1
|
Jafari SH, Lajevardi ZS, Zamani Fard MM, Jafari A, Naghavi S, Ravaei F, Taghavi SP, Mosadeghi K, Zarepour F, Mahjoubin-Tehran M, Rahimian N, Mirzaei H. Imaging Techniques and Biochemical Biomarkers: New Insights into Diagnosis of Pancreatic Cancer. Cell Biochem Biophys 2024; 82:3123-3144. [PMID: 39026059 DOI: 10.1007/s12013-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Pancreatic cancer (PaC) incidence is increasing, but our current screening and diagnostic strategies are not very effective. However, screening could be helpful in the case of PaC, as recent evidence shows that the disease progresses gradually. Unfortunately, there is no ideal screening method or program for detecting PaC in its early stages. Conventional imaging techniques, such as abdominal ultrasound, CT, MRI, and EUS, have not been successful in detecting early-stage PaC. On the other hand, biomarkers may be a more effective screening tool for PaC and have greater potential for further evaluation compared to imaging. Recent studies on biomarkers and artificial intelligence (AI)-enhanced imaging have shown promising results in the early diagnosis of PaC. In addition to proteins, non-coding RNAs are also being studied as potential biomarkers for PaC. This review consolidates the current literature on PaC screening modalities to provide an organized framework for future studies. While conventional imaging techniques have not been effective in detecting early-stage PaC, biomarkers and AI-enhanced imaging are promising avenues of research. Further studies on the use of biomarkers, particularly non-coding RNAs, in combination with imaging modalities may improve the accuracy of PaC screening and lead to earlier detection of this deadly disease.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sadat Lajevardi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Kimia Mosadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Yousefnia S. A comprehensive review on lncRNA LOXL1-AS1: molecular mechanistic pathways of lncRNA LOXL1-AS1 in tumorigenicity of cancer cells. Front Oncol 2024; 14:1384342. [PMID: 39136001 PMCID: PMC11317273 DOI: 10.3389/fonc.2024.1384342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are versatile RNAs that regulate various cellular processes, such as gene regulation, by acting as signals, decoys, guides, and scaffolds. A novel recognized lncRNA, LOXL1-antisense RNA 1 (LOXL1-AS1), is dysregulated in some diseases, including cancer, and acts as an oncogenic lncRNA in many types of cancer cells. Upregulation of LOXL1-AS1 has been involved in proliferation, migration, metastasis, and EMT, as well as inhibiting apoptosis in cancer cells. Most importantly, the malignant promoting activity of LOXL1-AS1 can be mostly mediated by sequestering specific miRNAs and inhibiting their binding to the 3´UTR of their target mRNAs, thereby indirectly regulating gene expression. Additionally, LOXL1-AS1 can decoy transcription factors and proteins and prevent their binding to their regulatory regions, inhibiting their mechanistic activity on the regulation of gene expression and signaling pathways. This review presents the mechanistic pathways of the oncogenic role of LOXL1-AS1 by modulating its target miRNAs and proteins in various cancer cells. Having information about the molecular mechanisms regulated by LOXL1-AS1 in cancer cells can open ways to find out particular prognostic biomarkers, as well as discover novel therapeutic approaches for different types of cancer.
Collapse
Affiliation(s)
- Saghar Yousefnia
- Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
| |
Collapse
|
3
|
Wang J, He X, Corpe C. Molecular Mechanisms and Clinical Implications of Noncoding RNAs in Cancer. Noncoding RNA 2024; 10:37. [PMID: 39051371 PMCID: PMC11270368 DOI: 10.3390/ncrna10040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Noncoding RNAs (ncRNAs), which include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are RNA molecules that arise from genomic regions without protein-coding potential and display a variety of mechanisms and functions by regulating gene expression at the transcriptional, RNA processing, and translational levels and participating in virtually all cellular processes [...].
Collapse
Affiliation(s)
- Jin Wang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Christopher Corpe
- Department of Nutritional Sciences, King’s College London, 150 Stamford Street, Waterloo, London SE1 9NH, UK
| |
Collapse
|
4
|
Liu Z, Petinrin OO, Toseef M, Chen N, Wong KC. Construction of Immune Infiltration-Related LncRNA Signatures Based on Machine Learning for the Prognosis in Colon Cancer. Biochem Genet 2024; 62:1925-1952. [PMID: 37792224 DOI: 10.1007/s10528-023-10516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Colon cancer is one of the malignant tumors with high morbidity, lethality, and prevalence across global human health. Molecular biomarkers play key roles in its prognosis. In particular, immune-related lncRNAs (IRL) have attracted enormous interest in diagnosis and treatment, but less is known about their potential functions. We aimed to investigate dysfunctional IRL and construct a risk model for improving the outcomes of patients. Nineteen immune cell types were collected for identifying house-keeping lncRNAs (HKLncRNA). GSE39582 and TCGA-COAD were treated as the discovery and validation datasets, respectively. Four machine learning algorithms (LASSO, Random Forest, Boruta, and Xgboost) and a Gaussian mixture model were utilized to mine the optimal combination of lncRNAs. Univariate and multivariate Cox regression was utilized to construct the risk score model. We distinguished the functional difference in an immune perspective between low- and high-risk cohorts calculated by this scoring system. Finally, we provided a nomogram. By leveraging the microarray, sequencing, and clinical data for immune cells and colon cancer patients, we identified the 221 HKLncRNAs with a low cell type-specificity index. Eighty-seven lncRNAs were up-regulated in the immune compared to cancer cells. Twelve lncRNAs were beneficial in improving performance. A risk score model with three lncRNAs (CYB561D2, LINC00638, and DANCR) was proposed with robust ROC performance on an independent dataset. According to immune-related analysis, the risk score is strongly associated with the tumor immune microenvironment. Our results emphasized IRL has the potential to be a powerful and effective therapy for enhancing the prognostic of colon cancer.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | | | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Liang H, Geng S, Wang Y, Fang Q, Xin Y, Li Y. Tumour-derived exosome SNHG17 induced by oestrogen contributes to ovarian cancer progression via the CCL13-CCR2-M2 macrophage axis. J Cell Mol Med 2024; 28:e18315. [PMID: 38680032 PMCID: PMC11056704 DOI: 10.1111/jcmm.18315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Oestrogen is known to be strongly associated with ovarian cancer. There was much work to show the importance of lncRNA SNHG17 in ovarian cancer. However, no study has revealed the molecular regulatory mechanism and functional effects between oestrogen and SNHG17 in the development and metastasis of ovarian cancer. In this study, we found that SNHG17 expression was significantly increased in ovarian cancer and positively correlated with oestrogen treatment. Oestrogen could promote M2 macrophage polarization as well as ovarian cancer cells SKOV3 and ES2 cell exosomal SNHG17 expression. When exposure to oestrogen, exosomal SNHG17 promoted ovarian cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, and tumour growth and lung metastasis in vivo by accelerating M2-like phenotype of macrophages. Mechanically, exosomal SNHG17 could facilitate the release of CCL13 from M2 macrophage via the PI3K-Akt signalling pathway. Moreover, CCL13-CCR2 axis was identified to be involved in ovarian cancer tumour behaviours driven by oestrogen. There results demonstrate a novel mechanism that exosomal SNHG17 exerts an oncogenic effect on ovarian cancer via the CCL13-CCR2-M2 macrophage axis upon oestrogen treatment, of which SNHG17 may be a potential biomarker and therapeutic target for ovarian cancer responded to oestrogen.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Obstetrics and GynecologyChina‐Japan Friendship HospitalBeijingChina
| | - Shuo Geng
- Department of Obstetrics and GynecologyChina‐Japan Friendship HospitalBeijingChina
| | - Yadong Wang
- Scientific Research DepartmentGeneX Health Co., LtdBeijingChina
| | - Qing Fang
- Institute of Clinical MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Yongfeng Xin
- Department of GynecologyThe People's Hospital of DaLaTeOrdosInner MongoliaChina
| | - Yanqing Li
- Department of GynecologyHebei Provincial Hospital of Traditional Chinese MedicineWuhanHebeiChina
| |
Collapse
|
6
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
7
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
8
|
Zhao C, Xu H, Liu C. Identification of Novel Prognostic Long Non-coding RNAs in Lung Adenocarcinoma Using WGCNA Analysis. Biochem Genet 2024; 62:264-280. [PMID: 37326895 DOI: 10.1007/s10528-023-10424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Long non-coding RNAs play crucial role in the tumorigenesis of lung adenocarcinoma (LUAD). However, the function of a large number of lncRNAs in LUAD has not been investigated yet. Weighted gene correlation network analysis (WGCNA) was applied to construct the co-expression module in the TCGA-LUAD cohort. Protein-protein interaction (PPI) network was used to explore the relationship of genes in the key module. The function of the key module on the prognosis in LUAD was analyzed using GO and KEGG analysis. Finally, we constructed the mRNA-lncRNA co-expression network in the key module to identify the hub lncRNAs that play crucial role in the prognosis in LUAD. The most highly expressed 2500 mRNAs and 2500 lncRNAs in the TCGA-LUAD cohort were clustered into 21 modules. After analyzing the correlation between the module and prognostic clinical traits, the Tan module, consisting of 130 genes, was selected as the key module on the prognosis in LUAD. And then, we found that genes in the key module were majorly enriched in ten multiple signaling pathways. Subsequently, we constructed the mRNA-lncRNA co-expression network based on the genes in the key module. Finally, we identified three lncRNAs and nineteen mRNAs that could be the promising prognostic biomarkers for LUAD. We identified three lncRNAs (MIR99AHG, ADAMTS9-AS2, and AC037459.2) and nineteen mRNAs as potential prognostic biomarkers in LUAD, which provided new insight for prognosis monitoring and therapy development in LUAD.
Collapse
Affiliation(s)
- Can Zhao
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China
| | - Han Xu
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China
| | - Chang Liu
- Department of Thoracic Surgery, Liaoning Health Industry Group Fukuang General Hospital, Liaoning, 113001, China.
| |
Collapse
|
9
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
10
|
Zhang M, Wang Z, Wu Y, Chen M, Li J, Liu G. Hypoxia-induced factor-1α promotes radioresistance of esophageal cancer cells by transcriptionally activating LINC01116 and suppressing miR-3612 under hypoxia. J Biochem Mol Toxicol 2024; 38:e23551. [PMID: 37983895 DOI: 10.1002/jbt.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Esophageal cancer (EC) is a challenging tumor to treat with radiotherapy, often exhibiting resistance to this treatment modality. To explore the factors influencing radioresistance, we focused on the role of hypoxia-induced factor-1α (HIF-1α), and its interaction with the long noncoding RNA long intergenic nonprotein coding RNA 1116 (LINC01116). We analyzed the LINC01116 expression in EC and EC cell lines/human normal esophageal epithelial cell line (Het-1A). LINC01116 was silenced/overexpressed in EC109/KYSE30 cells under hypoxia, followed by radioresistance assessment. We measured HIF-1α levels in hypoxic EC cells and further validated the binding of HIF-1α with LINC01116, analyzing their interaction in EC cells. We then performed experiments in EC109 cells by transfection them with sh-HIF-1α/oe-LINC01116 to verify the effects. Additonally, we analyzed the localization of LINC01116 and its binding with miR-3612, followed by a combined experiment performed to validate the results. Our findings indicated that LINC01116 was highly expressed in EC and further elevated in hypoxic EC cells. LINC01116 was expressed at a high level in EC, which was further elevated in EC cells under hypoxic conditions. Knockdown of LINC01116 triggered EC cell apoptosis, thus suppressing radioresistance. Further investigation revealed that HIF-1α transcriptionally activated LINC01116 expression under hypoxia, and silencing HIF-1α lowered EC cell radioresistance by downregulating LINC01116. Under hypoxic conditions, LINC01116 could function as a sponge for miR-3612 and inhibit its expression. This interaction between LINC01116 and miR-3612 played a crucial role in mediating radioresistance in EC cells. Briefly, under hypoxic conditions, HIF-1α facilitates radioresistance of EC cells by transcriptionally activating LINC01116 expression and downregulating miR-3612.
Collapse
Affiliation(s)
- Mengyan Zhang
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
- Thoracic Radiotherapy Department, Fujian Medical University Cancer Hospital Fujian Cancer Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Zhiping Wang
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Yahua Wu
- Thoracic Radiotherapy Department, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Mingqiu Chen
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Jiancheng Li
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Guolong Liu
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
| |
Collapse
|
11
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
12
|
Aswathy R, Sumathi S. Defining new biomarkers for overcoming therapeutical resistance in cervical cancer using lncRNA. Mol Biol Rep 2023; 50:10445-10460. [PMID: 37878205 DOI: 10.1007/s11033-023-08864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
Despite improvements in cervical cancer diagnosis and treatment, the prognosis for cervical cancer patients remains dismal due to the development of drug resistance, metastasis, and invasion resulting leading to treatment failure. Long non-coding RNAs (lncRNAs), a class of RNA transcripts have been reported in mediating carcinogenesis as well as drug, and radio-resistance in tumor cells. These lncRNAs regulate various cancer hallmarks and contribute to the development of therapeutic resistance. They regulates multiple signalling pathways, recruits polycomb group, function as miRNA sponge and scaffolds. Additionally, lncRNAs can act as oncogenes or tumor suppressors in cervical cancer. This comprehensive review outlines the biogenesis of lncRNA and its role in cancer development. It delves into the mechanisms through which various lncRNAs mediate chemoresistance and radioresistance in cervical cancer. By shedding into the light of mechanism, this review will also aids researchers in understanding lncRNAs as biomarkers and latest advancements in clinically targeting them with the help of Artificial Intelligence for overcoming chemoresistance and radioresistance, thereby improving cervical cancer treatment.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Bharathi Park Rd, near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam University for Home Science and Higher Education for Women, Bharathi Park Rd, near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
13
|
Mousavinasab F, Karimi R, Taheri S, Ahmadvand F, Sanaaee S, Najafi S, Halvaii MS, Haghgoo A, Zamany M, Majidpoor J, Khosravifar M, Baniasadi M, Talebi M, Movafagh A, Aghaei-Zarch SM, Khorram N, Farnia P, Kalhor K. Microbiome modulation in inflammatory diseases: Progress to microbiome genetic engineering. Cancer Cell Int 2023; 23:271. [PMID: 37951913 PMCID: PMC10640760 DOI: 10.1186/s12935-023-03095-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Ronika Karimi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Taheri
- Department of Microbiology, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Haghgoo
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Khosravifar
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohammad Baniasadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Khorram
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| |
Collapse
|
14
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
16
|
Chen L, Gao W, Lin L, Sha C, Li T, Chen Q, Wei H, Yang M, Xing J, Zhang M, Zhao S, Xu W, Li Y, Long L, Zhu X. A methylation- and immune-related lncRNA signature to predict ovarian cancer outcome and uncover mechanisms of chemoresistance. J Ovarian Res 2023; 16:186. [PMID: 37674251 PMCID: PMC10483746 DOI: 10.1186/s13048-023-01260-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Tumor-associated lncRNAs regulated by epigenetic modification switches mediate immune escape and chemoresistance in ovarian cancer (OC). However, the underlying mechanisms and concrete targets have not been systematically elucidated. Here, we discovered that methylation modifications played a significant role in regulating immune cell infiltration and sensitizing OC to chemotherapy by modulating immune-related lncRNAs (irlncRNAs), which represent tumor immune status. Through deep analysis of the TCGA database, a prognostic risk model incorporating four methylation-related lncRNAs (mrlncRNAs) and irlncRNAs was constructed. Twenty-one mrlncRNA/irlncRNA pairs were identified that were significantly related to the overall survival (OS) of OC patients. Subsequently, we selected four lncRNAs to construct a risk signature predictive of OS and indicative of OC immune infiltration, and verified the robustness of the risk signature in an internal validation set. The risk score was an independent prognostic factor for OC prognosis, which was demonstrated via multifactorial Cox regression analysis and nomogram. Moreover, risk scores were negatively related to the expression of CD274, CTLA4, ICOS, LAG3, PDCD1, and PDCD1LG2 and negatively correlated with CD8+, CD4+, and Treg tumor-infiltrating immune cells. In addition, a high-risk score was associated with a higher IC50 value for cisplatin, which was associated with a significantly worse clinical outcome. Next, a competing endogenous RNA (ceRNA) network and a signaling pathway controlling the infiltration of CD8+ T cells were explored based on the lncRNA model, which suggested a potential therapeutic target for immunotherapy. Overall, this study constructed a prognostic model by pairing mrlncRNAs and irlncRNAs and revealed the critical role of the FTO/RP5-991G20.1/hsa-miR-1976/MEIS1 signaling pathway in regulating immune function and enhancing anticancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Wujiang Gao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, Yangzhou First People's Hospital, Yangzhou, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Chunli Sha
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Taoqiong Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Qi Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Hong Wei
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Meiling Yang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Wenlin Xu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China.
| | - Yuefeng Li
- Medical school, Jiangsu University, No. 301, Xuefu Road, Zhenjiang City, 212031, Jiangsu Province, China.
| | - Lulu Long
- Oncology Department, Affiliated People's Hospital of jiangsu university, No. 8, Dianli Road, Zhenjiang City, 212001, Jiangsu Province, China.
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China.
| |
Collapse
|
17
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract 2023; 249:154764. [PMID: 37643526 DOI: 10.1016/j.prp.2023.154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
The Emergence of Long Non-coding RNAs (lncRNAs) as Key Regulators in Diverse Biological Processes: A Paradigm Shift in Understanding Gene Expression and its Impact on Cancer. The PTEN/PI3K pathway, a pivotal signaling cascade involved in cancer progression, orchestrates critical cellular functions such as survival, proliferation, and growth. In light of these advances, our investigation delves into the intricate and multifaceted interplay between lncRNAs and the PTEN/PI3K signaling pathway, unearthing previously undisclosed mechanisms that underpin cancer growth and advancement. These elusive lncRNAs exert their influence through direct targeting of the PTEN/PI3K pathway or by skillfully regulating the expression and activity of specific lncRNAs. This comprehensive review underscores the paramount significance of the interaction between lncRNAs and the PTEN/PI3K signaling pathway in cancer biology, unveiling an auspicious avenue for novel diagnostic tools and targeted therapeutic interventions. In this review, we navigate through the functional roles of specific lncRNAs in modulating PTEN/PI3K expression and activity. Additionally, we scrutinize their consequential effects on downstream components of the PTEN/PI3K pathway, unraveling the intricacies of their mutual regulation. By advancing our understanding of this complex regulatory network, this study holds the potential to revolutionize the landscape of cancer research, paving the way for tailored and efficacious treatments to combat this devastating disease.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
19
|
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother 2023; 164:114954. [PMID: 37257227 DOI: 10.1016/j.biopha.2023.114954] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
Traditionally, vaccines have helped eradication of several infectious diseases and also saved millions of lives in the human history. Those prophylactic vaccines have acted through inducing immune responses against a live attenuated, killed organism or antigenic subunits to protect the recipient against a real infection caused by the pathogenic microorganism. Nevertheless, development of anticancer vaccines as valuable targets in human health has faced challenges and requires further optimizations. Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) that play essential roles in tumor immunotherapies through induction of CD8+ T cell immunity. Accordingly, various strategies have been tested to employ DCs as therapeutic vaccines for exploiting their activity against tumor cells. Application of whole tumor cells or purified/recombinant antigen peptides are the most common approaches for pulsing DCs, which then are injected back into the patients. Although some hopeful results are reported for a number of DC vaccines tested in animal and clinical trials of cancer patients, such approaches are still inefficient and require optimization. Failure of DC vaccination is postulated due to immunosuppressive tumor microenvironment (TME), overexpression of checkpoint proteins, suboptimal avidity of tumor-associated antigen (TAA)-specific T lymphocytes, and lack of appropriate adjuvants. In this review, we have an overview of the current experiments and trials evaluated the anticancer efficacy of DC vaccination as well as focusing on strategies to improve their potential including combination therapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
20
|
Tang L, Liu QM, Zhang S, Zhou J. LncRNA NR2F1-AS1 as a potential biomarker for prognosis in cancer patients: meta and bioinformatics analysis. Expert Rev Mol Diagn 2023; 23:1263-1272. [PMID: 37902251 DOI: 10.1080/14737159.2023.2277521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Previous studies have shown that the differential expression of lncRNA NR2F1-AS1 is closely related to the prognosis of cancer, but the conclusion is still controversial. Therefore, we conducted a meta-analysis and bioinformatics analysis to explore the correlation between LncRNA NR2F1-AS1 and cancer prognosis. METHODS From the beginning to January 25, 2023, we searched for correlational studies on PubMed, Embase, the Cochrane Library, and Web of Science. We used pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) to determine the importance of LncRNA NR2F1-AS1 for survival and clinicopathological features of human cancers. RESULTS The meta-analysis of 637 patients in the 11 included articles showed that upregulation of LncRNA NR2F1-AS1 was associated with shorter overall survival (HR = 1.46,95%Cl 1.06-2.01, p = 0.02) in cancer patients. In addition, overexpression of LncRNA NR2F1-AS1 predicted TNM tumor stage (OR = 3.37, 95%Cl 2.07-5.48, p < 0.00001), and Distant metastasis (OR = 0.18, 95%Cl 0.06-0.48, p = 0.0007). However, the difference in age (OR = 1.10,95%Cl 0.71-1.71, p = 0.67), gender (OR = 1.26,95%Cl 0.79-2.00, p = 0.34), Lymph node metastasis (OR = 1.44,95%Cl 0.27-7.80, p = 0.67) or larger tumor size (OR = 1.56,95%Cl 0.48-5.08, p = 0.46) was not statistically significant. CONCLUSION Upregulation of LncRNA NR2F1-AS1 was associated with poor prognosis and advanced clinicopathologic features of tumor patients.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qing-Mei Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Shuang Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
21
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
22
|
Ali R, Laskar SA, Khan NJ, Wahab S, Khalid M. Non-coding RNA's prevalence as biomarkers for prognostic, diagnostic, and clinical utility in breast cancer. Funct Integr Genomics 2023; 23:195. [PMID: 37270446 DOI: 10.1007/s10142-023-01123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Noncoding RNAs (ncRNAs), which make up a significant portion of the mammalian transcriptome and plays crucial regulatory roles in expression of genes and other biological processes, have recently been found. The most extensively researched of the sncRNAs, microRNAs (miRNAs), have been characterized in terms of their synthesis, roles, and significance in the tumor development. Its crucial function in the stem cell regulation, another class of sncRNAs known as aspirRNAs, has attracted attention in cancer research. The investigations have shown that long non-coding RNAs have a crucial role in controlling developmental stages, such as mammary gland development. Additionally, it has been discovered that lncRNA dysregulation precedes the development of several malignancies, including breast cancer. The functions of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the onset and development of the breast cancer are described in this study. Additionally, future perspectives of various ncRNA-based diagnostic, prognostic, and therapeutic approaches also discussed.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Sorforaj A Laskar
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India.
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
23
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
24
|
Verhoeff TJ, Holloway AF, Dickinson JL. Non-coding RNA regulation of integrins and their potential as therapeutic targets in cancer. Cell Oncol (Dordr) 2023; 46:239-250. [PMID: 36512308 PMCID: PMC10060301 DOI: 10.1007/s13402-022-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Integrins are integral to cell signalling and management of the extracellular matrix, and exquisite regulation of their expression is essential for a variety of cell signalling pathways, whilst disordered regulation is a key driver of tumour progression and metastasis. Most recently non-coding RNAs in the form of micro-RNA (miRNA) and long non-coding RNA (lncRNA) have emerged as a key mechanism by which tissue dependent gene expression is controlled. Whilst historically these molecules have been poorly understood, advances in 'omic' technologies and a greater understanding of non-coding regions of the genome have revealed that non-coding RNAs make up a large proportion of the transcriptome. CONCLUSIONS AND PERSPECTIVES This review examines the regulation of integrin genes by ncRNAs, provides and overview of their mechanism of action and highlights how exploitation of these discoveries is informing the development of novel chemotherapeutic agents in the treatment of cancer. MiRNA molecules have been the most extensively characterised and negatively regulate most integrin genes, classically regulating genes through binding to recognition sequences in the mRNA 3'-untranslated regions of gene transcripts. LncRNA mechanisms of action are now being elucidated and appear to be more varied and complex, and may counter miRNA molecules, directly engage integrin mRNA transcripts, and guide or block both transcription factors and epigenetic machinery at integrin promoters or at other points in integrin regulation. Integrins as therapeutic targets are of enormous interest given their roles as oncogenes in a variety of tumours, and emerging therapeutics mimicking ncRNA mechanisms of action are already being trialled.
Collapse
Affiliation(s)
- Tristan Joseph Verhoeff
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Adele F Holloway
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia.
| |
Collapse
|
25
|
Bukhari I, Khan MR, Li F, Swiatczak B, Thorne RF, Zheng P, Mi Y. Clinical implications of lncRNA LINC-PINT in cancer. Front Mol Biosci 2023; 10:1097694. [PMID: 37006616 PMCID: PMC10064087 DOI: 10.3389/fmolb.2023.1097694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) possess the potential for therapeutic targeting to treat many disorders, including cancers. Several RNA-based therapeutics (ASOs and small interfering RNAs) have gained FDA approval over the past decade. And with their potent effects, lncRNA-based therapeutics are of emerging significance. One important lncRNA target is LINC-PINT, with its universalized functions and relationship with the famous tumor suppressor gene TP53. Establishing clinical relevance, much like p53, the tumor suppressor activity of LINC-PINT is implicated in cancer progression. Moreover, several molecular targets of LINC-PINT are directly or indirectly used in routine clinical practice. We further associate LINC-PINT with immune responses in colon adenocarcinoma, proposing the potential utility of LINC-PINT as a novel biomarker of immune checkpoint inhibitors. Collectively, current evidence suggests LINC-PINT can be considered for use as a diagnostic/prognostic marker for cancer and several other diseases.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Riaz Khan
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
| | - Rick Francis Thorne
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Pengyuan Zheng, ; Yang Mi, ; Rick Francis Thorne,
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Pengyuan Zheng, ; Yang Mi, ; Rick Francis Thorne,
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Pengyuan Zheng, ; Yang Mi, ; Rick Francis Thorne,
| |
Collapse
|
26
|
Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, Pour NN, Neghad SK, Ashrafi-Asgarabad A. Non-coding RNAs: An emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol 2023; 235:123790. [PMID: 36822288 DOI: 10.1016/j.ijbiomac.2023.123790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Exposure to air pollution has been connected to around seven million early deaths annually and also contributing to higher than 3 % of disability-adjusted lost life years. Particulate matters (PM) are among the key pollutants that directly discharged or formed due to atmospheric chemical interactions. Among these matters, due of its large surface area, PM2.5 may absorb a different harmful and toxic substances. One of the outcomes of such environmental disturbance is oxidative stress which affects cellular processes including apoptosis, inflammation, and epithelial mesenchymal transition. Non-coding RNAs (ncRNA) such as, miRNAs, lncRNAs, and circRNAs are classified as non-protein coding RNA's. Over the past few years these small molecules have been gaining so much attention since they participate in variety of physiological and pathological processes and their expression change during disease periods. Regarding epigenetic properties, ncRNAs play an important function in organism's response to environmental stimulus. In this manner, it was revealed that exposure to PM2.5 may cause epigenetic reprogramming, such as, ncRNAs signature's alteration, which can be effective concerning pathophysiology state. In this review, we describe PM2.5 impact on ncRNAs and excavate its roles in toxicity caused by PM2.5.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saber Partov
- Department of Clinical and Biological Sciences, Faculty of Medicine and Surgery, University of Turin, Turin, Italy
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Jahanara
- Neonatology, Bam University of Medical Sciences, Bam, Iran
| | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | | | | | - Ahad Ashrafi-Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
27
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
28
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
29
|
Liu C, Xiong W, Song J, Ouyang X, Fu Y. Identification of Immune-Related Seven-Long Non-Coding RNA Signature for Overall Survival and Validation of the Effect of LINC01270 in Malignant Phenotypes of Clear Cell Renal Carcinoma. Cancer Manag Res 2023; 15:131-145. [PMID: 36820408 PMCID: PMC9938671 DOI: 10.2147/cmar.s394100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction The overall survival of patients with high-stage clear cell renal carcinoma (ccRCC) is poor. However, promising molecular-level prognostic marker is still lacking to date. Methods We systematically evaluated the prognostic potential of immune-related long non-coding RNAs (lncRNAs) in ccRCC. The expressions of lncRNAs were validated in clinical tissues of ccRCC. Functional experiments were performed to investigate the role of lncRNAs in ccRCC. Results Eight hundred and ninety-three lncRNAs were differentially expressed in ccRCC and compared with normal controls and were screened out using three independent cohorts. Among them, 290 immune-related lncRNAs were identified. We identified a seven-lncRNA signature (LINC01270, FIRRE, RP11-37B2.1, RP11-253I19.3, RP11-438L19.1, RP11-504P24.9, and CTB-41I6.1) associated with the overall survival of late-stage ccRCC patients. Further multivariate Cox analysis using clinical factors as covariates showed that our lncRNA signature was an independent biomarker in training (P < 0.001, Log rank test) and validation cohorts (P = 0.003). The seven lncRNAs were closely related to the major targets (PD-1, PD-L1, and CTLA4) of immune checkpoint blockade drugs, implying that they may have potential value in predicting immunotherapy response. The seven lncRNAs may play an important role in tumor-infiltrating immune cells (eg, T/B cells) and tumor progression through regulating the binding of protein receptors/complexes, as revealed by functional analysis. qRT-PCR showed that LINC01270 was upregulated in ccRCC tissues (n=20) compared with paired normal samples. Functional experiments showed that LINC01270 silencing inhibited the proliferation, invasion, and migration of ccRCC cells. Discussion In summary, the seven-lncRNA signature has great potential in prognosis for patients with late-stage ccRCC, which could be a novel clinical biomarker. LINC01270 could be a novel therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Chengxuan Liu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Weijian Xiong
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Jing Song
- Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Ouyang
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Yang Fu
- Department of Rehabilitation, Chongqing Traditional Chinese medicine Hospital, Chongqing, People’s Republic of China,Correspondence: Yang Fu, Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Branch Road, Jiangbei District, Chongqing, 400021, People’s Republic of China, Email
| |
Collapse
|
30
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
31
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
32
|
Pan Y, Zhang Q, Zhang H, Kong F. Prognostic and immune microenvironment analysis of cuproptosis-related LncRNAs in breast cancer. Funct Integr Genomics 2023; 23:38. [PMID: 36640225 DOI: 10.1007/s10142-023-00963-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is the most common tumor and the leading cause of cancer death in women. Cuproptosis is a new type of cell death, which can induce proteotoxic stress and eventually lead to cell death. Therefore, regulating copper metabolism in tumor cells is a new therapeutic approach. Long non-coding RNAs play an important regulatory role in immune response. At present, cuproptosis-related lncRNAs in breast cancer have not been reported. Breast cancer RNA sequencing, genomic mutations, and clinical data were downloaded from The Cancer Genome Atlas (TCGA). Patients with breast cancer were randomly assigned to the train group or the test group. Co-expression network analysis, Cox regression method, and least absolute shrinkage and selection operator (LASSO) method were used to identify cuproptosis-related lncRNAs and to construct a risk prognostic model. The prediction performance of the model is verified and recognized. In addition, the nomogram was used to predict the prognosis of breast cancer patients. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and immunoassay were used to detect the differences in biological function. Tumor mutation burden (TMB) was used to measure immunotherapy response. A total of 19 cuproptosis genes were obtained and a prognostic model based on 10 cuproptosis-related lncRNAs was constructed. Kaplan-Meier survival curves showed statistically significant overall survival (OS) between the high-risk and low-risk groups. Receiver operating characteristic curve (ROC) and principal component analysis (PCA) show that the model has accurate prediction ability. Compared with other clinical features, cuproptosis-related lncRNAs model has higher diagnostic efficiency. Univariate and multivariate Cox regression analysis showed that risk score was an independent prognostic factor for breast cancer patients. In addition, the nomogram model analysis showed that the tumor mutation burden was significantly different between the high-risk and low-risk groups. Of note, the additive effect of patients in the high-risk group and patients with high TMB resulted in reduced survival in breast cancer patients. Our study identified 10 cuproptosis-related lncRNAs, which may be promising biomarkers for predicting the survival prognosis of breast cancer.
Collapse
Affiliation(s)
- Yue Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Fanhua Kong
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China. .,Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Bahari Khasraghi L, Nouri M, Vazirzadeh M, Hashemipour N, Talebi M, Aghaei Zarch F, Majidpoor J, Kalhor K, Farnia P, Najafi S, Aghaei Zarch SM. MicroRNA-206 in human cancer: Mechanistic and clinical perspectives. Cell Signal 2023; 101:110525. [PMID: 36400383 DOI: 10.1016/j.cellsig.2022.110525] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.
Collapse
Affiliation(s)
- Leila Bahari Khasraghi
- 15 khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Nouri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Poopak Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Shirvani H, Ghanavi J, Aliabadi A, Mousavinasab F, Talebi M, Majidpoor J, Najafi S, Miryounesi SM, Aghaei Zarch SM. MiR-211 plays a dual role in cancer development: From tumor suppressor to tumor enhancer. Cell Signal 2023; 101:110504. [PMID: 36309329 DOI: 10.1016/j.cellsig.2022.110504] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
Abstract
Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.
Collapse
Affiliation(s)
- Hanieh Shirvani
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jalaledin Ghanavi
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aliabadi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Mousavinasab
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Chu S, Li Y, Wu B, Rong G, Hou Q, Zhou Q, Du D, Li Y. METTL3 Promotes the Growth and Invasion of Melanoma Cells by Regulating the lncRNA SNHG3/miR-330-5p Axis. Cell Transplant 2023; 32:9636897231188300. [PMID: 37606168 PMCID: PMC10467386 DOI: 10.1177/09636897231188300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023] Open
Abstract
Accumulating evidence indicates that m6A methyltransferase 3 (METTL3) plays a pivotal role in different malignancies including melanoma. However, the function and underlying mechanisms by which METTL3 contributes to the tumorigenesis of melanoma remain undocumented. The association of METTL3 and long noncoding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) with clinicopathological characteristics and prognosis in patients with melanoma was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and The Cancer Genome Atlas data sets. The role of METTL3 in melanoma cells was assessed by in vitro and in vivo experiments. The m6A dot blot, methylated RNA immunoprecipitation (MeRIP), and RT-qPCR were used to verify METTL3-mediated m6A modification of lncRNA SNHG3. The effect of METTL3 on lncRNA SNHG3 was determined by luciferase gene reporter assay, RT-qPCR, and Western blotting. We found that METTL3 was upregulated in melanoma tissue samples and associated with poor survival in patients with melanoma. Knockdown of METTL3 suppressed the growth and invasion of melanoma cells in vitro and in vivo, whereas restored expression of METTL3 promoted these effects. Mechanistic investigations showed that knockdown of METTL3 reduced SNHG3 m6A levels and its messenger ribonucleic acid (mRNA) expression levels. SNHG3 could act as a sponge of microRNA (miR)-330-5p to upregulate the expression of CCHC-type zinc finger nucleic acid binding protein (CNBP). SNHG3 overexpression reversed METTL3-knockdown-caused antitumor effects, miR-330-5p upregulation and CNBP downregulation. SNHG3 had a positive correlation with METTL3 expression but a negative correlation with miR-330-5p expression in melanoma tissue samples. In conclusion, our findings demonstrated that METTL3-mediated m6A modification of lncRNA SNHG3 promoted the growth and invasion of melanoma cells by regulating the miR-330-5p/CNBP axis.
Collapse
Affiliation(s)
- Shaojun Chu
- Hair Medical Expert Committee of Chinese Association of Integrative Medicine, Shanghai, China
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yulong Li
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo Rong
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Hou
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin Zhou
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dexiang Du
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufei Li
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S, Azizidoost S. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci 2022; 308:120974. [PMID: 36126725 DOI: 10.1016/j.lfs.2022.120974] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is malignant cancer that starts from the main liver cells. Although various classical methods have been used for patients with HCC, various molecular mechanisms involved in HCC progression should be invested. Previous studies demonstrated that abnormal expression of long non-coding RNAs (lncRNAs) presented important roles in the pathogenesis of HCC cells. LncRNA TUG1 was found to mediate HCC cell growth, EMT, and metastasis. Therefore, targeting TUG1 and its downstream genes may be a suitable approach for patients with HCC. In this review, we summarized the potential roles of TUG1 in HCC.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Dedy Kurniawan
- Laboratory Animal and Stem Cells, PT Bio Farma (Persero), Bandung 40161, West Java, Indonesia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2211-2234. [PMID: 36053324 DOI: 10.1007/s00432-022-04328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 12/25/2022]
Abstract
Ovarian cancer (OC) is among the most common human malignancies and the first cause of deaths among gynecologic cancers. Early diagnosis can help improving prognosis in those patients, and accordingly exploring novel molecular mechanisms may lead to find therapeutic targets. Circular RNAs (circRNAs) comprise a group of non-coding RNAs in multicellular organisms, which are identified with characteristic circular structure. CircRNAs have been found with substantial functions in regulating gene expression through interacting with RNA-binding proteins, targeting microRNAs, and transcriptional regulation. They have been found to be involved in regulating several critical processes such as cell growth, and death, organ development, signal transduction, and tumorigenesis. Accordingly, circRNAs have been implicated in a number of human diseases including malignancies. They are particularly reported to contribute to several hallmarks of cancer leading to cancer development and progression, although a number also are described with tumor-suppressor function. In OC, circRNAs are linked to regulation of cell growth, invasiveness, metastasis, angiogenesis, and chemoresistance. Notably, clinical studies also have shown potentials in diagnosis, prediction of prognosis, and therapeutic targets for OC. In this review, I have an overview to the putative mechanisms, and functions of circRNAs in regulating OC pathogenesis in addition to their clinical potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|