1
|
Li W, Luo X, Zheng XQ, Li QL, Li Z, Meng QQ, Zeng YL, Lin Y, Yang TC. Treponema pallidum protein Tp0136 promotes angiogenesis to facilitate the dissemination of Treponema pallidum. Emerg Microbes Infect 2024; 13:2382236. [PMID: 39017656 PMCID: PMC11299452 DOI: 10.1080/22221751.2024.2382236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
The incompletely eliminated Treponema pallidum (T. pallidum) during primary syphilis chancre infection can result in the progression of secondary, tertiary, or latent syphilis in individuals, suggesting that T. pallidum has successfully evaded the immune response and spread to distant sites. The mechanism underlying the dissemination of T. pallidum is unclear. Here, a syphilitic rabbit model dorsal-injected with recombinant Tp0136 protein or Tp0136 antibody subcutaneously was used to demonstrate the role of Tp0136 protein in promoting the dissemination of T. pallidum to the testis and angiogenesis in vivo; vascular endothelial cell line HMEC-1 was employed to display that Tp0136 protein enhances the angiogenesis. Furthermore, the three-dimensional microfluidic angiogenesis system showed that the angiogenesis would heighten vascular permeability. Then transcriptome sequencing analysis, in conjunction with cell-level validation, elucidated the critical role of the PI3K-AKT signaling pathway in the promotion of angiogenesis by Tp0136 protein, resulting in heightened permeability. These findings elucidate the strategy employed by T. pallidum in evading immune clearance.
Collapse
Affiliation(s)
- Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Ze Li
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qing-Qi Meng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yan-Li Zeng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J Eur Acad Dermatol Venereol 2024; 38:1478-1490. [PMID: 38376088 DOI: 10.1111/jdv.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Man Xu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
3
|
Yi DY, Xu QY, He Y, Zheng XQ, Yang TC, Lin Y. Treponema pallidum protein Tp47 induced prostaglandin E2 to inhibit the phagocytosis in human macrophages. J Eur Acad Dermatol Venereol 2024; 38:1166-1178. [PMID: 38258964 DOI: 10.1111/jdv.19809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND During Treponema pallidum (T. pallidum) infection, the host's immune system actively engages in pursuit and elimination of T. pallidum, while T. pallidum skillfully employs various mechanisms to evade immune recognition. Macrophages exhibit incomplete clearance of T. pallidum in vitro and the underlying mechanism of how T. pallidum resists the attack of macrophage remains unclear. OBJECTIVES To investigate the effect of T. pallidum membrane protein Tp47 on the phagocytosis of macrophages. METHODS THP-1-derived macrophages were used to investigate the role of Tp47 in the secretion of Prostaglandin E2 (PGE2) in macrophages and the mechanism by which Tp47 induced the production of PGE2, as well as the impact of PGE2 on the macrophage's phagocytosis. RESULTS Tp47 (1-10 μg/mL) significantly inhibited the phagocytosis of latex beads and T. pallidum in macrophages (p ≤ 0.05). PGE2 production by macrophages could be induced by Tp47, and the phagocytic function of macrophages could be restored using PGE2 antibody. Tp47 produced PGE2 by activating the PERK/NF-κB/COX-2 pathway in macrophages. Inhibitors targeting PERK, NF-κB and COX-2, respectively, reduced the level of PGE2 and restored the phagocytic function of macrophages. CONCLUSION Tp47-induced PGE2 production via the PERK/NF-κB/COX-2 pathway contributed to macrophage phagocytosis inhibition, which potentially contributes to immune evasion during the T. pallidum infection.
Collapse
Affiliation(s)
- D-Y Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Q-Y Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y He
- Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - X-Q Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
He Y, Yi DY, Pan L, Ye WM, Xie L, Zheng XQ, Liu D, Yang TC, Lin Y. Treponema pallidum-induced prostaglandin E2 secretion in skin fibroblasts leads to neuronal hyperpolarization: A cause of painless ulcers. J Eur Acad Dermatol Venereol 2024; 38:1179-1190. [PMID: 38376245 DOI: 10.1111/jdv.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Primary syphilis is characterized by painless ulcerative lesions in the genitalia, the aetiology of painless remains elusive. OBJECTIVES To investigate the role of Treponema pallidum in painless ulcer of primary syphilis, and the mechanisms underlying painless ulcers caused by T. pallidum. METHODS An experimental rabbit model of primary syphilis was established to investigate its effects on peripheral nerve tissues. Human skin fibroblasts were used to examine the role of T. pallidum in modulating neurotransmitters associated with pain and to explore the signalling pathways related to neurotransmitter secretion by T. pallidum in vitro. RESULTS Treponema pallidum infection did not directly lead to neuronal damage or interfere with the neuronal resting potential. Instead, it facilitated the secretion of prostaglandin E2 (PGE2) through endoplasmic reticulum stress in both rabbit and human skin fibroblasts, and upregulation of PGE2 induced the hyperpolarization of neurones. Moreover, the IRE1α/COX-2 signalling pathway was identified as the underlying mechanism by which T. pallidum induced the production of PGE2 in human skin fibroblasts. CONCLUSION Treponema pallidum promotes PGE2 secretion in skin fibroblasts, leading to the excitation of neuronal hyperpolarization and potentially contributing to the pathogenesis of painless ulcers in syphilis.
Collapse
Affiliation(s)
- Y He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D-Y Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - W-M Ye
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X-Q Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Zheng XQ, Li Z, Meng QQ, Li W, Li QL, Xie L, Xiao Y, Xu QY, Chen YY. Treponema pallidum recombinant protein Tp47 activates NOD-like receptor family protein 3 inflammasomes in macrophages via glycolysis. Int Immunopharmacol 2024; 126:111204. [PMID: 38016343 DOI: 10.1016/j.intimp.2023.111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Glycolysis is a key pathway in cellular glucose metabolism for energy supply and regulates immune cell activation. Whether glycolysis is involved in the activation of NOD-like receptor family protein 3 (NLRP3) inflammasomes during Treponema pallidum (T. pallidum) infection is unclear. In this study, the effect of T. pallidum membrane protein Tp47 on NLRP3 inflammasome activation in rabbit peritoneal macrophages was analysed and the role of glycolysis in NLRP3 inflammasome activation was explored. The results showed that Tp47 promoted NLRP3, caspase-1, and IL-1β mRNA expression in macrophages, enhanced glycolysis and glycolytic capacity of macrophage, and promoted the production of macrophage glycolytic metabolites citrate, phosphoenolpyruvate, and lactate. The M2 pyruvate kinase (PKM2) inhibitor shikonin down-regulated the Tp47-promoted NLRP3, caspase-1, and IL-1β mRNA expression in macrophages, and suppressed the Tp47-enhanced glycolysis and glycolytic capacity. Similarly, si-PKM2 significantly inhibited Tp47-promoted NLRP3, caspase-1, and IL-1β mRNA expression and the Tp47-enhanced glycolysis and glycolytic capacity in macrophages. In conclusion, Tp47 activated NLRP3 inflammasomes via PKM2-dependent glycolysis and provided a new perspective on the effect of T. pallidum infection on host macrophages, which would contribute to the understanding of the infection mechanism and host immune mechanism of T. pallidum.
Collapse
Affiliation(s)
- Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ze Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Qing-Qi Meng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yao Xiao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Hospital Infection Management, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China.
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Yu-Yan Chen
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China.
| |
Collapse
|
6
|
Wu S, Luo L, Ye F, Wang Y, Li D. Comprehensive Overview of Treponema pallidum Outer Membrane Proteins. Curr Protein Pept Sci 2024; 25:604-612. [PMID: 38661035 DOI: 10.2174/0113892037293502240328042224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Treponema pallidum, the causative agent of syphilis, is a sexually transmitted microorganism that exhibits remarkable motility capabilities, allowing it to affect various systems. Despite its structural resemblance to gram-negative bacteria due to its dual-membrane, T. pallidum possesses a lower abundance of outer membrane proteins (OMPs), which enables it to effectively conceal itself. This review presents a comprehensive analysis of the clinical diagnostic potential associated with the OMPs of T. pallidum. Furthermore, the known OMPs in T. pallidum that are responsible for mediating host interactions have been progressively elucidated. This review aims to shed light on the pathogenesis of syphilis, encompassing aspects such as vascular inflammation, chancre self-healing, neuroinvasion, and reinfection. Additionally, this review offers a detailed overview of the current state and prospects of development in the field of syphilis vaccines, with the ultimate goal of establishing a foundation for understanding the pathogenesis and implementing effective prevention strategies against syphilis.
Collapse
Affiliation(s)
- Sirui Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR. China
| | - Lan Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR. China
| | - Fei Ye
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR. China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR. China
| | - Dongdong Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR. China
| |
Collapse
|
7
|
Zheng XQ, Kong XQ, He Y, Wang YJ, Xie L, Liu LL, Lin LR, Yang TC. Treponema pallidum recombinant protein Tp47 enhanced interleukin-6 secretion in human dermal fibroblasts through the toll-like receptor 2 via the p38, PI3K/Akt, and NF-κB signalling pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119540. [PMID: 37468070 DOI: 10.1016/j.bbamcr.2023.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6) is a multi-effective cytokine involved in multiple immune responses. Whether fibroblasts also turn out to be a cytokine IL-6 factory during interaction with Treponema pallidum is not yet understood. To explore whether fibroblasts participate in inflammation due to syphilis, a series of experiments were performed to explore the role of T. pallidum lipoprotein Tp47 in IL-6 production in human dermal fibroblasts. The Toll-like receptor 2 (TLR2) and participating signalling pathways in this process were also evaluated. The results showed that the expressions of IL-6 and the protein levels of TLR2 in fibroblasts were upregulated after stimulation with Tp47, and this effect was impeded by the TLR2 inhibitor C29. In addition, Tp47 promoted the phosphorylation of p38, PI3K/Akt, and nuclear factor-kappaB (NF-κB), and the translocation of NF-κB in fibroblasts. Moreover, p38, PI3K, and NF-κB inhibitors significantly reduced IL-6 production in fibroblasts stimulated with Tp47. Furthermore, the TLR2 inhibitor C29 inhibited the phosphorylation of p38, Akt, and NF-κB, and the translocation of NF-κB in fibroblasts. In conclusion, our results showed that Tp47 enhanced IL-6 secretion in human dermal fibroblasts through TLR2 via p38, PI3K/Akt, and NF-κB signalling pathways. These findings contribute to our understanding of syphilis inflammation.
Collapse
Affiliation(s)
- Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiang-Qi Kong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261000, China
| | - Yun He
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361004, China
| | - Yong-Jing Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China.
| |
Collapse
|
8
|
Liu D, Chen R, Wang YJ, Li W, Liu LL, Lin LR, Yang TC, Tong ML. Insights into the protective immune response by immunization with full-length recombinant TprK protein: cellular and humoral responses. NPJ Vaccines 2023; 8:146. [PMID: 37773233 PMCID: PMC10542339 DOI: 10.1038/s41541-023-00748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Syphilis has resurged in many countries, which has called attention to vaccine development. Based on the immunization-based rabbit model of infection with the Nichols strain, this study explored the protective immune response of a controversial syphilis vaccine candidate, TprK, and found that immunization with full-length rTprK was effective in attenuating lesion development and accelerating lesion resolution, which could reduce the probability of the pathogen spreading to distant tissue sites to prevent the progression of the disease to some extent. Furthermore, the results revealed that immunization with rTprK not only rapidly induced a strong Th1-like cellular response but also elicited a humoral immune response to produce opsonic antibodies to enhance macrophage-mediated opsonophagocytosis. Although complete protection against infection was not achieved, the study provided a comprehensive and in-depth exploration of the immunogenicity of TprK and highlighted the importance of TprK as a promising syphilis vaccine component.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Li Y, Zou C, Li J, Wang W, Wang F, Guo Y. Airway Microbiome Composition and Co-Occurrence Network Are Associated with Inflammatory Phenotypes of Asthma. Int Arch Allergy Immunol 2023; 184:1254-1263. [PMID: 37690443 PMCID: PMC10733928 DOI: 10.1159/000533315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
INTRODUCTION The composition and co-occurrence network of the airway microbiome might influence the asthma inflammatory phenotype. Airway microbiota change with asthma phenotypes, and the structure of the bacterial community in the airway might differ between different asthma inflammatory phenotypes and may also influence therapy results. Identifying airway microbiota can help to investigate the role that microbiota play in the asthma inflammatory process. METHODS Induced sputum from 55 subjects and 12 healthy subjects from Beijing, China, was collected and analyzed for bacterial microbiota. Microbiome diversity, composition, co-occurrence networks, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were predicted and compared between the study groups. RESULTS Significant differences in the sputum microbiome composition, co-occurrence network, and predicted functional pathways were observed between the two inflammatory phenotypes. Asthmatics in the low FeNO group exhibited lower α-diversity in the sputum microbiota and had higher abundance of the phylum Proteobacteria compared with that of the high FeNO group. The network in the high FeNO group was more "closed" and "connected" compared with that of the low FeNO group, and an alteration in the abundance of keystone species T. socranskii was found. Significantly different predicted metabolic subfunctions including nucleotide metabolism, lipid metabolism, energy metabolism, replication and repair, and drug resistance antimicrobial and carbohydrate metabolism between the two studied phenotypes were also observed. CONCLUSION Our findings confirm that the airway microbiota is associated with the asthma inflammation process. The differences in the airway microbiome composition and co-occurrence network may affect distinct asthma inflammatory phenotypes, suggesting the possibility that more targeted therapies could be applied based on the airway bacterial genera.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Congying Zou
- Department of Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jieying Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feiran Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yue Guo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Wang M, Xie JW, Zheng YW, Wang XT, Yi DY, Lin Y, Tong ML, Lin LR. Tp47-Induced Monocyte-Derived Microvesicles Promote the Adherence of THP-1 Cells to Human Umbilical Vein Endothelial Cells via an ERK1/2-NF-κB Signaling Cascade. Microbiol Spectr 2023; 11:e0188823. [PMID: 37382544 PMCID: PMC10434049 DOI: 10.1128/spectrum.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
The Treponema pallidum membrane protein Tp47 induces immunocyte adherence to vascular cells and contributes to vascular inflammation. However, it is unclear whether microvesicles are functional inflammatory mediators between vascular cells and immunocytes. Microvesicles that were isolated from Tp47-treated THP-1 cells using differential centrifugation were subjected to adherence assays to determine the adhesion-promoting effect on human umbilical vein endothelial cells (HUVECs). Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) levels in Tp47-induced microvesicle (Tp47-microvesicle)-treated HUVECs were measured, and the related intracellular signaling pathways of Tp47-microvesicle-induced monocyte adhesion were investigated. Tp47-microvesicles promoted THP-1 cell adhesion to HUVECs (P < 0.01) and upregulated ICAM-1 and VCAM-1 expression in HUVECs (P < 0.001). The adhesion of THP-1 cells to HUVECs was inhibited by anti-ICAM-1 and anti-VCAM-1 neutralizing antibodies. Tp47-microvesicle treatment of HUVECs activated the extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-κB signaling pathways, whereas ERK1/2 and NF-κB inhibition suppressed the expression of ICAM-1 and VCAM-1 and significantly decreased the adhesion of THP-1 cells to HUVECs. IMPORTANCE Tp47-microvesicles promote the adhesion of THP-1 cells to HUVECs through the upregulation of ICAM-1 and VCAM-1 expression, which is mediated by the activation of the ERK1/2 and NF-κB pathways. These findings provide insight into the pathophysiology of syphilitic vascular inflammation.
Collapse
Affiliation(s)
- M. Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - J.-W. Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y.-W. Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - X.-T. Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - D.-Y. Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y. Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - M.-L. Tong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L.-R. Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| |
Collapse
|
11
|
Li W, Xie L, Li QL, Xu QY, Lin LR, Liu LL, Yang TC. Treponema pallidum membrane protein Tp47 promotes angiogenesis through ROS-induced autophagy. J Eur Acad Dermatol Venereol 2023; 37:558-572. [PMID: 36373343 DOI: 10.1111/jdv.18728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathological angiogenesis is an important manifestation of syphilis, but the underlying mechanism of Treponema pallidum subspecies pallidum (T. pallidum)-induced angiogenesis is poorly understood. OBJECTIVES The objective of this study is to investigate the role and related mechanism of the T. pallidum membrane protein Tp47 in angiogenesis. METHODS The proangiogenic activity of recombinant T. pallidum membrane protein Tp47 in human umbilical vein endothelial cells (HUVECs) was assessed by tube formation assay, three-dimensional angiogenesis analysis and experiments with a zebrafish embryo model. The effects of mitochondrial ROS and NADPH oxidase on intracellular ROS induced by Tp47 were further investigated. Furthermore, the levels of autophagy-related proteins and autophagic flux were measured. Finally, the role of ROS-induced autophagy in angiogenesis was studied. RESULTS Tp47 promoted tubule formation and the formation of angiogenic sprouts in vitro. In addition, a significant increase in the number of subintestinal vessel branch points in zebrafish injected with Tp47 was observed using a zebrafish embryo model. Tp47 also significantly increased intracellular ROS levels in a dose-dependent manner. Tp47-induced tube formation and angiogenic sprout formation were effectively prevented by the ROS inhibitor NAC. In addition, Tp47 enhanced the production of mitochondrial ROS and expression of the NADPH oxidase-related proteins Nox2 and Nox4. The production of mitochondrial ROS and intracellular ROS was reduced by the NADPH oxidase inhibitors DPI and apocynin. Furthermore, Tp47 significantly increased expression of the autophagy-related proteins P62 and Beclin 1 and the LC3-II/LC3-I ratio and promoted an increase in autophagic flux, which could be effectively rescued by coincubation with the ROS inhibitor NAC. Further intervention with the autophagy inhibitor BafA1 significantly inhibited tube formation and angiogenic sprout formation. CONCLUSIONS Tp47-induced NADPH oxidase enhanced intracellular ROS production via mitochondrial ROS and promoted angiogenesis through autophagy mediated by ROS. These findings may contribute to our understanding of pathological angiogenesis in syphilis.
Collapse
Affiliation(s)
- Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Clinical Laboratory Quality Control Center, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Zhou X, Tang Y, Cao T, Ning L, Li Y, Xie X, Hu Y, He B, Peng B, Liu S. Treponema pallidum lipoprotein Tp0768 promotes the migration and adhesion of THP-1 cells to vascular endothelial cells through stress of the endoplasmic reticulum and the NF-κB/HIF-1α pathway. Mol Microbiol 2023; 119:86-100. [PMID: 36480422 DOI: 10.1111/mmi.15010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Endothelial cell injury is a key factor in the spread of infection and pathogenicity of Treponema pallidum. The migration and adhesion reaction mediated by T. pallidum lipoprotein plays an important role. This study aimed to systematically explore the migration and adhesion effect of T. pallidum lipoprotein Tp0768 and its molecular mechanism. Stimulating vascular endothelial cells with Tp0768 increased the expression of ICAM-1, MCP-1, and IL-8. Moreover, it promoted the migration and adhesion of THP-1 cells to vascular endothelial cells. Our results revealed that Tp0768 promoted the THP-1 cells migrating and adhering to vascular endothelial cells by the PERK and IRE-1α pathways of endoplasmic reticulum (ER) stress. We further demonstrated that the inhibition of the NF-κB pathway and the downregulation of hypoxia-inducible factor 1 alpha (HIF-1α) reduced the mRNA levels of ICAM-1, MCP-1, and IL-8 induced by Tp0768. Also, the adhesion rate of THP-1 cells to endothelial cells decreased. After inhibiting ER stress, NF-κB p65 nuclear translocation was weakened, and the mRNA level of HIF-1α was also significantly downregulated. Our results indicated that T. pallidum lipoprotein Tp0768 promoted the migration and adhesion of THP-1 cells to vascular endothelial cells through ER stress and NF-κB/HIF-1α pathway.
Collapse
Affiliation(s)
- Xiangping Zhou
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Tang
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Cao
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Lichang Ning
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yumeng Li
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoping Xie
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Yibao Hu
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Bisha He
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Binfeng Peng
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
13
|
Isler MF, Hoskins S, Esparza EM, Ruhoy SM. Syphilitic Folliculitis: A Case Report With Demonstration of Spirochetes Showing Follicular Epitheliotropism. Am J Dermatopathol 2022; 44:837-839. [PMID: 35925589 DOI: 10.1097/dad.0000000000002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We report a case of a 59-year-old man presenting with a widespread follicular-based papular rash with a several-month history of myalgias, lymphadenopathy, fatigue, and weight loss who was diagnosed with acute syphilitic folliculitis by tissue biopsy analysis with immunohistochemical demonstration of spirochetes in hair follicle epithelium. Serologic analysis also showed evidence of Treponema sp. infection. Owing to the rising number of syphilis cases in the last decade, it is important to recognize classic cutaneous findings of syphilis in addition to unusual presentations such as syphilitic folliculitis.
Collapse
Affiliation(s)
| | - Sidney Hoskins
- Division of Dermatology, University of Washington, Seattle, WA
| | - Edward M Esparza
- Department of Dermatology, Virginia Mason Medical Center, Seattle, WA; and
| | - Steven M Ruhoy
- Department of Pathology, Virginia Mason Medical Center, Seattle, WA
| |
Collapse
|
14
|
Li W, Li QL, Xu QY, Wang XT, Yang TC. Tp47 promoted the phagocytosis of HMC3 cells through autophagy induced by endoplasmic reticulum stress. J Eur Acad Dermatol Venereol 2022; 36:2224-2234. [PMID: 35666816 DOI: 10.1111/jdv.18295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Central nervous system damage is an essential clinical feature that occurs in the early or late stages of syphilis infection. The abnormal enhancement of microglial phagocytosis can cause damage to the nervous system. However, the contribution of abnormally enhanced microglial phagocytosis to the pathogenesis of Treponema pallidum subsp. pallidum (T. pallidum) infection remains unknown. OBJECTIVES In this study, we sought to determine the role of recombinant T. pallidum Tp47 in promoting microglia phagocytosis and its associated mechanisms. METHODS Microglial HMC3 cells were used to investigate the effect of the Tp47 on phagocytosis and the roles of autophagy and endoplasmic reticulum stress in Tp47-induced phagocytosis. RESULTS HMC3 cells exhibited obvious phagocytosis when stimulated with Tp47. The levels of P62 degradation, Beclin1 expression and the LC3II/LC3I ratio were significantly elevated, and the fusion of autophagosomes and lysosomes was promoted in Tp47-stimulated HMC3 cells. Treatment with the autophagy inhibitors 3-MA and Baf A1 inhibited Tp47-induced phagocytosis. Meanwhile, the endoplasmic reticulum stress markers PERK, IRE1α, GRP78, ATF4 and XBP1s were upregulated in Tp47-stimulated HMC3 cells. In addition, we found that TUDCA could inhibit Tp47-induced expression of IRE1α but not PERK or ATF4. 4-PBA inhibited TP47-induced PERK and ATF4 protein expression but did not inhibit IRE1α expression. Attenuation of endoplasmic reticulum stress by administration of TUDCA and 4-PBA abrogated Tp47-mediated autophagy. CONCLUSIONS These results suggested that Tp47 activated autophagy through two key pathways associated with endoplasmic reticulum stress, PERK/ATF4 and IRE1/XBP1, to promote phagocytosis in HMC3 cells. These findings provided a basis for the understanding of the pathophysiology of neurological disorders that occur during the course of syphilis.
Collapse
Affiliation(s)
- Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Clinical Laboratory Quality Control Center, Xiamen, China
| |
Collapse
|
15
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Luo X, Lin SW, Xu QY, Ke WJ, Gao ZX, Tong ML, Liu LL, Lin LR, Zhang HL, Yang TC. Tp0136 targets fibronectin (RGD)/Integrin β1 interactions promoting human microvascular endothelial cell migration. Exp Cell Res 2020; 396:112289. [DOI: 10.1016/j.yexcr.2020.112289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
|
17
|
Li QL, Tong ML, Liu LL, Lin LR, Lin Y, Yang TC. Effect of anti-TP0136 antibodies on the progression of lesions in an infected rabbit model. Int Immunopharmacol 2020; 83:106428. [PMID: 32217461 DOI: 10.1016/j.intimp.2020.106428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
The effect of anti-TP0136 antibodies on the progression of syphilis is poorly understood. This study aimed to investigate the effect of anti-TP0136 antibodies on the progression of lesions in an infected rabbit model. Intramuscular injection of rTP0136 into rabbits in the immunized group (n = 4) elicited high titers of anti-TP0136 antibodies, and rabbits were then challenged with 105T. pallidum per site along their back. Lesion development was observed, and the injection sites were biopsied for tp0574 mRNA and histological analyses every week until the wound healed. The rabbits in the control group were injected with normal saline instead of rTP0136. Viable T. pallidum in the challenged rabbits was assessed with rabbit infectivity tests. The lesions in the immunized group took longer to heal than those in the control group (42 d vs. 28 d, P < 0.001) and had markedly higher levels of total cellular infiltrates. The mRNA level of tp0574 in the immunized group was significantly higher than that in the control group (P < 0.05). Viable T. pallidum was detected in rabbit lymph nodes in both the immunized and control groups. Our study showed that high titers of anti-TP0136 antibodies promoted the infiltration of inflammatory cells into local lesions and intensified tissue damage, thus delaying wound healing, and had no protective effect on the occurrence of syphilis in the rabbit model.
Collapse
Affiliation(s)
- Qiu-Ling Li
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
18
|
Luo X, Gao ZX, Lin SW, Tong ML, Liu LL, Lin LR, Ke WJ, Yang TC. Recombinant Treponema pallidum protein Tp0136 promotes fibroblast migration by modulating MCP-1/CCR2 through TLR4. J Eur Acad Dermatol Venereol 2020; 34:862-872. [PMID: 31856347 DOI: 10.1111/jdv.16162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chancre self-healing is an important clinical feature in the early stages of syphilis infection. Wound healing may involve an important mechanism by the migration of fibroblasts filling the injured lesion. However, the specific mechanism underlying this process is still unknown. OBJECTIVES We aimed to analyse the role of Tp0136 in the migration of fibroblasts and the related mechanism. METHODS The migration ability of fibroblasts was detected by a wound-healing assay. RT-PCR and ELISA detected the expression of MCP-1, IL-6 and MMP-9. TLR4 expression was detected by RT-PCR. The protein levels of CCR2 and relevant signalling pathway molecules were measured by Western blotting. RESULTS Tp0136 significantly promoted fibroblast migration. Subsequently, the levels of MCP-1 and its receptor CCR2 were increased in this process. The migration of fibroblasts was significantly inhibited by an anti-MCP-1 neutralizing antibody or CCR2 inhibitors. Furthermore, studies demonstrated that Tp0136 could activate the ERK/JNK/PI3K/NF-κB signalling pathways through TLR4 activity and that signalling pathways inhibitors could weaken MCP-1 secretion and fibroblast migration. CONCLUSIONS These findings demonstrate that Tp0136 promotes the migration of fibroblasts by inducing MCP-1/CCR2 expression through signalling involving the TLR4, ERK, JNK, PI3K and NF-κB signalling pathways, which could contribute to the mechanism of chancre self-healing in syphilis.
Collapse
Affiliation(s)
- X Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Z-X Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - S-W Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - M-L Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-L Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-R Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - W-J Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|