1
|
Ma X, Xu L, Gong S, Wu N, Guo J, Feng X, Zhao M, Qiu S, Sun M, Zhang C, Zhang X, Ren Z, Zhang P. hsa_circ_0007919 promotes pancreatic cancer metastasis by modulating Sp1-mediated THBS1 transcription. FASEB J 2024; 38:e23591. [PMID: 38572579 DOI: 10.1096/fj.202302422rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.
Collapse
Affiliation(s)
- Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Sancheng Qiu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ming Sun
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|
4
|
Yang H, Zhou T, Sorenson CM, Sheibani N, Liu B. Myeloid-Derived TSP1 (Thrombospondin-1) Contributes to Abdominal Aortic Aneurysm Through Suppressing Tissue Inhibitor of Metalloproteinases-1. Arterioscler Thromb Vasc Biol 2020; 40:e350-e366. [PMID: 33028100 PMCID: PMC7686278 DOI: 10.1161/atvbaha.120.314913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm. Approach and Results: Using RNA fluorescent in situ hybridization, we identified macrophages being the major source of TSP1 in human and mouse aneurysmal tissues, accounting for over 70% of cells that actively expressed Thbs1 mRNA. Lack of TSP1 in macrophages decreased solution-based gelatinase activities by elevating TIMP1 (tissue inhibitor of metalloproteinases-1) without affecting the major MMPs (matrix metalloproteinases). Knocking down Timp1 restored the ability of Thbs1-/- macrophages to invade matrix. Finally, we generated Thbs1flox/flox mice and crossed them with Lyz2-cre mice. In the CaCl2-induced model of abdominal aortic aneurysm, lacking TSP1 in myeloid cells was sufficient to protect mice from aneurysm by reducing macrophage accumulation and preserving aortic integrity. CONCLUSIONS TSP1 contributes to aneurysm pathogenesis, at least in part, by suppressing TIMP1 expression, which subsequently enables inflammatory macrophages to infiltrate vascular tissues.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Down-Regulation
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ting Zhou
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Christine M. Sorenson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Bo Liu
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
5
|
Duan FM, Fu LJ, Wang YH, Adu-Gyamfi EA, Ruan LL, Xu ZW, Xiao SQ, Chen XM, Wang YX, Liu TH, Ding YB. THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 2020; 8:353-363. [PMID: 33997182 PMCID: PMC8093648 DOI: 10.1016/j.gendis.2020.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy complication which threatens the survival of mothers and fetuses. It originates from abnormal placentation, especially insufficient fusion of the cytotrophoblast cells to form the syncytiotrophoblast. In this study, we found that THBS1, a matricellular protein that mediates cell-to-cell and cell-to-matrix interactions, is downregulated during the fusion of primary cytotrophoblast and BeWo cells, but upregulated in the placenta of pregnancies complicated by preeclampsia. Also, THBS1 was observed to interact with CD36, a membrane signal receptor and activator of the cAMP signaling pathway, to regulate the fusion of cytotrophoblast cells. Overexpression of THBS1 inhibited the cAMP signaling pathway and reduced the BeWo cells fusion ratio, while the effects of THBS1 were abolished by a CD36-blocking antibody. Our results suggest that THBS1 signals through a CD36-mediated cAMP pathway to regulate syncytialization of the cytotrophoblast cells, and that its upregulation impairs placental formation to cause preeclampsia. Thus, THBS1 can serve as a therapeutic target regarding the mitigation of abnormal syncytialization and preeclampsia.
Collapse
Affiliation(s)
- Fu-Mei Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong-Heng Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ling-Ling Ruan
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zeng-Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shi-Quan Xiao
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China.,Department of Reproductive Medicine, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- Department of Bioinformatics, The School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| |
Collapse
|
6
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Yin Q, Wang PP, Peng R, Zhou H. MiR-19a enhances cell proliferation, migration, and invasiveness through enhancing lymphangiogenesis by targeting thrombospondin-1 in colorectal cancer. Biochem Cell Biol 2019; 97:731-739. [PMID: 31199884 DOI: 10.1139/bcb-2018-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a devastating disease with high mortality and morbidity, and the underlying mechanisms of miR-19a in CRC are poorly understood. In our study, dual-luciferase reporter assays were used to evaluate the binding of miR-19a with thrombospondin-1 (THBS1). Cell viability, migration, and invasiveness were assessed using MTT, wound healing, and Transwell assays, respectively. Tube-formation assays with human lymphatic endothelial cells (HLECs) were used to evaluate lymphangiogenesis, and tumor xenograft assays were used to measure tumor growth. The results showed that miR-19a was up-regulated and THBS1 was down-regulated in CRC tissues and cells. Applying an inhibitor of miR-19a suppressed survival, migration, and invasiveness, and inhibited the expression of matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor C (VEGFC). Further mechanistic study identified that THBS1 is a direct target of miR-19a. THBS1 silencing attenuated the above-mentioned suppressive effects induced with the miR-19a inhibitor. Furthermore, the miR-19a inhibitor suppressed the migration and tube-formation abilities of HLECs via targeting the THBS1–MMP-9/VEGFC signaling pathway. And the inhibition of miR-19a also suppressed tumor growth and lymphatic tube formation in vivo. In conclusion, miR-19a inhibition suppresses the viability, migration, and invasiveness of CRC cells, and suppresses the migration and tube-formation abilities of HLECs, and further, inhibits tumor growth and lymphatic tube formation in vivo via targeting THBS1.
Collapse
Affiliation(s)
- Qian Yin
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Pei-Pei Wang
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Rui Peng
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Hang Zhou
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| |
Collapse
|
8
|
Sundqvist KG. T Cell Co-Stimulation: Inhibition of Immunosuppression? Front Immunol 2018; 9:974. [PMID: 29774033 PMCID: PMC5943593 DOI: 10.3389/fimmu.2018.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karl-Gösta Sundqvist
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Clinical Immunology and Transfusion Medicine at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Nilsson G, Kannius-Janson M. Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling. BMC Cancer 2016; 16:142. [PMID: 26908052 PMCID: PMC4763409 DOI: 10.1186/s12885-016-2196-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) increases cell migration and is implicated in cancer cell invasion and metastasis. We have previously described the involvement of the transcription factors, nuclear factor I-C2 (NFI-C2) and Forkhead box F1 (FoxF1), in the regulation of EMT and invasion during breast tumor progression. NFI-C2 counteracts these processes and FoxF1 is a directly repressed target of NFI-C2. FoxF1 induces EMT and invasiveness and enhances xenograft tumorigenicity in nude mice. Here we identify oppositely regulated targets of NFI-C2 and FoxF1 involved in these processes and further study a possible role for FoxF1 in tumorigenesis. Methods We used Affymetrix microarray to detect changes in the transcriptome of a mouse mammary epithelial cell line upon overexpression of NFI-C2 or FoxF1. To elucidate the effects and signaling events following FoxF1 overexpression we investigated in vitro invasion capacity and changes in transcription and protein expression resulting from RNAi and inhibitor treatment. Results The extracellular matrix enzyme lysyl oxidase (LOX) was negatively regulated by NFI-C2 and positively regulated by FoxF1, and upregulation of LOX following FoxF1 overexpression in mouse mammary epithelial cells increased in vitro cell invasion. In the nuclei of FoxF1-overexpressing cells, the phosphorylation of Smad2 decreased, while that of p38 increased. Depletion of LOX by RNAi enhanced phosphorylation of Smad2 by a focal adhesion kinase (FAK)-dependent mechanism. In addition, induced expression of FoxF1 in a non-malignant human mammary epithelial cell line showed that the increase in LOX transcription and the suppression of Smad2 activity are early effects of FoxF1. Conclusion These data show that FoxF1 enhances invasion in a LOX-dependent manner, is involved in the regulation of Smad2 signaling, and that FoxF1 overexpression ultimately leads to activation of p38 MAPK signaling. These findings provide new insights into the regulation of signaling pathways known to be important during breast tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2196-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisela Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 430, SE-405 30, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
10
|
Perez-Janices N, Blanco-Luquin I, Tuñón MT, Barba-Ramos E, Ibáñez B, Zazpe-Cenoz I, Martinez-Aguillo M, Hernandez B, Martínez-Lopez E, Fernández AF, Mercado MR, Cabada T, Escors D, Megias D, Guerrero-Setas D. EPB41L3, TSP-1 and RASSF2 as new clinically relevant prognostic biomarkers in diffuse gliomas. Oncotarget 2016; 6:368-80. [PMID: 25621889 PMCID: PMC4381601 DOI: 10.18632/oncotarget.2745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022] Open
Abstract
Hypermethylation of tumor suppressor genes is one of the hallmarks in the progression of brain tumors. Our objectives were to analyze the presence of the hypermethylation of EPB41L3, RASSF2 and TSP-1 genes in 132 diffuse gliomas (astrocytic and oligodendroglial tumors) and in 10 cases of normal brain, and to establish their association with the patients’ clinicopathological characteristics. Gene hypermethylation was analyzed by methylation-specific-PCR and confirmed by pyrosequencing (for EPB41L3 and TSP-1) and bisulfite-sequencing (for RASSF2). EPB41L3, RASSF2 and TSP-1 genes were hypermethylated only in tumors (29%, 10.6%, and 50%, respectively), confirming their cancer-specific role. Treatment of cells with the DNA-demethylating-agent 5-aza-2′-deoxycytidine restores their transcription, as confirmed by quantitative-reverse-transcription-PCR and immunofluorescence. Immunohistochemistry for EPB41L3, RASSF2 and TSP-1 was performed to analyze protein expression; p53, ki-67, and CD31 expression and 1p/19q co-deletion were considered to better characterize the tumors. EPB41L3 and TSP-1 hypermethylation was associated with worse (p = 0.047) and better (p = 0.037) prognosis, respectively. This observation was confirmed after adjusting the results for age and tumor grade, the role of TSP-1 being most pronounced in oligodendrogliomas (p = 0.001). We conclude that EPB41L3, RASSF2 and TSP-1 genes are involved in the pathogenesis of diffuse gliomas, and that EPB41L3 and TSP-1 hypermethylation are of prognostic significance.
Collapse
Affiliation(s)
- N Perez-Janices
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - I Blanco-Luquin
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - M T Tuñón
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Barba-Ramos
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Ibáñez
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain. Red de Evaluación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Navarra, Spain
| | - I Zazpe-Cenoz
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - M Martinez-Aguillo
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Hernandez
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Martínez-Lopez
- Department of Radiation Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Asturias, Spain
| | - M R Mercado
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - T Cabada
- Department of Radiology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - D Escors
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - D Megias
- Confocal Microscopy Core Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - D Guerrero-Setas
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| |
Collapse
|
11
|
Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumour Biol 2015; 36:3957-67. [PMID: 25578494 DOI: 10.1007/s13277-015-3039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
Abstract
Tissue inhibitor metalloproteinase-1 (TIMP-1) is clinically associated with a poor prognosis for various cancers, but the roles of TIMP-1 in lung cancer metastasis are controversial. Our previous secretomic study revealed that TIMP-1 is highly abundant in high invasiveness cells of lung adenocarcinoma. In the current study, TIMP-1 abundances in primary lung adenocarcinoma tissues, as revealed by immunohistochemistry, are significantly higher in patients with lymph invasion and distant metastasis than in those without. Receiver operating characteristic curve analyses suggest 73.7 and 86.2 % accuracy to separate patients with lymph node and distant metastasis and those without, respectively. Moreover, we demonstrate that the expression level of TIMP-1 positively associates with cell mobility, invasiveness, and metastatic colonization. Most notably, the novel mechanism in which TIMP-1 facilitates metastatic colonization through the mediation of pericellular polyFN1 assembly was revealed. In summary, this study presents novel functions of TIMP-1 in promoting cancer metastasis and suggests TIMP-1 is a potential tissue biomarker for lymph invasion and distant metastasis of lung adenocarcinoma.
Collapse
|
12
|
Pang ALY, Title AC, Rennert OM. Modulation of microRNA expression in human lung cancer cells by the G9a histone methyltransferase inhibitor BIX01294. Oncol Lett 2014; 7:1819-1825. [PMID: 24932239 PMCID: PMC4049738 DOI: 10.3892/ol.2014.2034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/14/2014] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of their target genes at the post-transcriptional level. In cancer cells, miRNAs, depending on the biological functions of their target genes, may have a tumor-promoting or -suppressing effect. Treatment of cancer cells with inhibitors of DNA methylation and/or histone deacetylation modulates the expression level of miRNAs, which provides evidence for epigenetic regulation of miRNA expression. The consequences of inhibition of histone methyltransferase on miRNA expression, however, have not been thoroughly investigated. The present study examined the expression pattern of miRNAs in the non-small cell lung cancer cell line, H1299 with or without treatment of BIX01294, a potent chemical inhibitor of G9a methyltransferase that catalyzes the mono-and di-methylation of the lysine 9 residue of histone H3. By coupling microarray analysis with quantitative real-time polymerase chain reaction analysis, two miRNAs were identified that showed consistent downregulation following BIX01294 treatment. The results indicate that histone H3 methylation regulates miRNA expression in lung cancer cells, which may provide additional insight for future chemical treatment of lung cancer.
Collapse
Affiliation(s)
- Alan Lap-Yin Pang
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4429, USA
| | - Alexandra C Title
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4429, USA
| | - Owen M Rennert
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4429, USA
| |
Collapse
|
13
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
14
|
Thrombospondin-1 in urological cancer: pathological role, clinical significance, and therapeutic prospects. Int J Mol Sci 2013; 14:12249-72. [PMID: 23749112 PMCID: PMC3709784 DOI: 10.3390/ijms140612249] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.
Collapse
|
15
|
Minchenko D, Ratushna O, Bashta Y, Herasymenko R, Minchenko O. The Expression of <i>TIMP</i>1, <i>TIMP</i>2, <i>VCAN</i>, <i>SPARC</i>, <i>CLEC</i>3<i>B</i> and <i>E</i>2<i>F</i>1 in Subcutaneous Adipose Tissue of Obese Males and Glucose Intolerance. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.22006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012; 31:170-7. [PMID: 22285841 DOI: 10.1016/j.matbio.2012.01.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.
Collapse
Affiliation(s)
- W Christopher Risher
- Cell Biology Department, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
17
|
Henkin J, Volpert OV. Therapies using anti-angiogenic peptide mimetics of thrombospondin-1. Expert Opin Ther Targets 2011; 15:1369-86. [PMID: 22136063 DOI: 10.1517/14728222.2011.640319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The role of hrombospondin-1 (TSP1) as a major endogenous angiogenesis inhibitor has been confirmed by numerous studies and subsequent mechanistic discoveries. It has yielded a new class of potential drugs against cancer and other angiogenesis-driven diseases. AREAS COVERED An overview of TSP1 functions and molecular mechanisms, including regulation and signaling. Functions in endothelial and non-endothelial cells, with emphasis on the role of TSP1 in the regulation of angiogenesis and inflammation. The utility of duplicating these activities for drug discovery. Past and current literature on endogenous TSP1 and its role in the progression of cancer and non-cancerous pathological conditions is summarized, as well as the research undertaken to identify and optimize short bioactive peptides derived from the two TSP1 anti-angiogenic domains, which bind CD47 and CD36 cell surface receptors. Lastly, there is an overview of the efficacy of some of these peptides in pre-clinical and clinical models of angiogenesis-dependent disease. EXPERT OPINION It is concluded that TSP1-derived peptides and peptide mimetics hold great promise as future agents for the treatment of cancer and other diseases driven by excessive angiogenesis. They may fulfill unmet medical needs including neovascular ocular disease and the diseases of the female reproductive tract including ovarian cancer.
Collapse
Affiliation(s)
- Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
18
|
Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, Guarmit B, Morin A, Prevarskaya N, Delongchamps NB, Cabon F. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res 2011; 71:7649-58. [PMID: 22037878 DOI: 10.1158/0008-5472.can-11-0833] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumor effects of pharmacologic inhibitors of angiogenesis are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here, we reevaluated the role of the endogenous antiangiogenic thrombospondin 1 (TSP1) in prostate carcinomas in which angiogenesis is an active process. In xenografted tumors, we observed that TSP1 altogether inhibited angiogenesis and fostered tumor development. Our results show that TSP1 is a potent stimulator of prostate tumor cell migration. This effect required CD36, which also mediates TSP1 antiangiogenic activity, and was mimicked by an antiangiogenic TSP1-derived peptide. As suspected for pharmacologic inhibitors of angiogenesis, the TSP1 capacities to increase hypoxia and to trigger cell migration are thus inherently linked. Importantly, although antiangiogenic TSP1 increases hypoxia in vivo, our data show that, in turn, hypoxia induced TSP1, thus generating a vicious circle in prostate tumors. In radical prostatectomy specimens, we found TSP1 expression significantly associated with invasive tumors and with tumors which eventually recurred. TSP1 may thus help select patients at risk of prostate-specific antigen relapse. Together, the data suggest that intratumor disruption of the hypoxic cycle through TSP1 silencing will limit tumor invasion.
Collapse
|
19
|
Zeng Z, Hincapie M, Pitteri SJ, Hanash S, Schalkwijk J, Hogan JM, Wang H, Hancock WS. A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 2011; 83:4845-54. [PMID: 21513341 PMCID: PMC3148019 DOI: 10.1021/ac2002802] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of breast cancer associated plasma/serum biomarkers is important for early diagnosis, disease mechanism elucidation, and determination of treatment strategy for the disease. In this study of serum samples, a multidimensional fractionation platform combined with mass spectrometric analysis were used to achieve the identification of medium to lower abundance proteins, as well as to simultaneously detect glycan and abundance changes. Immuno-affinity depletion and multi-lectin chromatography (M-LAC) were integrated into an automated HPLC platform to remove high abundance protein and fractionate glycoproteins. The collected glycoproteomes were then subjected to isoelectric focusing (IEF) separation by a digital ProteomeChip (dPC), followed by in-gel digestion and LC-MS analysis using an Orbitrap mass spectrometer. As a result, the total number of identified proteins increased significantly when the IEF fractionation step was included as part of the platform. Relevant proteins with biological and disease significance were observed and the dynamic range of the serum proteome measurement was extended. In addition, potential glycan changes were indicated by comparing proteins in control and cancer samples in terms of their affinity to the multi-lectin column (M-LAC) and the pI profiles in IEF separation. In conclusion, a proteomics platform including high abundance protein depletion, lectin affinity fractionation, IEF separation, and LC-MS analysis has been applied to discover breast cancer-associated proteins. The following candidates, thrombospondin-1 and 5, alpha-1B-glycoprotein, serum amyloid P-component, and tenascin-X, were selected as promising examples of the use of this platform. They show potential abundance and glycan changes and will be further investigated in future studies.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sprenger CC, Plymate SR, Reed MJ. Aging-related alterations in the extracellular matrix modulate the microenvironment and influence tumor progression. Int J Cancer 2010; 127:2739-48. [PMID: 21351253 DOI: 10.1002/ijc.25615] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022]
Abstract
Age is the greatest risk factor for the development of epithelial cancers. In this minireview, we will examine key extracellular matrix and matricellular components, their changes with aging, and discuss how these alterations might influence the subsequent progression of cancer in the aged host. Because of the tight correlation between advanced age and the prevalence of prostate cancer, we will use prostate cancer as the model throughout this minireview.
Collapse
Affiliation(s)
- Cynthia C Sprenger
- Department of Medicine, Division of Gerontology, University of Washington, Seattle, WA 98104, USA
| | | | | |
Collapse
|
21
|
Muth M, Engelhardt BM, Kröger N, Hussein K, Schlué J, Büsche G, Kreipe HH, Bock O. Thrombospondin-1 (TSP-1) in primary myelofibrosis (PMF) - a megakaryocyte-derived biomarker which largely discriminates PMF from essential thrombocythemia. Ann Hematol 2010; 90:33-40. [PMID: 20625903 DOI: 10.1007/s00277-010-1024-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/23/2010] [Indexed: 02/06/2023]
Abstract
Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm showing aberrant bone marrow remodeling with increased angiogenesis, progressive matrix accumulation, and fibrosis development. Thrombospondins (TSP) are factors sharing pro-fibrotic and anti-angiogenic properties, and have not been addressed in PMF before. We investigated the expression of TSP-1 and TSP-2 in PMF related to the stage of myelofibrosis (n = 51) and in individual follow-up biopsies by real-time PCR, immunohistochemistry, and confocal laser scanning microscopy (CLSM). TSP-1 was significantly overexpressed (p < 0.05) in all stages of PMF when compared to controls. Individual follow-up biopsies showed involvement of TSP-1 during progressive myelofibrosis. TSP-2 was barely detectable but 40% of cases with advanced myelofibrosis showed a strong expression. Megakaryocytes and interstitial proplatelet formations were shown to be the relevant source for TSP-1 in PMF. Stroma cells like endothelial cells and fibroblasts showed no TSP-1 labeling when double-immunofluorescence staining and CLSM were applied. Based on its dual function, TSP-1 in PMF is likely to be a mediator within a pro-fibrotic environment which discriminates from ET cases. On the other hand, TSP-1 is a factor acting (ineffectively) against exaggerated angiogenesis. Both features suggest TSP-1 to be a biomarker for monitoring a PMF-targeted therapy.
Collapse
Affiliation(s)
- Michaela Muth
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|