1
|
Halabi S, Rocos N, Kaufman J. The search to understand the development of the chicken immune system: Differences in expression of MHC class I loci and waves of thymocytes as evolutionary relics? Dev Biol 2024; 519:38-45. [PMID: 39694171 DOI: 10.1016/j.ydbio.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Chickens are renowned as a model for embryogenesis but have also been responsible for crucial advances in virology, cancer research and immunology. However, chickens are best known as a major source of animal protein for human nutrition, with roughly 80 billion chickens alive each year supplying meat and eggs, the vast majority part of a global poultry industry. As a result, avian immunology been studied intensively for over 60 years, and it has become clear that a major genetic locus in chickens determining resistance to infectious disease and response to vaccines is the major histocompatibility complex (MHC). Compared to typical mammals, the chicken MHC is compact and simple, with only two classical class I genes. A dominantly-expressed class I gene, BF2, is the major ligand for cytotoxic T lymphocytes (CTLs), while the other locus, BF1, is much less well-expressed, lacking in some MHC haplotypes, and is a ligand for natural killer (NK) cells. Cell surface class I expression in neonatal chicks is far less than in adults, and one possibility is that BF2 is not well-expressed early in ontogeny. A precedent is found for amphibians: the single classical class I molecule is not expressed in tadpoles of Xenopus frogs, although non-polymorphic (and thus non-classical) class I molecules from the XNC locus are expressed, which are recognised for immune defence by non-canonical NKT lymphocytes. Indeed, three waves of different T cells are produced by the Xenopus thymus: in tadpoles, during metamorphosis and finally as adults. Three waves of thymic emigrants are also found for chickens, and reasoning by analogy, it may be that the waves of thymocytes and the expression of class I molecules during ontogeny of chickens are evolutionary relics. As well as scientific interest in the ontogeny of MHC class I expression and appearance of peripheral T cells, there are potential practical implications, given the importance of vaccination in ovo and in day-old chicks for the poultry industry.
Collapse
Affiliation(s)
- Samer Halabi
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Nicolas Rocos
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Jim Kaufman
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Song C, Xiong DD, He RQ, Yong XZ, Huang ZG, Dang YW, Chen G, Pang YY, Zhao CY, Qu N, Wei DM. Bibliometric study of the application of the chicken embryo chorioallantoic membrane model in cancer research: the top 100 most cited articles. J Comp Pathol 2024; 213:59-72. [PMID: 39116802 DOI: 10.1016/j.jcpa.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The chicken embryo chorioallantoic membrane (CAM) model has played a crucial role in various aspects of cancer research. The purpose of this study is to help researchers clarify the research direction and prospects of the CAM model. A bibliometric analysis was conducted on the top 100 most cited articles on use of the CAM model in tumour research, retrieved from the Web of Science Core Collection database. Tools such as Bibliometrix, VOSviewer, CiteSpace and Excel were utilized for the visualization network analysis. The 100 articles analysed were mainly from the USA, China and European countries such as Germany and France. Tumour research involving CAM model experiments demonstrated reliability and scientific rigor (average citation count = 156.2). The analysis of keywords, topics and subject areas revealed that the applications of this model ranged from the biological characteristics of tumours to molecular mechanisms and signaling pathways, to recent developments in nanotechnology and clinical applications. Additionally, nude mouse experiments have been more frequently performed in recent years. We conclude that the CAM model is efficient, simple and cost-effective, and has irreplaceable value in various aspects of cancer research. In the future, the CAM model can further contribute to nanotechnology research.
Collapse
Affiliation(s)
- Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiang-Zhi Yong
- Department of Periodontal and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ning Qu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
3
|
Huang Y, Lei Y, Gong Z, Wang Y, Li M, Zhao D, Song L. Feeding Eucommia ulmoides extract enhances protection against high-temperature stress in chicks. Poult Sci 2024; 103:103827. [PMID: 38801811 PMCID: PMC11150962 DOI: 10.1016/j.psj.2024.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Chick's susceptibility to heat stress often leads to growth retardation, immune function impairment, disease, and mortality. This thesis explores the potential ameliorative effect of 0.8% Eucommia ulmoides extract (EUE) into the diet of heat-stressed chicks in a 15-d feeding trial. The investigation reveals that feeding EUE significantly enhances the BW, ADG, AFI, and F/G of chicks experiencing heat stress. Additionally, the EUE groups exhibited higher levels of T-AOC (at 7 and 15d), SOD (at 15 d), GSH-Px (at 15 d), as well as lower MDA concentrations (at 7 and 15d) in chick serum. Pathological changes and H&E staining revealed that EUE effectively improved tissue damage in the duodenum, heart, and stomach induced by heat stress in the chicks. The EUE groups also showed higher levels of IgA (at 7 d), IgG and IgM (at 7 and 15 d). RNA-seq and WGCNA analysis revealed that EUE mitigates cellular damage and losses in heat-stressed chicks primarily through pathways involving signal transduction, protein synthesis and degradation, as well as cell cycle regulation, particularly the latter. This investigation serves as a fundamental and cognitive framework for the development and application of Eucommia ulmoides feed additives aimed at safeguarding the well-being of chicks in adverse environmental conditions.
Collapse
Affiliation(s)
- Youwen Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China; Guizhou Key Lab of Agro-Bioengineering, Guiyang, Guizhou Province 550025, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, Guizhou Province 550025, China
| | - Yue Lei
- Guizhou Institute of Subtropical Crops, Xingyi, Guizhou Province 562400, China
| | - Zouxian Gong
- Clinical Medical College of Guizhou Medical University, Guiyang, Guizhou Province 550004, China
| | - Yifan Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China; Guizhou Key Lab of Agro-Bioengineering, Guiyang, Guizhou Province 550025, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, Guizhou Province 550025, China
| | - Minxue Li
- Agricultural and Rural Bureau, Shuicheng District, Liupanshui City, Guizhou Province 553040, China
| | - Degang Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, Guizhou Province 550025, China; Guizhou Academy of Agricultural Science, Guiyang, Guizhou Province 550006, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China; Guizhou Key Lab of Agro-Bioengineering, Guiyang, Guizhou Province 550025, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, Guizhou Province 550025, China.
| |
Collapse
|
4
|
Pogorzelska A, Kuropka P, Stygar D, Michalczyk K, Chełmecka E, Zalejska-Fiolka J, Kublicka A, Janicka P, Bażanów B. Impact of Human Adenovirus 36 on Embryonated Chicken Eggs: Insights into Growth Mechanisms. Int J Mol Sci 2024; 25:2341. [PMID: 38397017 PMCID: PMC10889315 DOI: 10.3390/ijms25042341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human adenovirus 36 (HAdV-D36) is presently the sole virus identified to be associated with an elevated risk of obesity in both humans and animals. However, its impact on embryonated chicken eggs (ECEs) remains unexplored. This study endeavoured to examine the influence of HAdV-D36 on embryonic development by utilizing embryonated chicken eggs as a dynamic model. To simulate various infection routes, the allantoic cavity and the yolk sac of ECEs were inoculated with HAdV-D36. Subsequently, embryos from both the experimental (inoculated with virus) and control (inoculated with PBS) groups were weighed and subjected to daily histological examination. The daily embryo weights were assessed and compared between groups using the Shapiro-Wilk test. Histopathological changes in tissues were examined and compared between the tested and control groups to ascertain physiological alterations induced by the virus. Our study confirmed a significant increase in the body weight of ECEs. However, this phenomenon was not attributable to adipose tissue development; rather, it was characterized by an augmented number of cells in all observed tissues compared to control subjects. We posit that HAdV-D36 may impact developing organisms through mechanisms other than enhanced adipose tissue development. Specifically, our findings indicate an increased number of cells in all tissues, a phenomenon that occurs through an as-yet-unexplored pathway.
Collapse
Affiliation(s)
- Aleksandra Pogorzelska
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland; (A.P.); (A.K.); (P.J.)
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-635 Wroclaw, Poland;
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 19 Jordana Street, 40-808 Zabrze, Poland; (D.S.); (K.M.)
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 19 Jordana Street, 40-808 Zabrze, Poland; (D.S.); (K.M.)
| | - Elżbieta Chełmecka
- Department of Medical Statistic, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Street, 40-200 Sosnowiec, Poland;
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland;
| | - Agata Kublicka
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland; (A.P.); (A.K.); (P.J.)
| | - Paulina Janicka
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland; (A.P.); (A.K.); (P.J.)
| | - Barbara Bażanów
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland; (A.P.); (A.K.); (P.J.)
| |
Collapse
|
5
|
Elieh-Ali-Komi D, Bot I, Rodríguez-González M, Maurer M. Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization. Clin Rev Allergy Immunol 2024; 66:30-49. [PMID: 38289515 DOI: 10.1007/s12016-024-08981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Mast cells (MCs) are commonly recognized for their crucial involvement in the pathogenesis of allergic diseases, but over time, it has come to light that they also play a role in the pathophysiology of non-allergic disorders including atherosclerosis. The involvement of MCs in the pathology of atherosclerosis is supported by their accumulation in atherosclerotic plaques upon their progression and the association of intraplaque MC numbers with acute cardiovascular events. MCs that accumulate within the atherosclerotic plaque release a cocktail of mediators through which they contribute to neovascularization, plaque progression, instability, erosion, rupture, and thrombosis. At a molecular level, MC-released proteases, especially cathepsin G, degrade low-density lipoproteins (LDL) and mediate LDL fusion and binding of LDL to proteoglycans (PGs). Through a complicated network of chemokines including CXCL1, MCs promote the recruitment of among others CXCR2+ neutrophils, therefore, aggravating the inflammation of the plaque environment. Additionally, MCs produce extracellular traps which worsen inflammation and contribute to atherothrombosis. Altogether, evidence suggests that MCs actively, via several underlying mechanisms, contribute to atherosclerotic plaque destabilization and acute cardiovascular syndromes, thus, making the study of interventions to modulate MC activation an interesting target for cardiovascular medicine.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
6
|
Ke Y, Khaliq H, Jiafu L, Waqas MY, Javid MA, Basit MA, Bhatti SA, Saleem MU, Farooq AA, Murtaza S. Distribution and developmental changes of IL-21 immunopositive cells in the bursa of Fabricius of Jinhu silky chicken. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:41-47. [PMID: 37877181 DOI: 10.1002/jez.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Bursa of Fabricius (BOF) is a unique immune organ of birds. It is the place where lymphocytes develop, differentiate and mature. Young chicken BOF is susceptible to infection and damage, and even atrophy, causing immune suppression, and bringing huge economic losses to chicken production. Therefore, studying the regulatory mechanism of chicken bursa development is of great practical significance for disease prevention and diagnosis. Jinhu silky chicken (JSC) is a local excellent breed in the Fujian Province of China and with strong disease resistance. However, studies on the disease resistance of JSC are scarce. This study aimed to provide a theoretical basis for reproduction and disease control of JSC. Developmental features of the structure and the IL-21-positive cell (IL-21 PC) distribution on the BOF in JSC were measured from 7 to 300 days of age. Bursas of chicken (n = 36) were taken at 7, 35, 70, 150, 240, and 300 days of age for preparation of paraffin sections and stained with hematoxylin-eosin (HE) and immunohistochemistry. The microstructure of JSC's BOF was similar to that of other poultry. The cortical-medullary boundary of the bursa nodule was not obvious at 7 days of age, but it was evident after 35 days of age. Before 70 days of age, IL-21 positive cells (PC) were scattered on the BOF. At 150 days of age, the number of IL-21 PC in the bursa were the highest and the nuclei were clear. The level of IL-21 PC gradually decreased with age. The BOF degenerated and disappeared in 300-day-old JSC. The histological structure of the BOF was similar to that of other poultry. IL-21 PC were widespread in the BOF at different ages, but the numbers were different.
Collapse
Affiliation(s)
- Yanyan Ke
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Haseeb Khaliq
- Department of Anatomy & Histology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Lin Jiafu
- Department of Basic Medical Science, Fujian Health College, Fuzhou, China
| | - Muhammad Yasir Waqas
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Arshad Javid
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Abdul Basit
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Usman Saleem
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Abdul Asim Farooq
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saeed Murtaza
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
7
|
Li X, Liu X, Cui L, Liu Z, Zhang Y, Li H. How to Break through the Bottlenecks of in Ovo Vaccination in Poultry Farming. Vaccines (Basel) 2023; 12:48. [PMID: 38250861 PMCID: PMC10821430 DOI: 10.3390/vaccines12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Poultry farming is one of the pillar industries of global animal husbandry. In order to guarantee production, poultry are frequently vaccinated from the moment they are hatched. Even so, the initial immunity of chicks is still very poor as they are in the "window period" of immune protection. In ovo vaccination pushes the initial immunization time forward to the incubation period, thereby providing earlier immune protection for chicks. In ovo vaccination is currently a research hotspot of poultry disease prevention and control, which is in line with the intensification of poultry production. However, the vaccines currently available for in ovo vaccination are limited and cannot meet the needs of industrial development, so how to efficiently activate the adaptive immune response of chicken embryos becomes the key to restrict product development and technological progress of in ovo vaccination. Its breakthrough, to a large extent, depends on systematic illustration of the mechanism underlying the adaptive immune response post immunization. Clarification of this issue will provide us with theoretical support and potential solutions for the development of novel vaccines for in ovo vaccination, the augmentation of efficacy of current vaccines and the optimization of immune programs.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (X.L.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Xiaoxiao Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (X.L.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.C.); (Z.L.)
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.C.); (Z.L.)
| | - Yu Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (X.L.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (X.L.); (X.L.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
8
|
Ma X, Tian Y, Zhang W, Zhang R, Xu X, Han J, Jiang Y, Wang X, Man C. Stress-induced immunosuppression inhibits immune response to infectious bursal disease virus vaccine partially by miR-27b-3p/SOCS3 regulatory gene network in chicken. Poult Sci 2023; 102:103164. [PMID: 39492374 PMCID: PMC10628791 DOI: 10.1016/j.psj.2023.103164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which often reduces the prevention and control effects of various vaccines, including infectious bursal disease virus (IBDV) vaccine, and brings enormous economic losses to the poultry industry. However, the molecular mechanisms of SIIS inhibiting immune response to IBDV vaccine remain unclear. In this study, suppressor of cytokine signaling 3 (SOCS3) gene was selected and stress-induced immunosuppressed chickens were simulated using dexamethasone (Dex). Quantitative real-time PCR (qRT-PCR) was conducted to analyze its expression characteristics and game relationships between SOCS3 gene and miR-27b-3p (it could target SOCS3 gene) in the process of SIIS inhibiting immune response to IBDV vaccine in chicken, and the potential application value of circulating miR-27b-3p as a biomarker was also identified. The results showed that SOCS3 gene and miR-27b-3p were significantly differentially expressed in the candidate tissues during SIIS inhibiting the immune response to IBDV (P < 0.05), respectively, which were key factors involved in the process. Moreover, miR-27b-3p and SOCS3 gene showed game regulation relationships in several tissues during the process, so the miR-27b-3p/SOCS3 regulatory network was one of the key mechanisms of SOCS3 gene participating in the process. Circulating miR-27b-3p was differentially expressed in serum at 10 time points (1, 2, 3, 4, 5, 7, 14, 21, 28, and 35 days postimmunization (dpi)) in the process (P < 0.05), showing that circulating miR-27b-3p was a valid candidate target as a molecular marker for detecting SIIS inhibiting the IBDV immune response. This study can provide references for further studying molecular mechanisms of stress affecting immune response.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
9
|
Alzahri RY, Al-Ghamdi FA, Al-Harbi SS. Immunological and Histological Studies of Different Concentrations of Rosmarinus officinalis and Thymus vulgaris Extracts on Thymus Gland of Chick Embryos. TOXICS 2023; 11:625. [PMID: 37505590 PMCID: PMC10386200 DOI: 10.3390/toxics11070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Humanity has an ancient history of consuming medicinal plants for prophylaxis. Within hours, and even months, embryonic cells undergo several processes to form an organism. This study aimed to prove the positive or negative effects of using rosemary and thyme extract on the thymus gland and level of IL-10, IgM, and IgG in serum of chick embryos. The immunological effect was measured by histological and immunological studies. A total of 160 fertilized eggs were randomly distributed into 8 groups; on the 0 and 8th day of incubation, all treated groups received a dose of 0.1 mL/egg. On the 14th and 20th days of incubation, the embryos were sacrificed and the samples were collected (serum and thymus gland). The data were analyzed using ANOVA. Simple damage in thymic tissue with a low cell density in the embryos was treated with high concentrations of rosemary and thyme extracts, as well as in the mixed group. A significant decrease in IgM levels in the group treated by a high concentration of thyme. A decrease in IgG levels was found in the group treated with a high concentration of rosemary and in the mixed group, while the group treated with a high concentration of thyme and the mixed group showed decreases on the 14th day. A significant decrease in IL-10 levels was found on the 14th day, followed by an increase on the 20th day. Despite the benefits of rosemary and thyme, inflammation signs appeared on embryos treated with these herbs.
Collapse
Affiliation(s)
- Reem Yahya Alzahri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | | | - Seetah Saleem Al-Harbi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
10
|
Ribatti D, Annese T. Chick embryo in experimental embryology and more. Pathol Res Pract 2023; 245:154478. [PMID: 37100021 DOI: 10.1016/j.prp.2023.154478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Chicken remains an undisputed, powerful, useful, and practical model in developmental research. Chick embryos have been used as model systems for studies in experimental embryology and teratology. As the chicken embryo develops outside the mother, effects of external stresses on cardiovascular development can be studied without interferences of maternal hormonal, metabolic, or hemodynamic alterations. In 2004, the first draft sequence of the complete chicken genome was released, allowing broad genetic analysis and comparison to humans, and enabling expansion of transgenic techniques within the chick model. The chick embryo is relatively simple, quick, and low-cost model. The main advantages of the chick as a model system for experimental embryology are the ease with cells and tissues can be labeled, transplanted, and cultured, along with its similarity to mammalian systems.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124 Bari, Italy.
| | - Tiziana Annese
- Department of Translational Biomedicine and Neurosciences University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124 Bari, Italy; Department of Medicine and Surgery, University LUM Giuseppe Degennaro, 70010 Casamassima (Ba), Italy
| |
Collapse
|
11
|
Fischer D, Fluegen G, Garcia P, Ghaffari-Tabrizi-Wizsy N, Gribaldo L, Huang RYJ, Rasche V, Ribatti D, Rousset X, Pinto MT, Viallet J, Wang Y, Schneider-Stock R. The CAM Model-Q&A with Experts. Cancers (Basel) 2022; 15:cancers15010191. [PMID: 36612187 PMCID: PMC9818221 DOI: 10.3390/cancers15010191] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The chick chorioallantoic membrane (CAM), as an extraembryonic tissue layer generated by the fusion of the chorion with the vascularized allantoic membrane, is easily accessible for manipulation. Indeed, grafting tumor cells on the CAM lets xenografts/ovografts develop in a few days for further investigations. Thus, the CAM model represents an alternative test system that is a simple, fast, and low-cost tool to study tumor growth, drug response, or angiogenesis in vivo. Recently, a new era for the CAM model in immune-oncology-based drug discovery has been opened up. Although there are many advantages offering extraordinary and unique applications in cancer research, it has also disadvantages and limitations. This review will discuss the pros and cons with experts in the field.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georg Fluegen
- Department of General, Visceral, Thoracic and Pediatric Surgery (A), Medical Faculty, Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Paul Garcia
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Nassim Ghaffari-Tabrizi-Wizsy
- SFL Chicken CAM Lab, Department of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, 89073 Ulm, Germany
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Marta Texeira Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Jean Viallet
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 94054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8526-069
| |
Collapse
|
12
|
Chick embryo chorioallantoic membrane: a biomaterial testing platform for tissue engineering applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
14
|
Hofmann T, Schmucker SS, Bessei W, Grashorn M, Stefanski V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals (Basel) 2020; 10:E1138. [PMID: 32635616 PMCID: PMC7401558 DOI: 10.3390/ani10071138] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
During their lifespan, chickens are confronted with a wide range of acute and chronic stressors in their housing environment that may threaten their welfare and health by modulating the immune system. Especially chronic stressful conditions can exceed the individual's allostatic load, with negative consequences for immunity. A fully functional immune system is mandatory for health and welfare and, consequently, also for high productivity and safe animal products. This review provides a comprehensive overview of the impact of housing form, light regime as well as aerial ammonia and hydrogen sulfide concentrations on the immune system in chickens. Certain housing conditions are clearly associated with immunological alterations which potentially impair the success of vaccinations or affect disease susceptibility. Such poor conditions counteract sustainable poultry production. This review also outlines current knowledge gaps and provides recommendations for future research.
Collapse
Affiliation(s)
- Tanja Hofmann
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| | - Sonja S. Schmucker
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| | - Werner Bessei
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany; (W.B.); (M.G.)
| | - Michael Grashorn
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany; (W.B.); (M.G.)
| | - Volker Stefanski
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| |
Collapse
|