glycolysis level in the lipopolysaccharide (LPS)-activated microglia. Utilizing the glycolysis inhibitor 2-DG, we proved that LPS requires glycolysis to induce microglial pyroptosis. Moreover, the protein expression, dimer/monomer formation, phosphorylation and nuclear translocation of PKM2 were all increased by LPS. Silencing PKM2 or preventing its nuclear translocation by TEPP-46 significantly alleviated the LPS-induced inflammatory response and pyroptosis in microglia. Employing biological mass spectrometry combined with immunoprecipitation technology, we identified for the first time that PKM2 interacts with activating transcription factor 2 (ATF2) in microglia. Inhibition of glycolysis or preventing PKM2 nuclear aggregation significantly reduced the phosphorylation and activation of ATF2. Furthermore, knocking down ATF2 reduced the LPS-induced pyroptosis of microglia. In vivo, we showed the LPS-induced pyroptosis in the cerebral cortex tissues of mice, and first found that an increased PKM2 expression was co-localized with ATF2 in the inflamed mice brain. Collectively, our data suggested for the first time that PKM2, a key rate-limiting enzyme of the Warburg effect, directly interacts with the pro-inflammatory transcription factor ATF2 to bridge glycolysis and pyroptosis in microglia, which might be a pivotal crosstalk between metabolic reprogramming and neuroinflammation in the CNS.
Collapse
Affiliation(s)
- Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueyan Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xin Ge
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueqin Wang
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbin Su
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
31
|
Shi J, Li R, Yang Y, Ji L, Li C. Protective effect of α-asarone and β-asarone on Aβ -induced inflammatory response in PC12 cells and its. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:591-600. [PMID: 34986541 PMCID: PMC8732252 DOI: 10.3724/zdxbyxb-2021-0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
To investigate effects of α-asarone and β-asarone on induced PC12 cell injury and related mechanisms. Aβ toxic injury cell model was induced by Aβ in PC12 cells. PC12 cells were divided into blank control group, model control group, α-asarone group (0.5, 1.0, β-asarone group (6.3, 12.5, vasoactive intestinal peptide (VIP) group, and VIP antagonist control group. Cell survival rate was detected by CCK-8 kit; cell apoptosis rate was detected by flow cytometry. The levels of inflammatory cytokines interleukin (IL)-1, , tumor necrosis factor (TNF)-α, oxidation-related inducible nitric oxide synthase (iNOS), nitric oxide (NO), apoptosis factors caspase-3 and p53 were detected by ELISA method. The expressions of C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) were detected by Western blotting. Compared with model control group, cell survival rates of group, β-asarone group and VIP group increased; the cell apoptosis rate decreased; levels of apoptosis-related factors caspase-3, p53, inflammatory factors IL-1, TNF-α decreased; IL-10 level increased; levels of oxidization-related factors iNOS and NO decreased; the expression of JNK and p38MAPK protein decreased (all <0.05). After VIP antagonist intervention, the survival rate of β-asarone group decreased; apoptosis rate increased; apoptosis related factors caspase-3, p53, inflammatory factors IL-1, TNF-α increased; IL-10 decreased; oxidation related factors iNOS and NO increased; the expression of JNK and p38MAPK protein increased (all <0.05); while there were no significant changes in these indicators of α-asarone group (all >0.05). α-asarone and β-asarone have protective effects on PC12 cell injury induced by Aβ. β-asarone may inhibit inflammatory factors and oxidation-related factors through promoting VIP secretion, regulating JNK/MAPK pathway, and reducing PC12 cell apoptosis; however, the effect of α-asarone may be not related to VIP secretion.
Collapse
Affiliation(s)
- Jianhong Shi
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Ruizhi Li
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Yuanxiao Yang
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Liting Ji
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| | - Changyu Li
- 3. School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
32
|
Chen Q, Lu H, Duan C, Zhu X, Zhang Y, Li M, Zhang D. PDCD4 Simultaneously Promotes Microglia Activation via PDCD4-MAPK-NF-κB Positive Loop and Facilitates Neuron Apoptosis During Neuroinflammation. Inflammation 2021; 45:234-252. [PMID: 34613548 DOI: 10.1007/s10753-021-01541-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and neuron injury are common features of the central nervous system (CNS) diseases. It is of great significance to identify their shared key regulatory molecules and thus explore the potential therapeutic targets. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases, but its expression and biological function during CNS neuroinflammation remain unclear. In the present study, utilizing the lipopolysaccharide (LPS)-induced neuroinflammation model in mice, we reported an elevated expression of PDCD4 both in injured neurons and activated microglia of the inflamed brain. A similar change in PDCD4 expression was observed in vitro in the microglial activation model. Silencing PDCD4 by shRNA significantly inhibited the phosphorylation of MAPKs (p38, ERK, and JNK), prevented the phosphorylation and nuclear translocation of NF-κB p65, and thus attenuated the LPS-induced microglial inflammatory activation. Interestingly, LPS also required the MAPK/NF-κB signaling activation to boost PDCD4 expression in microglia, indicating the presence of a positive loop. Moreover, a persistent elevation of PDCD4 expression was detected in the H2O2-induced neuronal oxidative damage model. Knocking down PDCD4 significantly inhibited the expression of pro-apoptotic proteins BAX and Cleaved-PARP, suggesting the proapoptotic activity of PDCD4 in neurons. Taken together, our data indicated that PDCD4 may serve as a hub regulatory molecule that simultaneously promotes the microglial inflammatory activation and the oxidative stress-induced neuronal apoptosis within CNS. The microglial PDCD4-MAPK-NF-κB positive feedback loop may act as pivotal signaling for neuroinflammation which subsequently exaggerates neuronal injury, and thus may become a potential therapeutic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Quan Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China. .,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China. .,Rehabilitation Medicine Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China.
| |
Collapse
|
33
|
Li C, Chai A, Gao Y, Qi X, Zheng X. Combination of tetrandrine and 3-n-butylphthalide protects against cerebral ischemia-reperfusion injury via ATF2/TLR4 pathway. Immunopharmacol Immunotoxicol 2021; 43:749-757. [PMID: 34591732 DOI: 10.1080/08923973.2021.1979036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cerebral infarction (CI) is the mayor reason of death in China. Reperfusion is the only immediate treatment for acute cerebral infarction. However, blood reperfusion recovery may cause ischemia-reperfusion (I/R) injuries. The purpose of this study was to investigate the effects of Tetrandrine (TTD) and 3-n-Butylphthalide (NBP) on cerebral I/R injury. MATERIALS AND METHODS I/R was used to establish CI model in vivo. TTD was performed to analyze cerebral infarction volume. OGD was applied to establish CI model in vitro. Flow cytometry and TUNEL assays were utilized to determine the cell death. ELISA was conducted to determine the release of cytokines. mRNA and protein expressions were detected using qRT-PCR and western blot. RESULTS We found that NBP + TTD treatment significantly reduced cerebral infarction volume and inhibited the death of neurons in vivo. Moreover, NBP + TTD treatment suppressed the apoptosis and inflammatory response of neurons in vitro. Additionally, NBP + TTD suppressed the expression of activator transcription factor 2 (ATF2). However, overexpression of ATF2 contributed to the degeneration of neurons. Moreover, ATF2 transcriptionally activated Toll-like receptor 4 (TLR4). NBP + TTD inactivated ATF2/TLR4 signaling. CONCLUSIONS Taken together, TTD combined with NBP protected against cerebral infarction by inhibiting the inflammatory response and neuronal cell apoptosis via inactivating ATF2/TLR4 signaling pathways. This may provide an alternative for I/R injury.
Collapse
Affiliation(s)
- Cunfang Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Aijun Chai
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yongchao Gao
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xuan Qi
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xuguang Zheng
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Huang H, Xia A, Sun L, Lu C, Liu Y, Zhu Z, Wang S, Cai J, Zhou X, Liu S. Pathogenic Functions of Tumor Necrosis Factor Receptor- Associated Factor 6 Signaling Following Traumatic Brain Injury. Front Mol Neurosci 2021; 14:629910. [PMID: 33967693 PMCID: PMC8096983 DOI: 10.3389/fnmol.2021.629910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 01/25/2023] Open
Abstract
Neuroinflammation contributes to delayed (secondary) neurodegeneration following traumatic brain injury (TBI). Tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling may promote post-TBI neuroinflammation, thereby exacerbating secondary injury. This study investigated the pathogenic functions of TRAF6 signaling following TBI in vivo and in vitro. A rat TBI model was established by air pressure contusion while lipopolysaccharide (LPS) exposure was used to induce inflammatory-like responses in cultured astrocytes. Model rats were examined for cell-specific expression of TRAF6, NF-κB, phosphorylated (p)-NF-κB, MAPKs (ERK, JNK, and p38), p-MAPKs, chemokines (CCL2 and CXCL1), and chemokine receptors (CCR2 and CXCR2) by immunofluorescence, RT-qPCR, western blotting, and ELISA, for apoptosis by TUNEL staining, and spatial cognition by Morris water maze testing. These measurements were compared between TBI model rats receiving intracerebral injections of TRAF6-targeted RNAi vector (AAV9-TRAF6-RNAi), empty vector, MAPK/NF-κB inhibitors, or vehicle. Primary astrocytes were stimulated with LPS following TRAF6 siRNA or control transfection, and NF-κB, MAPKs, chemokine, and chemokine receptor expression levels evaluated by western blotting and ELISA. TRAF6 was expressed mainly in astrocytes and neurons of injured cortex, peaking 3 days post-TBI. Knockdown by AAV9-TRAF6-RNAi improved spatial learning and memory, decreased TUNEL-positive cell number in injured cortex, and downregulated expression levels of p-NF-κB, p-ERK, p-JNK, p-p38, CCL2, CCR2, CXCL1, and CXCR2 post-TBI. Inhibitors of NF-κB, ERK, JNK, and p38 significantly suppressed CCL2, CCR2, CXCL1, and CXCR2 expression following TBI. Furthermore, TRAF6-siRNA inhibited LPS-induced NF-κB, ERK, JNK, p38, CCL2, and CXCL1 upregulation in cultured astrocytes. Targeting TRAF6-MAPKs/NF-κB-chemokine signaling pathways may provide a novel therapeutic approach for reducing post-TBI neuroinflammation and concomitant secondary injury.
Collapse
Affiliation(s)
- Huan Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Anqi Xia
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Li Sun
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chun Lu
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Siye Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Junyan Cai
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyun Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
35
|
Li J, Tian M, Hua T, Wang H, Yang M, Li W, Zhang X, Yuan H. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 2021; 17:4062-4082. [PMID: 33834930 PMCID: PMC8726676 DOI: 10.1080/15548627.2021.1900498] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved process, plays an important role in the regulation of immune inflammation and nervous system homeostasis. However, the exact role and mechanism of autophagy in pain is still unclear. Here, we showed that impaired autophagy flux mainly occurred in astrocytes during the maintenance of neuropathic pain. No matter the stage of neuropathic pain induction or maintenance, activation of autophagy relieved the level of pain, whereas inhibition of autophagy aggravated pain. Moreover, the levels of neuroinflammation and reactive oxygen species (ROS) were increased or decreased following autophagy inhibition or activation. Further study showed that inhibition of autophagy slowed the induction, but increased the maintenance of neuroinflammatory responses, which could be achieved by promoting the binding of TRAF6 (TNF receptor-associated factor 6) to K63 ubiquitinated protein, and increasing the levels of p-MAPK8/JNK (mitogen-activated protein kinase 8) and nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB/NF-κB). Impaired autophagy also reduced the protective effect of astrocytes on neurons against ROS stress because of the decrease in the level of glutathione released by astrocytes, which could be improved by activating the NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2) pathway. We also demonstrated that simultaneous activation of autophagy and the NFE2L2 pathway further relieved pain, compared to activating autophagy alone. Our study provides an underlying mechanism by which autophagy participates in the regulation of neuropathic pain, and a combination of autophagy and NFE2L2 activation may be a new treatment approach for neuropathic pain. Abbreviation: 3-MA: 3-methyladenine; 8-OHdG: 8-hydroxydeoxy-guanosine; ACTB: actin, beta; AMPAR: alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor; ATG: autophagy-related; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CCL7: chemokine (C-C motif) ligand 7; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABA: gamma-aminobutyrate; GCLC: glutamate-cysteine ligase, catalytic subunit; GFAP: glial fibrillary acidic protein; GSH: glutathione; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch-like ECH-associated protein 1; MAP1LC3/LC3-II: microtubule-associated protein 1 light chain 3 beta (phosphatidylethanolamine-conjugated form); MAPK: mitogen-activated protein kinase; MAPK1/ERK: mitogen-activated protein kinase 1; MMP2: matrix metallopeptidase 2; MAPK8/JNK: mitogen-activated protein kinase 8; MAPK14/p38: mitogen-activated protein kinase 14; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; ROS: reactive oxygen species; SLC12A5: solute carrier family 12, member 5; SNL: spinal nerve ligation; TLR4: toll-like receptor 4; TRAF6: TNF receptor-associated factor; TRP: transient receptor potential.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mouli Tian
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wenqian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoping Zhang
- Department of Interventional & Vascular Surgery, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
36
|
TRAF6 Contributes to CFA-Induced Spinal Microglial Activation and Chronic Inflammatory Pain in Mice. Cell Mol Neurobiol 2021; 42:1543-1555. [PMID: 33694132 DOI: 10.1007/s10571-021-01045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been reported to be expressed in spinal astrocytes and is involved in neuropathic pain. In this study, we investigated the role and mechanism of TRAF6 in complete Freund's adjuvant (CFA)-evoked chronic inflammatory hypersensitivity and the effect of docosahexaenoic acid (DHA) on TRAF6 expression and inflammatory pain. We found that TRAF6 was dominantly increased in microglia at the spinal level after intraplantar injection of CFA. Intrathecal TRAF6 siRNA alleviated CFA-triggered allodynia and reversed the upregulation of IBA-1 (microglia marker). In addition, intrathecal administration of DHA inhibited CFA-induced upregulation of TRAF6 and IBA-1 in the spinal cord and attenuated CFA-evoked mechanical allodynia. Furthermore, DHA prevented lipopolysaccharide (LPS)-caused increase of TRAF6 and IBA-1 in both BV2 cell line and primary cultured microglia. Finally, intrathecal DHA reduced LPS-induced upregulation of spinal TRAF6 and IBA-1, and alleviated LPS-induced mechanical allodynia. Our findings indicate that TRAF6 contributes to pain hypersensitivity via regulating microglial activation in the spinal dorsal horn. Direct inhibition of TRAF6 by siRNA or indirect inhibition by DHA may have therapeutic effects on chronic inflammatory pain.
Collapse
|
37
|
Xu Y, Zhang Y, Liang H, Liu X. Coumestrol mitigates retinal cell inflammation, apoptosis, and oxidative stress in a rat model of diabetic retinopathy via activation of SIRT1. Aging (Albany NY) 2021; 13:5342-5357. [PMID: 33536350 PMCID: PMC7950241 DOI: 10.18632/aging.202467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-induced oxidative stress is vital in initiating neuronal damage in the diabetic retina, leading to diabetic retinopathy (DR). This study investigates the possible effects of coumestrol (CMS) on streptozotocin (STZ)-induced DR. First, we established a rat model of DR by STZ injection and a cell model involving high-glucose (HG) exposure of human retinal microvascular endothelial cells (hRMECs). We characterized the expression patterns of oxidative stress indicators, pro-inflammatory cytokines, and pro-apoptotic proteins in hRMECs. Polymerase chain reaction showed sirtuin 1 (SIRT1) to be poorly expressed in the retinal tissues of STZ-treated rats and HG-exposed hRMECs, but its expression was upregulated upon treatment with CMS treatment. Furthermore, CMS treatment attenuated the STZ-induced pathologies such as oxidative stress, inflammation, and cell apoptosis. Consistent with the in vivo results, CMS activated the expression of SIRT1, thereby inhibiting oxidative stress, inflammation, and apoptosis of HG-treated hRMECs. From these findings, we concluded that CMS ameliorated DR by inhibiting inflammation, apoptosis and oxidative stress through activation of SIRT1.
Collapse
Affiliation(s)
- Yanchao Xu
- The Second Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Yusong Zhang
- Imaging Center, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Hongwei Liang
- Department of Health Care, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Xiaomeng Liu
- The Second Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| |
Collapse
|
38
|
The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway. Neuroreport 2020; 33:243-251. [PMID: 33165191 DOI: 10.1097/wnr.0000000000001550] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Microglia are the main effectors in the inflammatory process of the central nervous system. Once overactivated, microglia may release pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IL-18, etc.) and accelerate neurodegeneration. Here, we aimed to explore the mechanism of how m6A methyltransferase METTL3 affects the inflammatory response of microglia, appropriately inhibiting the overactivation of microglia. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to construct a cellular inflammation model in vitro. To evaluate the expression of METTL3 and inflammatory cytokines (IL-1β, IL-6, TNF-α and IL-18) in cells, RT-PCR and ELISA were carried out. The related protein (TRAF6, NF-κB and I-κB) expression was examined adopting Western blot. Dot blot experiment was used to assess the effect of regulating METTL3 on the m6A level. Methylated RNA immunoprecipitation reaction was used to measure the effect of METTL3 on the m6A level of TRAF6 mRNA 3'-UTR. The co-immunoprecipitation experiment (IP) proved that METTL3 combines with TRAF6. RESULTS In LPS-mediated microglial inflammation, METTL3 expression was increased, and the expression of inflammatory cytokines (IL-1β, IL-6, TNF-α and IL-18) and inflammatory proteins (TRAF6 and NF-κB) were upregulated. METTL3 level was positively correlated with TRAF6, and the two proteins could bind to each other. Overexpression of METTL3 promoted the activation of the TRAF6-NF-κB pathway in an m6A-dependent manner, and inhibiting NF-κB attenuated METTL3-mediated microglial activation. CONCLUSION METTL3 promotes LPS-induced microglial inflammation by activating the TRAF6-NF-κB pathway.
Collapse
|
39
|
Li P, Xing J, Zhang J, Jiang J, Liu X, Zhao D, Zhang Y. Inhibition of long noncoding RNA HIF1A-AS2 confers protection against atherosclerosis via ATF2 downregulation. J Adv Res 2020; 26:123-135. [PMID: 33133688 PMCID: PMC7584671 DOI: 10.1016/j.jare.2020.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction In atherosclerotic lesions, extensive inflammation of the vessel wall contributes to plaque instability. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes in atherosclerosis. Objectives Here, we aim to identify the functional role and regulatory mechanisms of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) in atherosclerotic inflammation. Methods An atherosclerotic mouse model was induced in ApoE-/- mice by high fat diet (HFD). Endothelial cells (ECs), human aortic smooth muscle cells (SMCs) or human coronary artery endothelial cells (HCAECs) were exposed to ox-LDL to develop the in vitro model. The effects of lncRNA HIF1A-AS2 on inflammation were evaluated by determining levels of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) and levels of adhesion molecules vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and macrophage cationic peptide 1 (MCP-1). Results It was established that lncRNA HIF1A-AS2 and ATF2 were highly expressed in atherosclerotic ApoE-/- mice. Downregulating lncRNA HIF1A-AS2 in ox-LDL-exposed ECs, SMCs and HCAECs inhibited inflammation by reducing levels of pro-inflammatory factors and adhesion molecules. LncRNA HIF1A-AS2 bound to the transcription factor USF1 to elevate ATF2 expression. USF1 overexpression counteracted the suppressive effect of lncRNA HIF1A-AS2 silencing on ox-LDL-induced inflammation. Knockdown of lncRNA HIF1A-AS2 or ATF2 could also attenuate inflammation in atherosclerotic mice. Collectively, the present study demonstrates that downregulation of lncRNA HIF1A-AS2 represses the binding of USF1 to the ATF2 promoter region and then inhibits ATF2 expression, thereby suppressing atherosclerotic inflammation. Conclusion This study suggests lncRNA HIF1A-AS2 as an promising therapeutic target for atherosclerosis.
Collapse
Key Words
- ATCC, American Type Culture Collection
- ATF2, activating transcription factor 2
- Activating transcription factor
- Atherosclerosis
- CAD, coronary artery disease
- CCK-8, cell counting kit-8
- ChIP, Chromatin immunoprecipitation
- DMEM, Dulbecco’s modified Eagle’s medium
- ECs, endothelial cells
- ELISA, enzyme linked immunosorbent assay
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- HCAECs, human coronary artery endothelial cells
- HE, Hematoxylin-eosin
- HFD, high fat diet
- HIF1A-AS2, hypoxia-inducible factor 1 alpha-antisense RNA 2
- Hypoxia-inducible factor 1 alpha-antisense RNA 2
- ICAM-1, intercellular adhesion molecule-1
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IgG, immunoglobulin G
- Inflammation
- LDL, low-density lipoprotein
- Long noncoding RNA
- MCP-1, monocyte chemoattractant protein-1
- ND, normal diet
- PBS, phosphate buffered saline
- RIP, RNA binding protein immunoprecipitation
- RT-qPCR, reverse transcription quantitative polymerase chain reaction
- SMCs, smooth muscle cells
- TNF-α, tumor necrosis factor-α
- Transcription factor
- USF1, upstream stimulatory factor 1
- Upstream transcription factor 1
- VCAM-1, vascular cell adhesion molecule 1
- lncRNAs, long noncoding RNAs
- ox-LDL, oxidized-low-density lipoprotein
- sh, short hairpin RNA
- si-NC, small interfering RNA-negative control
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Junhui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jielei Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xuemeng Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Di Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Corresponding authors at: Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, Henan Province, PR China (D. Zhao). Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, Henan Province, PR China (Y. Zhang).
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Corresponding authors at: Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, Henan Province, PR China (D. Zhao). Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, Henan Province, PR China (Y. Zhang).
| |
Collapse
|
40
|
Liu D, Zhang X, Liu X, Zhang A, Zhu B. Roles of a small GTPase Sar1 in ecdysteroid signaling and immune response of red swamp crayfish Procambarus clarkii. Int J Biol Macromol 2020; 166:550-556. [PMID: 33137382 DOI: 10.1016/j.ijbiomac.2020.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Secretion-associated and ras-related protein 1 (Sar1) is a small GTPase that plays an important role in the transport of protein coated with coat protein complex II vesicles. However, its alternative roles in the biological processes of Procambarus clarkii remain unclear. Here, a sar1 gene (named as Pc-sar1) with an open reading frame of 582 bp from P. clarkii was identified. Pc-sar1 was expressed in all examined tissues with highest expression levels in muscle, which was determined by real-time PCR and western blotting. After the induction of lipopolysaccharide (LPS) and polycytidylic acid (Poly I: C), the transcriptional levels of Pc-sar1 differed in hepatopancreas, gill, muscle and intestine. In contrast, the expression of Pc-sar1 was upregulated by 20-hydroxyecdysone in these four tissues. In addition, the RNA interference of Pc-sar1 significantly affected the expression levels of immune and hormone-related genes. These results indicate that Pc-sar1 is involved in the innate immune response and ecdysteroid signaling pathway.
Collapse
Affiliation(s)
- Die Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxiao Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Awei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
41
|
Zhao Y, Yang X, Meng F, Li W. SET8 participates in lipopolysaccharide-mediated BV2 cell inflammation via modulation of TICAM-2 expression. Can J Physiol Pharmacol 2020; 98:818-825. [PMID: 32176860 DOI: 10.1139/cjpp-2019-0699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial inflammation, involved in the occurrence and development of sepsis-associated encephalopathy, exhibits upregulation of proinflammatory cytokine and proinflammatory enzyme expression, leading to inflammation-induced neuronal cell apoptosis. TIR domain containing adaptor molecule-2 (TICAM-2) participates in lipopolysaccharide (LPS) mediated BV2 cell inflammation. SET8 plays a crucial role in a variety of cellular signal pathways. In this study, we hypothesize that SET8 participates in LPS-mediated microglial inflammation via modulation of TICAM-2 expression. Our data indicated that LPS induced BV2 inflammation via upregulation of TICAM-2 expression. Moreover, LPS treatment inhibited SET8 expression, while it increased activating transcription factor 2 (ATF2) expression. The effects of sh-SET8 and ATF2 overexpression were similar to that of LPS treatments. Inhibition of TICAM-2 expression counteracted sh-SET8-mediated and ATF2 overexpression mediated BV2 cell inflammation. Further, SET8 was found to interact with ATF2. A mechanistic study found that H4K20me1, a downstream target of SET8, and ATF2 enriched at the TICAM-2 promoter region. Luciferase reporter assays indicated that sh-SET8 increased TICAM-2 promoter activity but augmented the effect of ATF2 overexpression on TICAM-2 promoter activity as well. Co-transfection of sh-SET8 with ATF2 overexpression more dramatically increased TICAM-2 expression in BV2 cells. The present study indicated that SET8 interacted with ATF2 to modulate TICAM-2 expression, which participated in LPS-mediated BV2 cell inflammation.
Collapse
Affiliation(s)
- Yanjun Zhao
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Xijun Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fufen Meng
- Department of Anesthesiology, the third hospital, affiliated to the Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
42
|
Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J, Chen S, Lin Y, Ge Y. JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp Eye Res 2020; 202:108335. [PMID: 33141050 DOI: 10.1016/j.exer.2020.108335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Indirect traumatic optic neuropathy (ITON) is a major cause of permanent loss of vision after blunt head trauma. Neuroinflammation plays a crucial role in neurodegenerative diseases. The present study concentrated on JNK/c-Jun-driven NLRP3 inflammasome activation in microglia during the degeneration of retinal ganglion cells (RGCs) in ITON. METHODS An impact acceleration (IA) model was employed to induce ITON, which could produce significant neurodegeneration in the visual system. Pharmacological approaches were employed to disrupt JNK and to explore whether JNK and the microglial response contribute to RGC death and axonal degeneration. RESULTS Our results indicated that the ITON model induced significant RGC death and axonal degeneration and activated JNK/c-Jun signaling, which could further induce the microglial response and NLRP3 inflammasome activation. Moreover, JNK disruption is sufficient to suppress NLRP3 inflammasome activation in microglia and to prevent RGC death and axonal degeneration. CONCLUSIONS ITON could promote JNK/c-Jun signaling, which further activates the NLRP3 inflammasome in microglia and contributes to the degeneration of axons and death of RGCs. JNK inhibition is able to suppress the inflammatory reaction and improve RGC survival. Although further work is needed to determine whether pharmacological inhibition of the NLRP3 inflammasome can prevent ITON, our findings indicated that such intervention could be promising for translational work.
Collapse
Affiliation(s)
- Xiaoqi Chu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Chun Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Zheng Wu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Liting Fan
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Chunmei Tao
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Jiaqi Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Shuang Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China.
| | - Yusong Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China.
| |
Collapse
|
43
|
Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Mar Drugs 2020; 18:md18100496. [PMID: 33003399 PMCID: PMC7600735 DOI: 10.3390/md18100496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug.
Collapse
|
44
|
Zhang X, Zhang D, Wang Q, Guo X, Chen J, Jiang J, Li M, Liu W, Gao Y, Zhang Q, Bao G, Cui Z. Sprouty2 Inhibits Migration and Invasion of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Down-regulating ATF2 Expression and Phosphorylation. Inflammation 2020; 44:91-103. [PMID: 32789554 DOI: 10.1007/s10753-020-01311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activating transcription factor 2(ATF2), a transcription factor belonging to the AP-1 family, plays an important role in inflammation. However, its biological functions and underlying molecular mechanisms in rheumatoid arthritis (RA) remain unclear. Western blot and immunohistochemistry were used to identify the expression of ATF2 and Sprouty2(SPRY2) in RA synovial tissues. SW982 cells were stimulated by TNF-α to establish an in vitro RA fibroblast-like synoviocyte (RA-FLS) model. Transwell and monolayer wound-healing were used to detect cell migration and invasion. RNA interference (si-ATF2) and adenovirus vector (Ad-SPRY2) methods were employed to manipulate ATF2 or SPRY2 expression in SW982 cells. The protein expression and phosphorylation levels in SW982 cells were evaluated by western blot. ATF2 expression and phosphorylation were upregulated in the RA synovial tissues. In RA-FLS model, ATF2 expression and phosphorylation were increased in a time-dependent manner. ATF2 knockdown inhibited the migration and invasion of RA-FLS model, reducing the inflammatory factors, which was consistent with the influence on cell behaviors caused by SPRY2 overexpression. Moreover, SPRY2 overexpression inhibited the TNF-α-induced phosphorylation of ERK and ATF2 in SW982 cells. The high expression and phosphorylation of ATF2 promoted migration and invasion of RA-FLSs. SPRY2 might inhibited the inflammatory responses of RA-FLSs via suppressing ERK-ATF2 pathway.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Qinyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaofeng Guo
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiajia Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiawei Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yingying Gao
- Department of Rheumatology, The Second Affiliated Hospital of Nantong University, 226001, Jiangsu Province, Nantong, People's Republic of China
| | - Qi Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guofeng Bao
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhiming Cui
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
45
|
Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis 2020; 34:375-389. [PMID: 31799611 PMCID: PMC6923166 DOI: 10.1093/mutage/gez041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Collapse
Affiliation(s)
- Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Ana C Monteiro
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vijayalakshmi Mahadevan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
46
|
Wang X, Gao S, Hao Z, Tang T, Liu F. Involvement of TRAF6 in regulating immune defense and ovarian development in Musca domestica. Int J Biol Macromol 2020; 153:1262-1271. [DOI: 10.1016/j.ijbiomac.2019.10.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
|
47
|
Cheng Q, Shen Y, Cheng Z, Shao Q, Wang C, Sun H, Zhang Q. Achyranthes bidentata polypeptide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:575. [PMID: 31807556 DOI: 10.21037/atm.2019.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Activated microglia play a critical role in regulating neuroinflammatory responses in central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k's (ABPPk's) neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-activated neuroinflammation in BV2 microglia. Methods We pretreated BV2 microglia with different concentrations of ABPPk (0.04-5 µg/mL) for 30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk. Results ABPPk (0.2-5 µg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 µg/mL) also suppressed the production of TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk's inhibitory effect on pro-inflammatory mediators also disappeared. Conclusions The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
48
|
Zhu G, Cheng Z, Huang Y, Zheng W, Yang S, Lin C, Ye J. TRAF6 promotes the progression and growth of colorectal cancer through nuclear shuttle regulation NF-kB/c-jun signaling pathway. Life Sci 2019; 235:116831. [PMID: 31487530 DOI: 10.1016/j.lfs.2019.116831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 01/21/2023]
Abstract
AIMS TRAF6 is an intracellular signal adapter molecule plays a significant role in tumor development. However, the specific mechanism causes and promotes of colorectal cancer keep largely unknown. Therefore, we sought to investigate the roles and the molecular mechanisms of TRAF6 in regulation colorectal cancer. MATERIAL AND METHODS The immunohistochemistry analyzed the expression of TRAF6 in colorectal cancer samples and analyzed the effects of expression of TRAF6 on the prognosis in colorectal cancer. The roles of TRAF6 in regulating colorectal cancer cell proliferation, colony formation, cell migration, cell wound healing and cell invasion were evaluated in vitro. Animal studies were performed to investigate the effects of TRAF6 on tumor growth. mRNA abundance of key genes was analyzed via qPCR. Protein level of TRAF6 and NF-κB/AP-1 signaling pathways was examined by Western blot. Luciferase reporter and Immunofluorescence assays were used to identify the activities NF-κB/AP-1 signaling pathways. KEY FINDINGS TRAF6 high expression in colorectal cancer tissues. And colorectal cancer patients with high expression of TRAF6 had a poor survival rate. TRAF6 knockdown can inhibit proliferation, migration, and invasion of colorectal cancer cells in vitro and in vivo experiments. TRAF6 activates the TRAF6-NF-κB/AP-1 signaling pathway by entering the nucleus, causing biobehavioral changes in colorectal cancer cells. SIGNIFICANCE TRAF6 plays a vital role in the progression of colorectal cancer. What's more, research elucidating the biological mechanisms of TRAF6 can treated as potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|