1
|
Wu M, Li A, Zhang T, Ding W, Wei Y, Wan C, Ke B, Cheng H, Jin C, Kong C. The novel prognostic analysis of AML based on ferroptosis and cuproptosis related genes. J Trace Elem Med Biol 2024; 86:127517. [PMID: 39270538 DOI: 10.1016/j.jtemb.2024.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy. The aim of this research was to develop a ferroptosis and cuproptosis related novel prognostic signature associated with AML. METHODS The ferroptosis and cuproptosis related genes correlated with the prognosis of AML were identified by univariate Cox analysis. The consistent cluster analysis was performed for 150 AML patients in TCGA dataset. The key module genes associated with GSVA score of ferroptosis and cuproptosis were identified by WGCNA. univariate Cox and LASSO regression analysis were adopted to build a ferroptosis and cuproptosis AML prognostic signature. Finally, the expression of five prognostic genes in clinical tissue samples were verified by RT-qPCR. RESULTS A grand total of 27 FCRGs associated with AML prognosis were identified.Then, two AML sub-types with significantly different survival were obtained. We found 3 significantly differential expressed immune cells (naive CD4 cells, regulatory T cells and resting mast cells) between two risk sub-groups. Meanwhile, 'IL6 JAK STAT3 signaling' and 'P53 pathway' were enriched in low-risk group. A ferroptosis and cuproptosis related prognostic signature was build based on 8 prognostic genes. RT-qPCR results indicated that there was no significant difference in the expression of OLFML2A and CD109 between AML and normal samples. However, compared to the control group, LGALS1, SOCS1, and RHOC showed significantly lower expression in the AML group. CONCLUSION The prognostic signature comprised of OLFML2A, LGALS1, ABCB11, SOCS1, RHOC, CD109, RD3L and PTPN13 based on ferroptosis and cuproptosis was established, which provided theoretical basis for the research of AML.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Anan Li
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Tingting Zhang
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Weirong Ding
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Yujing Wei
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Caishui Wan
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Hongbo Cheng
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Chenghao Jin
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Hematologic Diseases, Nanchang 330006, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow 215006, China,
| |
Collapse
|
2
|
Nakano M, Sakamoto T, Kitano Y, Bono H, Simpson RJ, Tabunoki H. An extract from the frass of swallowtail butterfly (Papilio machaon) larvae inhibits HCT116 colon cancer cell proliferation but not other cancer cell types. BMC Genomics 2023; 24:735. [PMID: 38049715 PMCID: PMC10696813 DOI: 10.1186/s12864-023-09841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The frass of several herbivorous insect species has been utilised as natural medicines in Asia; however, the metabolite makeup and pharmaceutical activities of insect frass have yet to be investigated. Oligophagous Papilionidae insects utilise specific kinds of plants, and it has been suggested that the biochemicals from the plants may be metabolised by cytochrome P450 (CYP) in Papilionidae insects. In this study, we extracted the components of the frass of Papilio machaon larvae reared on Angelica keiskei, Oenanthe javanica or Foeniculum vulgare and examined the biological activity of each component. Then, we explored the expression of CYP genes in the midgut of P. machaon larvae and predicted the characteristics of their metabolic system. RESULTS The components that were extracted using hexane, chloroform or methanol were biochemically different between larval frass and the host plants on which the larvae had fed. Furthermore, a fraction obtained from the chloroform extract from frass of A. keiskei-fed larvae specifically inhibited the cell proliferation of the human colon cancer cell line HCT116, whereas fractions obtained from the chloroform extracts of O. javanica- or F. vulgare-fed larval frass did not affect HCT116 cell viability. The metabolites from the chloroform extract from frass of A. keiskei-fed larvae prevented cell proliferation and induced apoptosis in HCT116 cells. Next, we explored the metabolic enzyme candidates in A. keiskei-fed larvae by RNA-seq analysis. We found that the A. keiskei-fed larval midgut might have different characteristics from the O. javanica- or F. vulgare-fed larval metabolic systems, and we found that the CYP6B2 transcript was highly expressed in the A. keiskei-fed larval midgut. CONCLUSIONS These findings indicate that P. machaon metabolites might be useful as pharmaceutical agents against human colon cancer subtypes. Importantly, our findings show that it might be possible to use insect metabolic enzymes for the chemical structural conversion of plant-derived compounds with complex structures.
Collapse
Affiliation(s)
- Miho Nakano
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Fuchu, 183-8509, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai- cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hidemasa Bono
- Laboratory of Bio-DX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3- 10-23 Kagamiyama, Higashi-Hiroshima City, 739-0046, Japan
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroko Tabunoki
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Fuchu, 183-8509, Japan.
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Wang X, Wu S, Sun L, Jin P, Zhang J, Liu W, Zhan Z, Wang Z, Liu X, He L. Pan-cancer analysis revealing that PTPN2 is an indicator of risk stratification for acute myeloid leukemia. Sci Rep 2023; 13:18372. [PMID: 37884566 PMCID: PMC10603079 DOI: 10.1038/s41598-023-44892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The non-receptor protein tyrosine phosphatases gene family (PTPNs) is involved in the tumorigenesis and development of many cancers, but the role of PTPNs in acute myeloid leukemia (AML) remains unclear. After a comprehensive evaluation on the expression patterns and immunological effects of PTPNs using a pan-cancer analysis based on RNA sequencing data obtained from The Cancer Genome Atlas, the most valuable gene PTPN2 was discovered. Further investigation of the expression patterns of PTPN2 in different tissues and cells showed a robust correlation with AML. PTPN2 was then systematically correlated with immunological signatures in the AML tumor microenvironment and its differential expression was verified using clinical samples. In addition, a prediction model, being validated and compared with other models, was developed in our research. The systematic analysis of PTPN family reveals that the effect of PTPNs on cancer may be correlated to mediating cell cycle-related pathways. It was then found that PTPN2 was highly expressed in hematologic diseases and bone marrow tissues, and its differential expression in AML patients and normal humans was verified by clinical samples. Based on its correlation with immune infiltrates, immunomodulators, and immune checkpoint, PTPN2 was found to be a reliable biomarker in the immunotherapy cohort and a prognostic predictor of AML. And PTPN2'riskscore can accurately predict the prognosis and response of cancer immunotherapy. These findings revealed the correlation between PTPNs and immunophenotype, which may be related to cell cycle. PTPN2 was differentially expressed between clinical AML patients and normal people. It is a diagnostic biomarker and potentially therapeutic target, providing targeted guidance for clinical treatment.
Collapse
Affiliation(s)
- Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Peipei Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianmin Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wen Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuo Zhan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zisong Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xiaoping Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Li He
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Zhu X, Chen Z, Wang L, Ou Q, Feng Z, Xiao H, Shen Q, Li Y, Jin C, Xu JY, Gao F, Wang J, Zhang J, Zhang J, Xu Z, Xu GT, Lu L, Tian H. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell Death Dis 2022; 13:785. [PMID: 36096985 PMCID: PMC9468174 DOI: 10.1038/s41419-022-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Age-related macular degeneration (AMD) is a major vision-threatening disease. Although mesenchymal stem cells (MSCs) exhibit beneficial neural protective effects, their limited differentiation capacity in vivo attenuates their therapeutic function. Therefore, the differentiation of MSCs into retinal pigment epithelial (RPE) cells in vitro and their subsequent transplantation into the subretinal space is expected to improve the outcome of cell therapy. Here, we transdifferentiated human umbilical cord MSCs (hUCMSCs) into induced RPE (iRPE) cells using a cocktail of five transcription factors (TFs): CRX, NR2E1, C-MYC, LHX2, and SIX6. iRPE cells exhibited RPE specific properties, including phagocytic ability, epithelial polarity, and gene expression profile. In addition, high expression of PTPN13 in iRPE cells endows them with an epithelial-to-mesenchymal transition (EMT)-resistant capacity through dephosphorylating syntenin1, and subsequently promoting the internalization and degradation of transforming growth factor-β receptors. After grafting into the subretinal space of the sodium iodate-induced rat AMD model, iRPE cells demonstrated a better therapeutic function than hUCMSCs. These results suggest that hUCMSC-derived iRPE cells may be promising candidates to reverse AMD pathophysiology.
Collapse
Affiliation(s)
- Xiaoman Zhu
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Zhiyang Chen
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Li Wang
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Qingjian Ou
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Zhong Feng
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Honglei Xiao
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Qi Shen
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Yingao Li
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Caixia Jin
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Jing-Ying Xu
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Furong Gao
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Juan Wang
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Jingfa Zhang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, 200080 China
| | - Jieping Zhang
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China ,Department of Physiology and Pharmacology, TUSM, Shanghai, 200092 China
| | - Zhiguo Xu
- Huzhou college, Zhejiang, 313000 China
| | - Guo-Tong Xu
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China ,Department of Physiology and Pharmacology, TUSM, Shanghai, 200092 China ,grid.24516.340000000123704535The collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China
| | - Lixia Lu
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| | - Haibin Tian
- grid.24516.340000000123704535Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
5
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
6
|
Shepard A, Hoxha S, Troutman S, Harbaugh D, Kareta MS, Kissil JL. Transcriptional regulation of miR-30a by YAP impacts PTPN13 and KLF9 levels and Schwann cell proliferation. J Biol Chem 2021; 297:100962. [PMID: 34265306 PMCID: PMC8348554 DOI: 10.1016/j.jbc.2021.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a key regulatory pathway that is tightly regulated by mechanical cues such as tension, pressure, and contact with the extracellular matrix and other cells. At the distal end of the pathway is the yes-associated protein (YAP), a well-characterized transcriptional regulator. Through binding to transcription factors such as the TEA Domain TFs (TEADs) YAP regulates expression of several genes involved in cell fate, proliferation and death decisions. While the function of YAP as direct transcriptional regulator has been extensively characterized, only a small number of studies examined YAP function as a regulator of gene expression via microRNAs. We utilized bioinformatic approaches, including chromatin immunoprecipitation sequencing and RNA-Seq, to identify potential new targets of YAP regulation and identified miR-30a as a YAP target gene in Schwann cells. We find that YAP binds to the promoter and regulates the expression of miR-30a. Moreover, we identify several YAP-regulated genes that are putative miR-30a targets and focus on two of these, protein tyrosine pohosphatase non-receptor type 13 (PTPN13) and Kruppel like factor 9. We find that YAP regulation of Schwann cell proliferation and death is mediated, to a significant extent, through miR-30a regulation of PTPN13 in Schwann cells. These findings identify a new regulatory function by YAP, mediated by miR-30a, to downregulate expression of PTPN13 and Kruppel like factor 9. These studies expand our understanding of YAP function as a regulator of miRNAs and illustrate the complexity of YAP transcriptional functions.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Sany Hoxha
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA; Department of Molecular Oncology, The Moffitt Cancer Center, Tampa, Florida, USA
| | - David Harbaugh
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA; Department of Molecular Oncology, The Moffitt Cancer Center, Tampa, Florida, USA.
| |
Collapse
|
7
|
Caillet-Saguy C, Durbesson F, Rezelj VV, Gogl G, Tran QD, Twizere JC, Vignuzzi M, Vincentelli R, Wolff N. Host PDZ-containing proteins targeted by SARS-CoV-2. FEBS J 2021; 288:5148-5162. [PMID: 33864728 PMCID: PMC8250131 DOI: 10.1111/febs.15881] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Small linear motifs targeting protein interacting domains called PSD‐95/Dlg/ZO‐1 (PDZ) have been identified at the C terminus of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) proteins E, 3a, and N. Using a high‐throughput approach of affinity‐profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS‐CoV‐2 proteins E, 3A, and N showing significant interactions with dissociation constants values ranging from 3 to 82 μm. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS‐CoV while three (NHERF1, MAST2, RADIL) are specific to SARS‐CoV‐2 E protein. Most of these SARS‐CoV‐2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Among the binders of the SARS‐CoV‐2 proteins E, 3a, or N, seven significantly affect viral replication under knock down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS‐CoV‐2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti‐coronaviral agents for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Veronica V Rezelj
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France
| | - Gergö Gogl
- IGBMC, INSERM U1258/UMR CNRS 7104, Illkirch, France
| | - Quang Dinh Tran
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France.,École doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, France
| | - Jean-Claude Twizere
- GIGA Institute, Molecular Biology of Diseases, Viral Interactomes laboratory, University of Liege, Belgium
| | - Marco Vignuzzi
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France
| | | | - Nicolas Wolff
- Institut Pasteur, Unité Récepteurs-Canaux, UMR CNRS 3571, Paris, France
| |
Collapse
|
8
|
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules 2020; 10:biom10121659. [PMID: 33322542 PMCID: PMC7763032 DOI: 10.3390/biom10121659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.
Collapse
|