1
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mozammel N, Amini M, Baradaran B, Mahdavi SZB, Hosseini SS, Mokhtarzadeh A. The function of miR-145 in colorectal cancer progression; an updated review on related signaling pathways. Pathol Res Pract 2023; 242:154290. [PMID: 36621158 DOI: 10.1016/j.prp.2022.154290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNA) are a broad class of small, highly conserved non-coding RNAs that largely influence gene expression after transcription through binding to various target mRNAs. miRNAs are frequently dysregulated in a wide array of human cancers, possessing great value as diagnostic and therapeutic targets. miR-145, as promising tumor suppressor miRNA, also exhibits deregulated expression levels in human malignancies and participates in various processes, including cell proliferation, apoptosis, migration and differentiation. In particular, miR-145 has been shown to be downregulated in colorectal cancer (CRC), which in turn leads to cell growth, invasion, metastasis and drug resistance. Furthermore, miR-145 is involved in the regulation of multiple tumor specific signaling pathways, such as KRAS and P53 signaling by targeting various genes through colorectal tumorigenesis. Therefore, considering its diagnostic and therapeutic potential, it was aimed to present the recent finding focusing on miR-145 functions to better understand its involvement in CRC incidence and progression through interplay with various signaling pathways. This study is based on articles indexed in PubMed and Google scholar until 2021.
Collapse
Affiliation(s)
- Nazila Mozammel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Finke D, Heckmann MB, Frey N, Lehmann LH. Cancer-A Major Cardiac Comorbidity With Implications on Cardiovascular Metabolism. Front Physiol 2021; 12:729713. [PMID: 34899373 PMCID: PMC8662519 DOI: 10.3389/fphys.2021.729713] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases have multifactorial causes. Classical cardiovascular risk factors, such as arterial hypertension, smoking, hyperlipidemia, and diabetes associate with the development of vascular stenoses and coronary heart disease. Further comorbidities and its impact on cardiovascular metabolism have gotten more attention recently. Thus, also cancer biology may affect the heart, apart from cardiotoxic side effects of chemotherapies. Cancer is a systemic disease which primarily leads to metabolic alterations within the tumor. An emerging number of preclinical and clinical studies focuses on the interaction between cancer and a maladaptive crosstalk to the heart. Cachexia and sarcopenia can have dramatic consequences for many organ functions, including cardiac wasting and heart failure. These complications significantly increase mortality and morbidity of heart failure and cancer patients. There are concurrent metabolic changes in fatty acid oxidation (FAO) and glucose utilization in heart failure as well as in cancer, involving central molecular regulators, such as PGC-1α. Further, specific inflammatory cytokines (IL-1β, IL-6, TNF-α, INF-β), non-inflammatory cytokines (myostatin, SerpinA3, Ataxin-10) and circulating metabolites (D2-HG) may mediate a direct and maladaptive crosstalk of both diseases. Additionally, cancer therapies, such as anthracyclines and angiogenesis inhibitors target common metabolic mechanisms in cardiomyocytes and malignant cells. This review focuses on cardiovascular, cancerous, and cancer therapy-associated alterations on the systemic and cardiac metabolic state.
Collapse
Affiliation(s)
- Daniel Finke
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Markus B Heckmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H Lehmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Deutsches Krebsfoschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Ye Y, Hao J, Hong Z, Wu T, Ge X, Qian B, Chen X, Zhang F. Downregulation of MicroRNA-145-5p in Activated Microglial Exosomes Promotes Astrocyte Proliferation by Removal of Smad3 Inhibition. Neurochem Res 2021; 47:382-393. [PMID: 34623564 DOI: 10.1007/s11064-021-03446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
In spinal cord injury, microglial activation plays an important role during the inflammatory process. Specifically, the cellular and molecular interactions between microglia and astrocytes are of critical importance. Cells can communicate with each other through the substances carried by exosomes, and overproliferated astrocytes would create a physical and chemical barrier that prevents neurite regeneration, thereby interfering with functional recovery. On the other hand, Smad3 is an important factor in the proliferation, migration, and apoptosis of astrocytes. In this study, supernatant and purified exosomes were collected from LPS-treated microglia and co-cultured with astrocytes. The results showed that astrocytic proliferation was promoted with higher levels of Smad3. Furthermore, miRNA sequencing analysis was performed on microglial exosomes after inflammation. The results revealed a differential expression of miR-145-5p in the exosomes. The Dual-Luciferase assay showed that miR-145-5p could bind to Smad3 mRNA and regulate the levels of Smad3 protein at the post-transcriptional level. Subsequently, exosomes were transfected with miR-145-5p mimics, and astrocytes after mechanical injury were cultured with these exosomes for 24 h. The levels of Smad3 and phosphor-Smad3 proteins were analyzed by western blot and qRT-PCR. CCK8 and flow cytometry showed lower proliferation of astrocytes after co-culturing with the exosomes transfected with the miR-145-5p mimic. This study finds that miR-145-5p was found to be a negative regulator of astrocyte proliferation, and that its downregulation promotes smad3 activity and thus astrocyte proliferation.
Collapse
Affiliation(s)
- Yong Ye
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhou Hong
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Tong Wu
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xingyu Ge
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Boyu Qian
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Ma Y, Cao X, Shi G, Shi T. MiRNA-145 and Its Direct Downstream Targets in Digestive System Cancers: A Promising Therapeutic Target. Curr Pharm Des 2021; 27:2264-2273. [PMID: 33121400 DOI: 10.2174/1381612826666201029095702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating the expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles in cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as a valuable biomarker for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.
Collapse
Affiliation(s)
- Yini Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiu Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guojuan Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tianlu Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
7
|
Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, Dou X, Zhang Z, Qiu Y, Wang R, Jin M, Kong D. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis 2021; 12:38. [PMID: 33414420 PMCID: PMC7791041 DOI: 10.1038/s41419-020-03304-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Cancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from SKF96365-treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Bingjie Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
- School of Medicine, Tianjin Tianshi College, Tianyuan University, 301700, Tianjin, China.
| |
Collapse
|
8
|
Sawant D, Lilly B. MicroRNA-145 targets in cancer and the cardiovascular system: evidence for common signaling pathways. VASCULAR BIOLOGY 2020; 2:R115-R128. [PMID: 33283158 PMCID: PMC7709916 DOI: 10.1530/vb-20-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
miRNAs are small regulatory RNAs which govern gene expression post-transcriptionally by primarily binding to the 3'-UTR of mRNA target genes. miR-145 is a well-studied miRNA that has been implicated in controlling a range of biological processes. miR-145 is expressed in a variety of tissues and cell types and acts as a tumor-suppressor by regulating target gene signaling pathways involved in different aspects of tumor growth and progression. There is also strong evidence that highlights the important functions of miR-145 in the cardiovascular system. Here, we review the mechanisms of miR-145 in tumorigenesis and cancer progression and compare and contrast with the roles of miR-145 in cardiovascular development and disease. We discuss the important targets of miR-145 in cancer and their possible link to the cardiovascular system.
Collapse
Affiliation(s)
- Dwitiya Sawant
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Zeinali T, Karimi L, Hosseinahli N, Shanehbandi D, Mansoori B, Mohammadi A, Hajiasgharzadeh K, Babaloo Z, Majidi-Zolbanin J, Baradaran B. Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI JOURNAL 2020; 19:1446-1458. [PMID: 33250681 PMCID: PMC7689247 DOI: 10.17179/excli2020-2777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
MiR-145 is a tumor suppressor miRNA that its ubiquitously expressed in the body but in numerous types of cancers such as GC, its expression became reduced or sometimes ceased in many subjects. This study aimed at restoring the function of the miR-145 in MKN-45 cells and investigating the function of this miRNA in proliferation, apoptosis, and migration of GC cells. MKN-45 cells were transfected using the PCMV-miR-145 plasmid vector. The MTT, DAPI staining, and wound healing assays were applied to estimate the impacts of ectopic expression of miR-145 in vitro. Moreover, alterations in the expression levels of K-Ras, c-Myc, caspase-3, caspase-9, Bax, Bcl-2, and MMP-9 mRNA were measured by qRT-PCR analysis. The findings designated that high expression of miR-145 reduced the proliferation and migration and increased the apoptosis of the MKN-45 cells. These effects occur with concurrent suppression of c-Myc, K-Ras, Bcl-2, and MMP-9 as well as induction of caspase-3, caspase-9, and Bax expression. Exogenous miR-145 influences multiple oncogenic pathways and can be regarded as a promising avenue of future therapeutic interventions for GC therapy.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zohreh Babaloo
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Functional implications of miR-145/RCAN3 axis in the progression of cervical cancer. Reprod Biol 2020; 20:140-146. [PMID: 32345470 DOI: 10.1016/j.repbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer, as the second leading cause of death in women malignant tumor, is not optimistic about survival rate and late recurrence rate. RCAN3 has been reported to function in a variety of diseases, but its relationship with cervical cancer has not been reported. This study aimed to investigate whether RCAN3 contributes to the development of cervical cancer and its mechanism. RCAN3 expression was analyzed in 306 cervical cancer tissues and 13 normal healthy tissues from TCGA and GTEX databases. Kaplan-Meier analysis and Cox regression analysis were carried out to assess the potential function of RCAN3. Subsequently, the upstream regulatory miRNA of RCAN3 was predicted by bioinformatics and confirmed using dual luciferase reporter assay. CCK-8, colony formation assay, transwell assay were used for functional analysis of miR-145/RCAN3 axis in vitro. The results showed that RCAN3 was highly expressed in cervical cancer tissues, leading to poor prognosis, and could be used as a prognostic factor for cervical cancer. MiR-145 directly targeted RCAN3, which was lowly expressed in cervical cancer tissues and cell lines, and the higher the miR-145 expression, the longer the survival time of patients. Finally, from the functional experiments results we can see that miR-145 can inhibit the proliferation, migration and invasion of cervical cancer cells, but overexpression of RCAN3 can reverse miR-145-mediated inhibition. To sum up, miR-145/RCAN3 axis may serve as a potential therapeutic target to regulate the progression of cervical cancer.
Collapse
|
11
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
12
|
MicroRNA-4472 Promotes Tumor Proliferation and Aggressiveness in Breast Cancer by Targeting RGMA and Inducing EMT. Clin Breast Cancer 2019; 20:e113-e126. [PMID: 31899158 DOI: 10.1016/j.clbc.2019.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Breast cancer is the most common cause of cancer-related death in women worldwide. MicroRNA (miRNA) ectopic expression has been reported to be involved in the regulation of gene expression in breast cancer. We screened several differentially expressed miRNAs associated with breast cancer chemoresistance, growth, and metastasis using a miRNA microarray. Increased expression of miR-4472 has been associated with larger breast tumors and chemoresistance. However, the biologic function of miR-4472 and its molecular mechanisms in cancer progression have not yet been reported. MATERIALS AND METHODS Real-time quantitative polymerase chain reaction was used to measure the expression of miR-4472 in breast cancer tissue and cell lines. The biologic functions of miR-4472 and its target gene were explored using Transwell, cell proliferation, and flow cytometry assays. Bioinformatics tools, dual-luciferase reporter assays, and Western blot were used to identify the target genes of miR-4472. Western blot was used to explain the participation of miR-4472 and target gene in epithelial-to-mesenchymal transition. RESULTS miR-4472 was significantly upregulated in highly metastatic breast cancer tissues, and its expression was positively associated with larger tumor size and advanced pTNM stage. miR-4472 promoted breast cancer cell metastasis and growth. Repulsive guidance molecule A (RGMA) was a direct target gene of miR-4472. RGMA was identified as a suppressor in cancer metastasis. miR-4472 downregulated expression of RGMA and promoted epithelial-to-mesenchymal transition by suppressing E-cadherin and initiating vimentin, β-catenin, and Slug. CONCLUSIONS miR-4472 contributes to the progression of breast cancer by regulating RGMA expression and inducing epithelial-to-mesenchymal transition, indicating that miR-4472/RGMA might serve as a therapeutic target for breast cancer.
Collapse
|
13
|
Causin RL, Pessôa-Pereira D, Souza KCB, Evangelista AF, Reis RMV, Fregnani JHTG, Marques MMC. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol Lett 2019; 18:4753-4761. [PMID: 31611985 PMCID: PMC6781752 DOI: 10.3892/ol.2019.10824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Screening for cervical cancer by cytology has been effective in reducing the worldwide incidence and mortality rates of this disease. However, a number of studies have demonstrated that the sensitivity of conventional cervical cytology may be too low for detection of cervical intraepithelial neoplasias (CIN). Therefore, it is important to incorporate more sensitive molecular diagnostic tests that could substantially improve the detection rates and accuracy for identifying CIN lesions. MicroRNAs (miRNAs) are a class of small non-coding RNAs with the potential to provide robust non-invasive cancer biomarkers for detecting CIN lesions in liquid-based cervical cytology (LBC) samples. At present, there is no consensus on which are the best housekeeping genes for miRNA normalization in LBC. The present study aimed to identify housekeeping genes with consistent and reproducible performance for normalization of reverse transcription-quantitative PCR (RT-qPCR) expression analysis of miRNA using LBC samples. The present study firstly selected six potential candidate housekeeping genes based on a systematic literature evaluation. Subsequently, the expression levels of microRNAs U6, RNU-44, RNU-47, RNU-48, RNU-49 and hsa-miR-16 were measured in 40 LBC samples using RT-qPCR. The stability of each potential housekeeping gene was assessed using the NormFinder algorithm. The results revealed that U6 and RNU-49 were the most stable genes among all candidates requiring fewer amplification cycles and smaller variation across the sample set. However, RNU-44, RNU-47, RNU-48 and hsa-miR-16 stability exceeded the recommended housekeeping value suitable for normalization. The findings revealed that U6 may be a reliable housekeeping gene for normalization of miRNA RT-qPCR expression analysis using LBC samples.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | | | - Rui Manuel Vieira Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| |
Collapse
|
14
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
15
|
Hu J, Yue X, Liu J, Kong D. Construction of an miRNA‑gene regulatory network in colorectal cancer through integrated analysis of mRNA and miRNA microarrays. Mol Med Rep 2018; 18:5109-5116. [PMID: 30272280 DOI: 10.3892/mmr.2018.9505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/08/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify potential biomarkers associated with colorectal cancer (CRC). The GSE32323 and GSE53592 mRNA and microRNA (miRNA) expression profiles were selected from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) in CRC tissue samples compared with surrounding control tissue samples (DEGs‑CC), and DEGs in cells treated with 5‑aza‑2'‑deoxycitidine compared with untreated cells (DEGs‑TC) were identified with the Limma package. The Database for Annotation, Visualization and Integrated Discovery was used to conduct the functional and pathways enrichment analysis. Differential co‑regulation networks were constructed using the DCGL package of R. The targets of DEMs were identified using TargetScan. The overlaps between DEGs and the targets were selected. The miRNA‑gene regulatory network of the overlaps was established. There were 145 DEMs, and 1,284 DEGs in DEGs‑CC, and 101 DEGs in DEGs‑TC. DEGs‑CC were enriched in 196 Gene Ontology (GO) terms and 23 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs‑TC were enriched in 46 GO terms and two KEGG pathways. A differential co‑regulation network of the DEGs and a miRNA‑gene regulatory network between DEMs and overlapped DEGs were respectively constructed. miR‑124‑3p, miR‑145‑5p and miR‑320a may be critical in CRC, and serum/glucocorticoid regulated kinase 1 and SRY‑box 9 may be potential biomarkers for CRC tumor progression.
Collapse
Affiliation(s)
- Jun Hu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xin Yue
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jianzhong Liu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dalu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
16
|
|
17
|
Salem SM, Hamed AR, Mosaad RM. MTDH and MAP3K1 are direct targets of apoptosis-regulating miRNAs in colorectal carcinoma. Biomed Pharmacother 2017; 94:767-773. [PMID: 28802228 DOI: 10.1016/j.biopha.2017.07.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022] Open
Abstract
Artificially designed miRNAs mimics and inhibitors that specifically target known oncogenes have attracted significant research attention. Herein, we aimed to explore whether MIR-375, MIR-145, and MIR-224 are involved in induction of apoptosis of CRC cells by regulating apoptosis-mediating genes MTDH, MAP3K1, PDK1, BAX, and BCL-XL. MTT assay was used to assess cell growth. Apoptosis was determined in terms of caspase activity measurement and phosphatidylserine detection using annexin V staining by flow cytometry. Quantitative real time PCR, Western blotting, and luciferase reporter assay were carried out to validate genes regulation and targeting by miRNAs. We found that ectopic expression of MIR-375 and MIR-145, and inhibition of MIR-224 can decrease cell growth and induce cell ability to undergo early apoptosis. At mRNA level, transfected cells displayed down-regulation of MTDH, PDK1 and BCL-XL, while BAX and MAP3K1 were up-regulated. Protein expression of MTDH was decreased in cells transfected with MIR-145 mimic and MIR-224 inhibitor but remained unchanged in MIR-375 mimic-transfected cells. Furthermore, MAP3K1 protein expression exibited a decreased level after MIR-375 transient expression with no significant change after MIR-145 mimic or MIR-224 inhibitor transfection. Luciferase reporter assay revealed that MIR-375 and MIR-145 can bind to 3'UTR of MTDH, supporting that MTDH is directly targeted by both miRNAs. Similarly, MAP3K1 was found to be directly regulated by MIR-375. The study concluded that the expression modulation of tumor suppressors MIR-375 and MIR-145, and oncomiR MIR-224 have the ability to induce apoptosis of CRC cells through regulation of apoptosis mediating genes MTDH, MAP3K1, PDK1, BCL-XL and BAX.
Collapse
Affiliation(s)
- Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Ahmed R Hamed
- Biology Unit, Central Laboratory of Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt; Phytochemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rehab M Mosaad
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
18
|
Wang JY, Fang M, Boye A, Wu C, Wu JJ, Ma Y, Hou S, Kan Y, Yang Y. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma. Oncotarget 2017; 8:84958-84973. [PMID: 29156696 PMCID: PMC5689586 DOI: 10.18632/oncotarget.17709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy.
Collapse
Affiliation(s)
- Ji Yu Wang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Meng Fang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Alex Boye
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jia Jun Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Ying Ma
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yue Kan
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
19
|
Azizmohammadi S, Safari A, Azizmohammadi S, Kaghazian M, Sadrkhanlo M, Yahaghi E, Farshgar R, Seifoleslami M. Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection. QJM 2017; 110:11-15. [PMID: 27345415 DOI: 10.1093/qjmed/hcw101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/06/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) may act as carcinogen or tumor suppressor genes by targeting various biological molecules. Therefore, it is important to identify significant markers for prognosis, diagnosis treatment strategies of cancers. OBJECTIVE To evaluate the clinical importance and prognostic value of miR-9 and miR-145 in cervical cancer. METHOD miRNAs expression was detected using quantitative real-time polymerase chain reaction in cervical cancer specimens and adjacent normal tissues. RESULTS MiR-9 up-regulated in cervical cancer specimens than adjacent normal tissues (9.743 ± 2.172 vs. 2.131 ± 1.083; P < 0.05). MiR-145 was decreased in cervical cancer specimens compared to corresponding normal tissues (2.189 ± 0. 724 vs. 7.173 ± 1.558 P < 0.05). In addition, increased expression of miR-9 was strongly linked to lymph node metastasis (P = 0.017) and vascular invasion (P = 0.011). On the other hand, the low expression of miR-145 was related to advanced FIGO stage (P = 0.007), lymph node metastasis (P = 0.02) and vascular invasion (0.026). Kaplan-Meier survival and log-rank analysis suggested that patients with high expression of miR-9 had shorter overall survival compared with those with low expression (log-rank test P = 0.028; P < 0.001). In addition, shorter overall survival time was remarkably linked to decreased expression of miR-145 (log-rank test P < 0.001). Multivariate Cox proportional hazards model analysis of miR-9 and miR-145 showed that FIGO stage (P = 0.011) high expression of miR-9 and low expression of miR-145 (P = 0.023; P = 0.031) were independent prognostic factors for overall survival of patients. CONCLUSIONS miRNA-145 and 9 may be as potential prognostic marker in patients suffering from cervical cancer.
Collapse
Affiliation(s)
- S Azizmohammadi
- From the Department of Gynecology, Hajar Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - A Safari
- Department of Gynecology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - S Azizmohammadi
- From the Department of Gynecology, Hajar Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - M Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Sadrkhanlo
- Department of Obstetrics and Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | - E Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - M Seifoleslami
- Department of Gynecology, Khanevadeh Hospital, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Chang S, Gao L, Yang Y, Tong D, Guo B, Liu L, Li Z, Song T, Huang C. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget 2016; 6:7675-85. [PMID: 25762621 PMCID: PMC4480708 DOI: 10.18632/oncotarget.3048] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022] Open
Abstract
VitaminD3 signaling is involved in inhibiting the development and progression of gastric cancer (GC), while the active vitamin D metabolite 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated gene regulatory mechanisms in GC remain unclear. We found that miR-145 is induced by 1,25(OH)2D3 in a dose- and vitamin D receptor (VDR)-dependent manner in GC cells. Inhibition of miR-145 reverses the antiproliferative effect of 1,25(OH)2D3. Furthermore, miR-145 expression was lower in tumors compared with matched normal samples and correlated with increased the E2F3 transcription factor protein staining. Overexpression of miR-145 inhibited colony formation, cell viability and induced cell arrest in S-phase in GC cells by targeting E2F3 and CDK6. miR-145 inhibition consistently abrogates the 1,25(OH)2D3-mediated suppression of E2F3, CDK6, CDK2 and CCNA2 genes. Altogether, our results indicate that miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 in GC cells and might hold promise for prognosis and therapeutic strategies for GC treatment.
Collapse
Affiliation(s)
- Su'e Chang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ling Gao
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.,Department of Oral Maxillofacial Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P. R. China
| | - Yang Yang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dongdong Tong
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Bo Guo
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Liying Liu
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Tusheng Song
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Huang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
21
|
Khalili M, Vasei M, Khalili D, Alimoghaddam K, Sadeghizadeh M, Mowla SJ. Downregulation of the Genes Involved in Reprogramming (SOX2, c-MYC, miR-302, miR-145, and P21) in Gastric Adenocarcinoma. J Gastrointest Cancer 2016; 46:251-8. [PMID: 25904219 DOI: 10.1007/s12029-015-9695-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Many cell signaling pathways essential for normal stem cell development are involved in cancer initiation and progression. In the present study, motivated by a possible contribution of reprogramming process in induction of cancer, we compared the expression level of main genes involved in iPS generation, i.e., miR-302, miR-145, SOX2, c-MYC, and P21, in a series of tumor and non-tumor tissues of stomach. METHODS A total number of 34 tumors and their matched non-tumor (as control) gastric surgical specimens were obtained. The expression of the candidate genes was evaluated by using real-time PCR and immunohistochemistry (IHC) techniques. RESULTS Our data revealed a significant downregulation of miR-302b, P21, and miR-145 genes in intestinal and SOX2 gene in diffuse type of tumor samples. SOX2, but not the other genes, showed a significant downregulation in both proximal (cardia and fundus) and distal (body and antrum) sites of stomach. Based on receiver-operating characteristic (ROC) analyses, the highest total area under the curve (AUC) was found for SOX2 (AUC = 82 %, P < 0.001). Interestingly, all tumor samples revealed a negative signal for c-MYC expression, while non-tumor samples represented an intense cytoplasmic staining. CONCLUSIONS Despite the fact that some hESC-specific genes are upregulated in tumors, our data revealed a significant downregulation of all candidate genes, except for c-MYC, in tumor samples of stomach. Moreover, ROC data demonstrated that SOX2 gene expression index is a better potential biomarker of gastric cancer, compared to other tested genes. SOX2 expression has a good sensitivity and specificity to discriminate correctly between tumor/non-tumor and also high/low grades of tumor malignancy. It seems downregulation of miR-302b, miR-145, and P21 could contribute to gastric tumor initiation and progression.
Collapse
Affiliation(s)
- Mitra Khalili
- Department of Medical Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Jiang SB, He XJ, Xia YJ, Hu WJ, Luo JG, Zhang J, Tao HQ. MicroRNA-145-5p inhibits gastric cancer invasiveness through targeting N-cadherin and ZEB2 to suppress epithelial-mesenchymal transition. Onco Targets Ther 2016; 9:2305-15. [PMID: 27143926 PMCID: PMC4846054 DOI: 10.2147/ott.s101853] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MicroRNA (miR)-145-5p has been reported to function as a suppressor of cancer and plays an important role in cancer invasiveness. Epithelial-mesenchymal transition (EMT) is an important process in cancer invasion and migration. However, the involvement of miR-145-5p in EMT in human gastric cancer (GC) remains unclear. In this study, we aimed to investigate the molecular mechanisms by which miR-145-5p regulates EMT in GC invasiveness. We used quantitative real-time polymerase chain reaction to investigate the miR-145-5p expression level in GC and matched normal tissues. The effects of miR-145-5p on GC cell invasion and migration abilities were evaluated using Transwell models. The relationships among miR-145-5p and zinc-finger E-box binding homeobox 2 (ZEB2), E-cadherin, and N-cadherin were analyzed by quantitative real-time polymerase chain reaction and Western blot analyses. miR-145-5p levels in primary GC tissues obtained from 60 patients were significantly downregulated, compared to those in paired normal tissues. Lauren classification, depth of tumor invasion, lymph node metastasis, lymphatic invasion, and tumor-node-metastasis stage were associated with miR-145-5p expression. miR-145-5p inhibits the expression of the candidate target gene ZEB2 to delay the invasion and migration of GC cells. ZEB2 acts as transcriptional repressor of E-cadherin, while miR-145-5p is known to suppress N-cadherin directly to regulate EMT. Therefore, we concluded that miR-145-5p may target N-cadherin and ZEB2 directly to influence EMT.
Collapse
Affiliation(s)
- Shi-Bin Jiang
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu-Jun He
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying-Jie Xia
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei-Jian Hu
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jun-Gang Luo
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jun Zhang
- Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Hou-Quan Tao
- Department of Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
- Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
Deng SP, Zhu L, Huang DS. Predicting Hub Genes Associated with Cervical Cancer through Gene Co-Expression Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:27-35. [PMID: 26415208 DOI: 10.1109/tcbb.2015.2476790] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cervical cancer is the third most common malignancy in women worldwide. It remains a leading cause of cancer-related death for women in developing countries. In order to contribute to the treatment of the cervical cancer, in our work, we try to find a few key genes resulting in the cervical cancer. Employing functions of several bioinformatics tools, we selected 143 differentially expressed genes (DEGs) associated with the cervical cancer. The results of bioinformatics analysis show that these DEGs play important roles in the development of cervical cancer. Through comparing two differential co-expression networks (DCNs) at two different states, we found a common sub-network and two differential sub-networks as well as some hub genes in three sub-networks. Moreover, some of the hub genes have been reported to be related to the cervical cancer. Those hub genes were analyzed from Gene Ontology function enrichment, pathway enrichment and protein binding three aspects. The results can help us understand the development of the cervical cancer and guide further experiments about the cervical cancer.
Collapse
|
24
|
Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2. PLoS Pathog 2015; 11:e1005031. [PMID: 26153983 PMCID: PMC4496050 DOI: 10.1371/journal.ppat.1005031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/18/2015] [Indexed: 12/27/2022] Open
Abstract
We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters--widely reported to have cell transformation-associated activity--are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours--including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28 kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs.
Collapse
|
25
|
He Y, Lin J, Ding Y, Liu G, Luo Y, Huang M, Xu C, Kim TK, Etheridge A, Lin M, Kong D, Wang K. A systematic study on dysregulated microRNAs in cervical cancer development. Int J Cancer 2015; 138:1312-27. [DOI: 10.1002/ijc.29618] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/19/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical University; Dongguan Guangdong China
| | - Juanjuan Lin
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | - Guodong Liu
- Department of Chemistry and Molecular Biology; North Dakota State University; Fargo ND
| | - Yanhong Luo
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | - Mingyuan Huang
- Department of Health Inspection; Guangdong Medical University; Dongguan Guangdong China
| | - Chengkai Xu
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | | | | | - Mi Lin
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics; Guangdong Medical University; Dongguan Guangdong China
| | - Kai Wang
- Institute for Systems Biology; Seattle WA
| |
Collapse
|
26
|
Meta-analysis of microRNA expression profiling studies in human cervical cancer. Med Oncol 2015; 32:510. [PMID: 25920605 DOI: 10.1007/s12032-015-0510-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/31/2015] [Indexed: 12/19/2022]
Abstract
Cervical cancer is one of the most common malignant tumors in women, and numerous studies have associated the disease with changes in microRNA (miRNA) expression. This meta-analysis aimed to consolidate and assess the results of these studies in order to identify potential miRNA biomarkers of cervical cancer. We systematically searched the literature for studies comparing miRNA expression between cervical cancer tissues and normal cervical tissues, and we meta-analyzed the result of 27 studies comprising 1,132 cancer samples and 943 normal samples. We used a vote-counting strategy that took into account total sample and mean fold-change, in order to comprehensively assess associations between certain miRNAs and cervical cancer occurrence and progression. The studies described 195 miRNAs that were significantly up-regulated and 96 microRNAs that were down-regulated in cervical cancer tissues (stage I-IV) relative to normal cervical tissues. Vote-counting analysis showed that up-regulation was most consistently reported for miR-20a and miR-21 (four studies), followed by miR-10a, miR-15b, miR-20b, miR-141, miR-200a, and miR-224 (three studies). Down-regulation was reported most consistently for miR-143 (seven studies), followed by miR-203 and miR-145 (six studies). Fourteen miRNA, respectively, showed a significantly correlated lymphatic node metastasis in eight studies. This meta-analysis has identified several miRNAs whose expression correlates reliably with cervical cancer. These should be probed in further studies to explore their potential as diagnostic biomarkers.
Collapse
|
27
|
Han T, Yi XP, Liu B, Ke MJ, Li YX. MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol Med Rep 2015; 11:4115-20. [PMID: 25646678 PMCID: PMC4394956 DOI: 10.3892/mmr.2015.3294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs regulating gene expression by inducing the degradation of RNA or interfering with translation. Aberrant miRNA expression has been described in several types of cancer in humans. In the present study, it was demonstrated that miR-145 is downregulated in pancreatic cancer tissues and the Panc-1 cell line. Restoration of miR-145 inhibited cell proliferation, invasion and migration in Panc-1 cells. Neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) has been identified as a novel potential miR-145 target using bioinformatics. Using luciferase reporter constructs, it was observed that the NEDD9 3′-untranslated region is the location of the direct binding site for miR-145. Additionally, it was identified that miR-145 is inversely correlated with NEDD9 expression in pancreatic cancer tissues and that restoration of miR-145 in Panc-1 cells reduced NEDD9 mRNA and protein expression accompanied by inhibition of cell proliferation, invasion and migration. In conclusion, these findings indicate that miR-145 may be an effective target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Tong Han
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao-Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Liu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mu-Jing Ke
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi-Xiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer. Tumour Biol 2015; 36:3703-8. [PMID: 25560490 DOI: 10.1007/s13277-014-3009-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/23/2014] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in the processes of tumor initiation and progression. However, miR-145 expression in cervical cancer has been rarely investigated. The aim of this study was to investigate the clinical significance and prognostic value of miR-145 expression in cervical cancer. MiR-145 expression in 114 pairs of human cervical cancer and adjacent normal tissues was detected by real-time quantitative RT-PCR assay. The results showed that miR-145 expression was significantly downregulated in cervical cancer tissues when compared with corresponding adjacent normal tissues (P < 0.001). It was also significantly lower in the cancerous tissues of patients with advanced International Federation of Gynecology and Obstetrics (FIGO) stage cervical cancer than those with early FIGO stage (P = 0.006). In addition, miR-145 was expressed at significantly lower levels in lymph node metastasis-positive patients than in lymph node metastasis-negative patients (P = 0.037). Moreover, poorly differentiated tumors expressed lower miR-145 than well or moderately differentiated tumors (P = 0.012). Patients with vascular invasion or human papillomavirus (HPV) infection also had lower miR-145 expression levels than those without (P = 0.016 and P = 0.025, respectively). Furthermore, Kaplan-Meier analysis showed that cervical cancer patients with low miR-145 expression had shorter overall survival time than those with high miR-145 expression (P < 0.001). When analyzed with a multivariate Cox regression model, miR-145 was identified as an independent prognostic factor for overall survival. Taken together, our results suggest that downregulation of miR-145 in cervical cancer is associated with aggressive progression and poor prognosis and that miR-145 may serve as a prognostic marker.
Collapse
|
29
|
Zhang Q, Yan W, Bai Y, Xu H, Fu C, Zheng W, Zhu Y, Ma J. Synthetic miR-145 mimic inhibits multiple myeloma cell growth in vitro and in vivo. Oncol Rep 2014; 33:448-56. [PMID: 25369735 DOI: 10.3892/or.2014.3591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/19/2014] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a disease with an adverse outcome and new therapeutic strategies are required to combat this disease. It is well known that tumor‑suppressor microRNA (miRNA) acts as a new potential anticancer agent. Accumulating evidence showed that microRNA-145 (miR-145) is a candidate tumor suppressor miRNA. However, whether miR-145 is involved in the development and progression of MM reamins to be determined. In the present study, we investigated the therapeutic potential of synthetic miR-145 against human MM cells in vitro and in vivo. The results showed that miR-145 was reduced in MM tissues and cell lines. Enforced expression of miR-145 by transfection with miR-145 mimics inhibited cell proliferation, migration, and the invasion abilities of H929 cells. Furthermore, our results demonstrated that the enforced expression of miR-145 in H929 cells profoundly decreased the levels of p-AKT and p-PI3K, which may contribute to some extent to the inhibition of MM cell proliferation and survival. The enforced expression of miR-145 in a xenograft mouse model suppressed tumor growth. In conclusion, our findings suggested that miR-145 may act as a tumor suppressor and contributes to the progression of MM. Additionally, miR-145 mimics is a potential therapeutic agent for the treatment of MM.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmaceutical Sciences, Jilin University, Jilin, P.R. China
| | - Weiqun Yan
- School of Pharmaceutical Sciences, Jilin University, Jilin, P.R. China
| | - Yang Bai
- First Hospital of Jilin University, Jilin, P.R. China
| | - Hao Xu
- School of Pharmaceutical Sciences, Jilin University, Jilin, P.R. China
| | - Changhao Fu
- School of Pharmaceutical Sciences, Jilin University, Jilin, P.R. China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Jilin, P.R. China
| | - Yingqiao Zhu
- First Hospital of Jilin University, Jilin, P.R. China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Jilin, P.R. China
| |
Collapse
|
30
|
Cui SY, Wang R, Chen LB. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med 2014; 18:1913-26. [PMID: 25124875 PMCID: PMC4244007 DOI: 10.1111/jcmm.12358] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are endogenous, small (18-25 nucleotides) non-coding RNAs, which regulate genes expression by directly binding to the 3'-untranslated regions of the target messenger RNAs. Emerging evidence shows that alteration of microRNAs is involved in cancer development. MicroRNA-145 is commonly down-regulated in many types of cancer, regulating various cellular processes, such as the cell cycle, proliferation, apoptosis and invasion, by targeting multiple oncogenes. This review aims to summarize the recent published literature on the role of microRNA-145 in regulating tumourigenesis and progression, and explore its potential for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Long-Bang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| |
Collapse
|
31
|
Abstract
The protein encoded by the TP53 gene is one of the most important suppressors of tumor formation, which is also frequently inactivated in gastrointestinal cancer. MicroRNAs (miRNAs) are small noncoding RNAs that inhibit translation and/or promote degradation of their target messenger RNAs. In recent years, several miRNAs have been identified as mediators and regulators of p53’s tumor suppressing functions. p53 induces expression and/or maturation of several miRNAs, which leads to the repression of critical effector proteins. Furthermore, certain miRNAs regulate the expression and activity of p53 through direct repression of p53 or its regulators. Experimental findings indicate that miRNAs are important components of the p53 network. In addition, the frequent genetic and epigenetic alterations of p53-regulated miRNAs in tumors indicate that they play an important role in cancer initiation and/or progression. Therefore, p53-regulated miRNAs may represent attractive diagnostic and/or prognostic biomarkers. Moreover, restoration of p53-induced miRNAs results in suppression of tumor growth and metastasis in mouse models of cancer. Thus, miRNA-based therapeutics may represent a feasible strategy for future cancer treatment. Here we summarize the current published state-of-the-art on the role of the p53-miRNA connection in gastrointestinal cancer.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Huihui Li
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Longchang Jiang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
32
|
Granados López AJ, López JA. Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci 2014; 15:15700-33. [PMID: 25192291 PMCID: PMC4200848 DOI: 10.3390/ijms150915700] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1), the second comprises immortal cell changes to tumorigenic cells (CIN 2), the third step includes cell changes to increase tumorigenic capacity (CIN 3), and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs.
Collapse
Affiliation(s)
- Angelica Judith Granados López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | - Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| |
Collapse
|
33
|
Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis. Glia 2014; 63:194-205. [PMID: 25139829 DOI: 10.1002/glia.22743] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/01/2014] [Indexed: 11/09/2022]
Abstract
Astrogliosis occurs at the lesion site within days to weeks after spinal cord injury (SCI) and involves the proliferation and hypertrophy of astrocytes, leading to glia scar formation. Changes in gene expression by deregulated microRNAs (miRNAs) are involved in the process of central nervous system neurodegeneration. Here, we report that mir-145, a miRNA enriched in rat spinal neurons and astrocytes, was downregulated at 1 week and 1 month after SCI. Our in vitro studies using astrocytes prepared from neonatal spinal cord tissues indicated that potent inflammagen lipopolysaccharide downregulated mir-145 expression in astrocytes, suggesting that SCI-triggered inflammatory signaling pathways could play the inhibitory role in astrocytic mir-145 expression. To induce overexpression of mir-145 in astrocytes at the spinal cord lesion site, we developed a lentivirus-mediated pre-miRNA delivery system using the promoter of glial fibrillary acidic protein (GFAP), an astrocyte-specific intermediate filament. The results indicated that astrocyte-specific overexpression of mir-145 reduced astrocytic cell density at the lesion border of the injured spinal cord. In parallel, overexpression of mir-145 reduced the size of astrocytes and the number of related cell processes, as well as cell proliferation and migration. Through a luciferase reporter system, we found that GFAP and c-myc were the two potential targets of mir-145 in astrocytes. Together, the findings demonstrate the novel role of mir-145 in the regulation of astrocytic dynamics, and reveal that the downregulation of mir-145 in astrocytes is a critical factor inducing astrogliosis after SCI. GLIA 2015;63:194-205.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
34
|
Wang YW, Shi DB, Chen X, Gao C, Gao P. Clinicopathological significance of microRNA-214 in gastric cancer and its effect on cell biological behaviour. PLoS One 2014; 9:e91307. [PMID: 24614175 PMCID: PMC3948864 DOI: 10.1371/journal.pone.0091307] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that numerous microRNAs are involved in the tumorigenesis and progression of gastric cancer, while the clinical significance of microRNA-214 in gastric cancer is poorly understood and the exact role of microRNA-214 in gastric cancer remains obscure. In the present study, expression levels of microRNA-214 in 80 gastric carcinoma tissues, 18 nontumourous gastric tissues, and 4 types of gastric cancer cell lines were quantified by reverse transcription followed by real-time quantitative polymerase chain reaction (RT-qPCR), and the relationship between microRNA-214 expression and cliniopathological characteristics including prognosis was explored. To investigate the potential role of microRNA-214 in gastric cancer cell biological behaviour, we performed cell proliferation, apoptosis, migration and invasion assays in four gastric cancer cell lines and an immortalized gastric cell line in vitro. Our results showed that microRNA-214 was dramatically downregulated in gastric cancer tissues and gastric cancer cell lines, compared with nontumourous gastric tissues. Stepwise downregulation of microRNA-214 expression was observed among nontumourous gastric mucosa, nonmetastasis gastric cancer tissues, and metastasis gastric cancer tissues. The expression of microRNA-214 was significantly inversely correlated with lymph node metastasis and tumour size but had no correlation with the patient's prognosis. Ectopic expression of microRNA-214 could inhibit cell migration and invasion ability in SGC7901 and MKN45 gastric cancer cells. And knockdown of microRNA-214 significantly facilitated cell proliferation, migration and invasion in a cell-specific manner in MKN28, BGC823 and GES-1 cells. Colony stimulating factor 1 (CSF1) was identified as a target gene of microRNA-214. In summary, our data demonstrated that microRNA-214 is a promising novel biomarker for lymph node metastasis in patients with gastric cancer. And we identified that downregulation of microRNA-214 may regulate the proliferation, invasion and migration of gastric cancer cells by directly targeting CSF1.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Duan-Bo Shi
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Xu Chen
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Chao Gao
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Peng Gao
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Wang F, Xia J, Wang N, Zong H. miR-145 inhibits proliferation and invasion of esophageal squamous cell carcinoma in part by targeting c-Myc. ACTA ACUST UNITED AC 2013; 36:754-8. [PMID: 24356567 DOI: 10.1159/000356978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence has shown that microRNAs (miRNAs) are aberrantly expressed in human esophageal cancer and crucial to tumorigenesis. Herein, we identified the role of miR-145 in esophageal squamous cell carcinoma (ESCC) development in vitro and in vivo. MATERIAL AND METHODS miR-145 expression was investigated in 40 ESCC samples as well as 5 ESCC cell lines by real-time polymerase chain reaction. Crystal violet and transwell assays were conducted to explore the effects of miR-145 on the proliferation and invasion of human ESCC cell lines, respectively. The impact of overexpression of miR-145 on putative target c-Myc was subsequently confirmed via Western blot. RESULTS miR-145 expression was frequently downregulated in ESCC specimens and cell lines compared with adjacent normal tissues (p < 0.05). Overexpression of miR-145 suppressed (p < 0.05) ESCC cell proliferation and invasion, as well as the growth of xenograft tumors in mice. Overexpression of miR-145 significantly decreased (p < 0.05) the protein level of c-Myc which has previously been identified as a direct target of miR-145. CONCLUSION Our results demonstrate that overexpression of miR-145 inhibits tumor growth in part by targeting c-Myc. Our findings revealed that miR-145 may act as a tumor suppressor in ESCC, and its dysregulation may be involved in the initiation and development of human ESCC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | | | | | | |
Collapse
|
36
|
Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 2013; 587:3027-31. [PMID: 23886710 DOI: 10.1016/j.febslet.2013.07.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Osteogenesis depends on a coordinated network of transcription factors including Sp7. Emerging evidence indicates that microRNAs (miRNAs) act as pivotal regulators in various biological processes including osteoblast proliferation and differentiation. Here, we investigated the effect of miR-145 on osteogenic differentiation. miR-145 was decreased during osteogenic differentiation, which could suppress the osteogenic differentiation of C2C12 and MC3T3-E1 cells confirmed by gain- and loss-of-function experiments. Moreover, bioinformatic analysis combined with luciferase reporter assay, and Western blot validated that miR-145 negatively regulated Sp7 expression. Inhibition of Sp7 showed similar effect with miR-145 on osteogenic differentiation, whereas overexpression of Sp7 attenuated this effect. Collectively, these data indicate that miR-145 is a novel regulator of Sp7, and it suppresses the osteogenic differentiation of C2C12 and MC3T3-E1 cells.
Collapse
Affiliation(s)
- Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | | | | | | | | | | |
Collapse
|