1
|
Bohara S, Bagheri A, Ertugral EG, Radzikh I, Sandlers Y, Jiang P, Kothapalli CR. Integrative analysis of gene expression, protein abundance, and metabolomic profiling elucidates complex relationships in chronic hyperglycemia-induced changes in human aortic smooth muscle cells. J Biol Eng 2024; 18:61. [PMID: 39473010 PMCID: PMC11523773 DOI: 10.1186/s13036-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern with significant cardiovascular complications (CVD). Despite extensive epidemiological data, the molecular mechanisms relating hyperglycemia to CVD remain incompletely understood. We here investigated the impact of chronic hyperglycemia on human aortic smooth muscle cells (HASMCs) cultured under varying glucose conditions in vitro, mimicking normal (5 mmol/L), pre-diabetic (10 mmol/L), and diabetic (20 mmol/L) conditions, respectively. Normal HASMC cultures served as baseline controls, and patient-derived T2DM-SMCs served as disease controls. Results showed significant increases in cellular proliferation, area, perimeter, and F-actin expression with increasing glucose concentration (p < 0.01), albeit not exceeding the levels in T2DM cells. Atomic force microscopy analysis revealed significant decreases in Young's moduli, membrane tether forces, membrane tension, and surface adhesion in SMCs at higher glucose levels (p < 0.001), with T2DM-SMCs being the lowest among all the cases (p < 0.001). T2DM-SMCs exhibited elevated levels of selected pro-inflammatory markers (e.g., ILs-6, 8, 23; MCP-1; M-CSF; MMPs-1, 2, 3) compared to glucose-treated SMCs (p < 0.01). Conversely, growth factors (e.g., VEGF-A, PDGF-AA, TGF-β1) were higher in SMCs exposed to high glucose levels but lower in T2DM-SMCs (p < 0.01). Pathway enrichment analysis showed significant increases in the expression of inflammatory cytokine-associated pathways, especially involving IL-10, IL-4 and IL-13 signaling in genes that are up-regulated by elevated glucose levels. Differentially regulated gene analysis showed that compared to SMCs receiving normal glucose, 513 genes were upregulated and 590 genes were downregulated in T2DM-SMCs; fewer genes were differentially expressed in SMCs receiving higher glucose levels. Finally, the altered levels in genes involved in ECM organization, elastic fiber synthesis and formation, laminin interactions, and ECM proteoglycans were identified. Growing literature suggests that phenotypic switching in SMCs lead to arterial wall remodeling (e.g., change in stiffness, calcific deposits formation), with direct implications in the onset of CVD complications. Our results suggest that chronic hyperglycemia is one such factor that leads to morphological, biomechanical, and functional alterations in vascular SMCs, potentially contributing to the pathogenesis of T2DM-associated arterial remodeling. The observed differences in gene expression patterns between in vitro hyperglycemic models and patient-derived T2DM-SMCs highlight the complexity of T2DM pathophysiology and underline the need for further studies.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Atefeh Bagheri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Elif G Ertugral
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Igor Radzikh
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
2
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Hu M, Meganathan I, Zhu J, MacArthur R, Kassiri Z. Loss of TIMP3, but not TIMP4, exacerbates thoracic and abdominal aortic aneurysm. J Mol Cell Cardiol 2023; 184:61-74. [PMID: 37844423 DOI: 10.1016/j.yjmcc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
AIMS Aorta exhibits regional heterogeneity (structural and functional), while different etiologies for thoracic and abdominal aortic aneurysm (TAA, AAA) are recognized. Tissue inhibitor of metalloproteinases (TIMPs) regulate vascular remodeling through different mechanisms. Region-dependent functions have been reported for TIMP3 and TIMP4 in vascular pathologies. We investigated the region-specific function of these TIMPs in development of TAA versus AAA. METHODS & RESULTS TAA or AAA was induced in male and female mice lacking TIMP3 (Timp3-/-), TIMP4 (Timp4-/-) or in wildtype (WT) mice by peri-adventitial elastase application. Loss of TIMP3 exacerbated TAA and AAA severity in males and females, with a greater increase in proteinase activity, smooth muscle cell phenotypic switching post-AAA and -TAA, while increased inflammation was detected in the media post-AAA, but in the adventitia post-TAA. Timp3-/- mice showed impaired intimal barrier integrity post-AAA, but a greater adventitial vasa-vasorum branching post-TAA, which could explain the site of inflammation in AAA versus TAA. Severity of TAA and AAA in Timp4-/- mice was similar to WT mice. In vitro, Timp3 knockdown more severely compromised the permeability of human aortic EC monolayer compared to Timp4 knockdown or the control group. In aneurysmal aorta specimens from patients, TIMP3 expression decreased in the media in AAA, and in adventitial in TAA specimens, consistent with the impact of its loss in AAA versus TAA in mice. CONCLUSION TIMP3 loss exacerbates inflammation, adverse remodeling and aortic dilation, but triggers different patterns of remodeling in AAA versus TAA, and through different mechanisms.
Collapse
Affiliation(s)
- Mei Hu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rodrick MacArthur
- Department of Cardiac surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Bastola S, Kothapalli C, Ramamurthi A. Sodium Nitroprusside Stimulation of Elastic Matrix Regeneration by Aneurysmal Smooth Muscle Cells. Tissue Eng Part A 2023; 29:225-243. [PMID: 36597287 PMCID: PMC10122248 DOI: 10.1089/ten.tea.2022.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
The chronic overexpression of matrix metalloproteases leading to consequent degradation and loss of the elastic matrix with the reduction in tissue elasticity is central to the pathophysiology of proteolytic disorders, such as abdominal aortic aneurysms (AAAs), which are localized rupture-prone aortic expansions. Effecting tissue repair to alleviate this condition is contingent on restoring elastic matrix homeostasis in the aortic wall. This is naturally irreversible due to the poor elastogenicity of adult and diseased vascular cells, and the impaired ability to assemble mature elastic fibers, more so in the context of phenotypic changes to medial smooth muscle cells (SMCs) owing to the loss of nitric oxide (NO) signaling in the AAA wall tissue. In this study, we report the benefits of the exposure of primary human aneurysmal SMCs (aHASMCs) to NO donor drug, sodium nitroprusside (SNP), in improving extracellular matrix homeostasis, particularly aspects of elastic fiber assembly, and inhibition of proteolytic degradation. SNP treatment (100 nM) upregulated elastic matrix regeneration at both gene (p < 0.05) and protein levels (p < 0.01) without affecting cell proliferation, improved gene, and protein expression of crosslinking enzyme, lysyl oxidase (p < 0.05), inhibited the expression of MMP2 (matrix metalloprotease 2) significantly (p < 0.05) and promoted contractile SMC phenotypes in aHASMC culture. In addition, SNP also attenuated the expression of mitogen-activated protein kinases, a significant player in AAA formation and progression. Our results indicate the promise of SNP for therapeutic augmentation of elastic matrix regeneration, with prospects for wall repair in AAAs. Impact Statement Chronic and naturally irreversible enzymatic degradation and loss of elastic fibers are centric to proteolytic disorders such as abdominal aortic aneurysms (AAAs). This is linked to poor elastogenicity of adult and diseased vascular cells, compromising their ability to assemble mature elastic fibers. Toward addressing this, we demonstrate the phenotype-modulatory properties of a nitric oxide donor drug, sodium nitroprusside on aneurysmal smooth muscle cells, and its dose-specific proelastogenic and antiproteolytic properties for restoring elastic matrix homeostasis. Combined with the development of vehicles for site-localized, controlled drug delivery, this can potentially lead to a new nonsurgical approach for AAA wall repair in the future.
Collapse
Affiliation(s)
- Suraj Bastola
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
5
|
Gueldner PH, Marini AX, Li B, Darvish CJ, Chung TK, Weinbaum JS, Curci JA, Vorp DA. Mechanical and matrix effects of short and long-duration exposure to beta-aminopropionitrile in elastase-induced model abdominal aortic aneurysm in mice. JVS Vasc Sci 2023; 4:100098. [PMID: 37152846 PMCID: PMC10160690 DOI: 10.1016/j.jvssci.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Objective Evaluate the mechanical and matrix effects on abdominal aortic aneurysms (AAA) during the initial aortic dilation and after prolonged exposure to beta-aminopropionitrile (BAPN) in a topical elastase AAA model. Methods Abdominal aortae of C57/BL6 mice were exposed to topical elastase with or without BAPN in the drinking water starting 4 days before elastase exposure. For the standard AAA model, animals were harvested at 2 weeks after active elastase (STD2) or heat-inactivated elastase (SHAM2). For the enhanced elastase model, BAPN treatment continued for either 4 days (ENH2b) or until harvest (ENH2) at 2 weeks; BAPN was continued until harvest at 8 weeks in one group (ENH8). Each group underwent assessment of aortic diameter, mechanical testing (tangent modulus and ultimate tensile strength [UTS]), and quantification of insoluble elastin and bulk collagen in both the elastase exposed aorta as well as the descending thoracic aorta. Results BAPN treatment did not increase aortic dilation compared with the standard model after 2 weeks (ENH2, 1.65 ± 0.23 mm; ENH2b, 1.49 ± 0.39 mm; STD2, 1.67 ± 0.29 mm; and SHAM2, 0.73 ± 0.10 mm), but did result in increased dilation after 8 weeks (4.3 ± 2.0 mm; P = .005). After 2 weeks, compared with the standard model, continuous therapy with BAPN did not have an effect on UTS (24.84 ± 7.62 N/cm2; 18.05 ± 4.95 N/cm2), tangent modulus (32.60 ± 9.83 N/cm2; 26.13 ± 9.10 N/cm2), elastin (7.41 ± 2.43%; 7.37 ± 4.00%), or collagen (4.25 ± 0.79%; 5.86 ± 1.19%) content. The brief treatment, EHN2b, resulted in increased aortic collagen content compared with STD2 (7.55 ± 2.48%; P = .006) and an increase in UTS compared with ENH2 (35.18 ± 18.60 N/cm2; P = .03). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. No differences in the mechanical properties or matrix protein concentrations were associated with abdominal elastase exposure or BAPN treatment for the thoracic aorta. The tangent modulus was higher in the STD2 group (32.60 ± 9.83 N/cm2; P = .0456) vs the SHAM2 group (17.99 ± 5.76 N/cm2), and the UTS was lower in the ENH2 group (18.05 ± 4.95 N/cm2; P = .0292) compared with the ENH2b group (35.18 ± 18.60 N/cm2). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. Abdominal aortic elastin in the STD2 group (7.41 ± 2.43%; P = .035) was lower compared with the SHAM2 group (15.29 ± 7.66%). Aortic collagen was lower in the STD2 group (4.25 ± 0.79%; P = .007) compared with the SHAM2 group (12.44 ± 6.02%) and higher for the ENH2b (7.55 ± 2.48%; P = .006) compared with the STD2 group. Conclusions Enhancing an elastase AAA model with BAPN does not affect the initial (2-week) dilation phase substantially, either mechanically or by altering the matrix content. Late mechanical and matrix effects of prolonged BAPN treatment are limited to the elastase-exposed segment of the aorta. Clinical Relevance This paper explores the use of short- and long-term exposure to beta-aminopropionitrile to create an enhanced topical elastase abdominal aortic aneurysm model in mice. Readouts of aneurysm severity included loss of mechanical stability and vascular extracellular matrix composition reminiscent of what is seen in the course of human disease. Additionally, we show that the thoracic aorta, unlike the findings below the renal arteries, is not damaged in our animal model.
Collapse
Affiliation(s)
- Pete H. Gueldner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Ande X. Marini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Bo Li
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - Cyrus J. Darvish
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Timothy K. Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA
- Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Zhang X, Chen J, Brott BC, Anderson PG, Hwang P, Sherwood J, Huskin G, Yoon YS, Virmani R, Jun HW. Pro-Healing Nanomatrix-Coated Stent Analysis in an In Vitro Vascular Double-Layer System and in a Rabbit Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51728-51743. [PMID: 36346768 PMCID: PMC10860673 DOI: 10.1021/acsami.2c15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiovascular stent technologies have significantly improved over time. However, their optimal performance remains limited by restenosis, thrombosis, inflammation, and delayed re-endothelialization. Current stent designs primarily target inhibition of neointimal proliferation but do not promote functional arterial healing (pro-healing) in order to restore normal vascular reactivity. The endothelial lining that does develop with current stents appears to have loose intracellular junctions. We have developed a pro-healing nanomatrix coating for stents that enhances healing while limiting neointimal proliferation. This builds on our prior work evaluating the effects of the pro-healing nanomatrix coating on cultures of vascular endothelial cells (ECs), smooth muscle cells (SMCs), monocytes, and platelets. However, when a stent is deployed in an artery, multiple vascular cell types interact, and their interactions affect stent performance. Thus, in our current study, an in vitro vascular double-layer (VDL) system was used to observe stent effects on communication between different vascular cell types. Additionally, we assessed the pro-healing ability and vascular cell interactions after stent deployment in the VDL system and in a rabbit model, evaluating the nanomatrix-coated stent compared to a commercial bare metal stent (BMS) and a drug eluting stent (DES). In vitro results indicated that, in a layered vascular structure, the pro-healing nanomatrix-coated stent could (1) improve endothelialization and endothelial functions, (2) regulate SMC phenotype to reduce SMC proliferation and migration, (3) suppress inflammation through a multifactorial manner, and (4) reduce foam cell formation, extracellular matrix remodeling, and calcification. Consistent with this, in vivo results demonstrated that, compared with commercial BMS and DES, this pro-healing nanomatrix-coated stent enhanced re-endothelialization with negligible restenosis, inflammation, or thrombosis. Thus, these findings indicate the unique pro-healing features of this nanomatrix stent coating with superior efficacy over commercial BMS and DES.
Collapse
Affiliation(s)
- Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Brigitta C. Brott
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | - Peter G. Anderson
- Department of Medicine, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Patrick Hwang
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | | | - Gillian Huskin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Young-sup Yoon
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, United States
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, MD, 20878, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| |
Collapse
|
7
|
Jauhiainen S, Kiema M, Hedman M, Laakkonen JP. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2022; 42:811-818. [PMID: 35587695 DOI: 10.1161/atvbaha.121.316237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Marja Hedman
- Institute of Clinical Medicine (M.H.), University of Eastern Finland, Kuopio
- Department of Clinical Radiology, Kuopio University Hospital, Finland (M.H.)
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland (M.H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| |
Collapse
|
8
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The Role of Nitric Oxide in Stem Cell Biology. Antioxidants (Basel) 2022; 11:497. [PMID: 35326146 PMCID: PMC8944807 DOI: 10.3390/antiox11030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies. In this sense, the molecular mechanisms underlying stemness regulation by NO have been studied intensively over the current years. Recently, we have reported the role of low NO as a hypoxia-like inducer in pluripotent stem cells (PSCs), which supports using this molecule to maintain pluripotency under normoxic conditions. In this review, we stress the role of NO levels on stem cells (SCs) fate as a new approach for potential cell therapy strategies. Furthermore, we highlight the recent uses of NO in regenerative medicine due to their properties regulating SCs biology.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain;
- Spanish Biomedical Research Network Centre in Oncology-CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Berman AG, Romary DJ, Kerr KE, Gorazd NE, Wigand MM, Patnaik SS, Finol EA, Cox AD, Goergen CJ. Experimental aortic aneurysm severity and growth depend on topical elastase concentration and lysyl oxidase inhibition. Sci Rep 2022; 12:99. [PMID: 34997075 PMCID: PMC8742076 DOI: 10.1038/s41598-021-04089-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) formation and expansion is highly complex and multifactorial, and the improvement of animal models is an important step to enhance our understanding of AAA pathophysiology. In this study, we explore our ability to influence aneurysm growth in a topical elastase plus β-Aminopropionitrile (BAPN) mouse model by varying elastase concentration and by altering the cross-linking capability of the tissue. To do so, we assess both chronic and acute effects of elastase concentration using volumetric ultrasound. Our results suggest that the applied elastase concentration affects initial elastin degradation, as well as long-term vessel expansion. Additionally, we assessed the effects of BAPN by (1) removing it to restore the cross-linking capability of tissue after aneurysm formation and (2) adding it to animals with stable aneurysms to interrupt cross-linking. These results demonstrate that, even after aneurysm formation, lysyl oxidase inhibition remains necessary for continued expansion. Removing BAPN reduces the aneurysm growth rate to near zero, resulting in a stable aneurysm. In contrast, adding BAPN causes a stable aneurysm to expand. Altogether, these results demonstrate the ability of elastase concentration and BAPN to modulate aneurysm growth rate and severity. The findings open several new areas of investigation in a murine model that mimics many aspects of human AAA.
Collapse
Affiliation(s)
- Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Daniel J Romary
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Katherine E Kerr
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Natalyn E Gorazd
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Morgan M Wigand
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Sourav S Patnaik
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ender A Finol
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Mougin Z, Huguet Herrero J, Boileau C, Le Goff C. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules 2021; 12:12. [PMID: 35053160 PMCID: PMC8773774 DOI: 10.3390/biom12010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) in the vascular wall is a highly dynamic structure composed of a set of different molecules such as elastins, collagens, fibronectin (Fn), laminins, proteoglycans, and polysaccharides. ECM undergoes remodeling processes to regulate vascular smooth muscle and endothelial cells' proliferation, differentiation, and adhesion. Abnormalities affecting the ECM can lead to alteration in cellular behavior and from this, this can conduce to the development of pathologies. Metalloproteases play a key role in maintaining the homeostasis of ECM by mediating the cleavage of different ECM components. There are different types of metalloproteases: matrix metalloproteinases (MMPs), disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs). ADAMTSs have been found to participate in cardiovascular physiology and diseases and specifically in aortic aneurysms. This review aims to decipher the potential role of ADAMTS proteins in the physiopathologic development of Thoracic Aortic Aneurysms (TAA) and Abdominal Aortic Aneurysms (AAA). This review will focus on what is known on the ADAMTS family involved in human aneurysms from human tissues to mouse models. The recent findings on THSD4 (encoding ADAMTSL6) mutations in TAA give a new insight on the involvement of the ADAMTS family in TAA.
Collapse
Affiliation(s)
- Zakaria Mougin
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Julia Huguet Herrero
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Catherine Boileau
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
- Département de Génétique, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Carine Le Goff
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| |
Collapse
|
12
|
Searching for new molecular markers for cells obtained from abdominal aortic aneurysm. J Appl Genet 2021; 62:487-497. [PMID: 34080122 PMCID: PMC8357660 DOI: 10.1007/s13353-021-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 10/26/2022]
Abstract
The aim of the study was to investigate specific potential markers for cells obtained from three layers of human AAA divided into three segments along the AAA based on morphological differences. The isolated cells were compared to control commercial cell types from healthy human abdominal aortas. For each type of aortic layer, three specimens from 6 patients were compared. Total RNA was isolated from 36 cell cultures for gene expression profiling and potential new cytometry markers were typed. Isolated cells were analyzed by flow cytometry by using fluorochrome-conjugated antibodies to markers: CNN1, MYH10, ENG, ICAM2, and TEK. The relative expression of 45 genes in primary cell cultures and control lines was analyzed. Statistically significant differences were found in the expression of most of the analyzed genes between individual layers and control lines. Based on relative expression, antibodies were selected for flow cytometry. Gene expression profiles allowed to select new potential cytometry markers: CNN1, MYH10, MYOCD, ENG, ICAM2, TEK. However, none of the tested markers seems to be optimal and characteristic for a specific layer of AAA.
Collapse
|
13
|
Li XL, Gao Q, Shen PJ, Zhang YF, Jiang WP, Huang ZY, Peng F, Gu ZM, Chen XF. Proteomic analysis of individual giant freshwater prawn, Macrobrachium rosenbergii, growth retardants. J Proteomics 2021; 241:104224. [PMID: 33845180 DOI: 10.1016/j.jprot.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/21/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
"Iron prawn" is a condition of severe growth retardation that fishers call. The giant river prawn (Macrobrachium rosenbergii) is a commercially important species contains high protein content and functional nutrients. However, no proteomic information is available for this species. We performed the shotgun 2DLC-MS/MS proteomic analysis of the total protein from "iron prawn". Total 19,758 peptides corresponding to 2613 high-confidence proteins were identified. These proteins range in size from 40 to 70 kDa. KEGG analysis revealed that the largest group consisting total 102 KEGG pathway proteins comparing the "iron prawn" with the normal prawn. Additionally, 7, 11, 1, 6, and 5 commercially important enzymes were found in the eyestalk, liver, muscle, ovary, and testis, respectively. The functions of these differently expressed enzymes include immune system action against pathogens, muscle contraction, digestive system metabolism, cell differentiation, migration, and apoptosis in the severe growth retardation of "iron prawn". Our work provides insight into the understanding of the formation mechanism of "iron prawn".
Collapse
Affiliation(s)
- Xi-Lian Li
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Qiang Gao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Pei-Jing Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yu-Fei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Wen-Ping Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhen-Yuan Huang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fei Peng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhi-Min Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Xue-Feng Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
14
|
Guo Y, Wan S, Han M, Zhao Y, Li C, Cai G, Zhang S, Sun Z, Hu X, Cao H, Li Z. Plasma Metabolomics Analysis Identifies Abnormal Energy, Lipid, and Amino Acid Metabolism in Abdominal Aortic Aneurysms. Med Sci Monit 2020; 26:e926766. [PMID: 33257643 PMCID: PMC7718721 DOI: 10.12659/msm.926766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complicated aortic dilatation disease. Metabolomics is an emerging system biology method. This aim of this study was to identify abnormal metabolites and metabolic pathways associated with AAA and to discover potential biomarkers that could affect the size of AAAs. Material/Methods An untargeted metabolomic method was used to analyze the plasma metabolic profiles of 39 patients with AAAs and 30 controls. Multivariate analysis methods were used to perform differential metabolite screening and metabolic pathway analysis. Cluster analysis and univariate analysis were performed to identify potential metabolites that could affect the size of an AAA. Results Forty-five different metabolites were identified with an orthogonal projection to latent squares-discriminant analysis model and the differences between them in the patients with AAAs and the control group were compared. A variable importance in the projection score >1 and P<0.05 were considered statistically significant. In patients with AAAs, the pathways involving metabolism of alanine, aspartate, glutamate, D-glutamine, D-glutamic acid, arginine, and proline; tricarboxylic acid cycling; and biosynthesis of arginine are abnormal. The progression of an AAA may be related to 13 metabolites: citric acid, 2-oxoglutarate, succinic acid, coenzyme Q1, pyruvic acid, sphingosine-1-phosphate, platelet-activating factor, LysoPC (16: 00), lysophosphatidylcholine (18: 2(9Z,12Z)/0: 0), arginine, D-aspartic acid, and L- and D-glutamine. Conclusions An untargeted metabolomic analysis using ultraperformance liquid chromatography-tandem mass spectrometry identified metabolites that indicate disordered metabolism of energy, lipids, and amino acids in AAAs.
Collapse
Affiliation(s)
- Yaming Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuwei Wan
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mingli Han
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yubo Zhao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chuang Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Gaopo Cai
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuai Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xinhua Hu
- Department of Endovascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Hui Cao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
15
|
Baumann HJ, Mahajan G, Ham TR, Betonio P, Kothapalli CR, Shriver LP, Leipzig ND. Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content. J Mech Behav Biomed Mater 2020; 110:103953. [PMID: 32957245 PMCID: PMC7509206 DOI: 10.1016/j.jmbbm.2020.103953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
Regeneration following spinal cord injury (SCI) is challenging in part due to the modified tissue composition and organization of the resulting glial and fibrotic scar regions. Inhibitory cell types and biochemical cues present in the scar have received attention as therapeutic targets to promote regeneration. However, altered Young's modulus of the scar as a readout for potential impeding factors for regeneration are not as well-defined, especially in vivo. Although the decreased Young's modulus of surrounding tissue at acute stages post-injury is known, the causation and outcomes at chronic time points remain largely understudied and controversial, which motivates this work. This study assessed the glial and fibrotic scar tissue's Young's modulus and composition (scar morphometry, cell identity, extracellular matrix (ECM) makeup) that contribute to the tissue's stiffness. The spatial Young's modulus of a chronic (~18-wks, post-injury) hemi-section, including the glial and fibrotic regions, were significantly less than naïve tissue (~200 Pa; p < 0.0001). The chronic scar contained cystic cavities dispersed in areas of dense nuclei packing. Abundant CNS cell types such as astrocytes, oligodendrocytes, and neurons were dysregulated in the scar, while epithelial markers such as vimentin were upregulated. The key ECM components in the CNS, namely sulfated proteoglycans (sPGs), were significantly downregulated following injury with concomitant upregulation of unsulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA), likely altering the foundational ECM network that contributes to tissue stiffness. Our results reveal the Young's modulus of the chronic SCI scar as well as quantification of contributing elastic components that can provide a foundation for future study into their role in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, OH, 44325, USA
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA; Department of Biology, The University of Akron, Akron, OH, 44325, USA
| | - Nic D Leipzig
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
16
|
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 2020; 319:H613-H631. [PMID: 32762559 DOI: 10.1152/ajpheart.00220.2020] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bioenergetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies have found that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking, and excessive alcohol drinking) on VSMC metabolism to clarify the role of VSMCs metabolism in the key pathological process.
Collapse
Affiliation(s)
- Jia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|