1
|
Zhan F, Zhang R, Qiu L, Ren Y. ACAP3 negatively regulated by HDAC2 inhibits the malignant development of papillary thyroid carcinoma cells. Int J Biochem Cell Biol 2024; 174:106635. [PMID: 39098591 DOI: 10.1016/j.biocel.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
ArfGAP with coiled-coil, ankyrin repeat and PH domains 3 (ACAP3) level has been confirmed to be downregulated in papillary thyroid carcinoma (PTC). Histone deacetylase inhibitors (HDACIs) have therapeutic effects on PTC. Accordingly, this study probed into the potential relation of histone deacetylase 2 (HDAC2) and ACAP3 in PTC. Expressions of ACAP3 and HDAC2 in PTC were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between HDAC2 and ACAP3 was predicted by Pearson analysis. Cell functional assays (cell counting kit-8, transwell, wound healing and flow cytometry assays) and rescue assay were carried out to determine the effects of HDAC2/ACAP3 axis on biological behaviors of PTC cells. Expressions of apoptosis-, epithelial-mesenchymal transition-, Protein Kinase B (AKT)-, and P53-related proteins were measured by Western blot. ACAP3 level was downregulated in PTC tissues and cells. ACAP3 overexpression (oe-ACAP3) suppressed viability, proliferation, migration and invasion of PTC cells, facilitated apoptosis, downregulated the expressions of Protein Kinase B (Bcl-2) and N-cadherin, upregulated the expressions of Bcl-2 associated protein X (Bax) and E-cadherin, diminished the p-AKT/AKT ratio and elevated the p-p53/p53 ratio; however, ACAP3 silencing or HDAC2 overexpression (oe-HDAC2) did the opposite. HDAC2 negatively correlated with ACAP3. The tumor-suppressing effect of oe-ACAP3 in PTC was reversed by oe-HDAC2. Collectively, ACAP3 negatively regulated by HDAC2 suppresses the proliferation and metastasis while facilitating apoptosis of PTC cells.
Collapse
Affiliation(s)
- Fenfen Zhan
- Endocrinology department, The Second Affiliated Hospital Zhejiang University School of Medicine, China; Endocrinology department, Sanmen People's Hospital, China
| | - Ronghui Zhang
- Pathology department, Sanmen People's Hospital, China
| | - Lanlan Qiu
- Pathology department, Sanmen People's Hospital, China
| | - Yuezhong Ren
- Endocrinology department, The Second Affiliated Hospital Zhejiang University School of Medicine, China.
| |
Collapse
|
2
|
Wang B, Jiang W, Zheng X, Han Y, Liu R. Research on a Weighted Gene Co-expression Network Analysis method for mining pathogenic genes in thyroid cancer. PLoS One 2022; 17:e0272403. [PMID: 35913967 PMCID: PMC9342754 DOI: 10.1371/journal.pone.0272403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Thyroid cancer (TC) is one of the most common thyroid malignancies occurring worldwide, and accounts for about 1% of all the malignant tumors. It is one of the fastest growing tumor and can occur at any age, but it is more common in women. It is important to find the pathogenesis and treatment targets of TC. In this pursuit, the present study was envisaged to investigate the effective carcinogenic biological macromolecules, so as to provide a better understanding of the occurrence and development of TC. The clinical and gene expression data were collected from The Cancer Genome Atlas (TCGA). We clustered mRNA and long non-coding RNA (lncRNA) into different modules by Weighted Gene Co-expression Network Analysis (WGCNA), and calculated the correlation coefficient between the genes and clinical phenotypes. Using WGCNA, we identified the module with the highest correlation coefficient. Subsequently, by using the differential genes expression analysis to screen the differential micro-RNA (miRNA), the univariate Cox proportional hazard regression was employed to screen the hub genes related to overall survival (OS), with P < 0.05 as the statistical significance threshold. Finally, we designed a hub competitive endogenous RNA(ceRNA) network of disease-associated lncRNAs, miRNAs, and mRNAs. From the results of enrichment analysis, the association of these genes could be related to the occurrence and development of TC, and these hub RNAs can be valuable prognostic markers and therapeutic targets in TC.
Collapse
Affiliation(s)
- Bo Wang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China
- * E-mail:
| | - Wei Jiang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Xiaodong Zheng
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Yu Han
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Runjie Liu
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| |
Collapse
|
3
|
Bauman JE, Chen Z, Zhang C, Ohr JP, Ferris RL, McGorisk GM, Brandt S, Srivatsa S, Chen AY, Steuer CE, Shin DM, Saba NF, Khuri FR, Owonikoko TK. A Multicenter Randomized Phase II Study of Single Agent Efficacy and Optimal Combination Sequence of Everolimus and Pasireotide LAR in Advanced Thyroid Cancer. Cancers (Basel) 2022; 14:2639. [PMID: 35681620 PMCID: PMC9179856 DOI: 10.3390/cancers14112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
PURPOSE Aberrant mTOR pathway and somatostatin receptor signaling are implicated in thyroid cancer and offer potential therapeutic targets. We assessed the clinical efficacy of everolimus and Pasireotide long-acting release (LAR) in radioiodine-refractory differentiated thyroid cancer (DTC) and medullary thyroid cancer (MTC). PATIENTS AND METHODS Adults with progressive MTC and DTC untreated or treated with no more than one systemic agent were eligible. The trial was designed to establish the most promising regimen and the optimal combination sequence. Patients were randomized to start treatment with single agent everolimus (10 mg QD; Arm A), pasireotide-LAR (60 mg intramuscular injection, Q4 weeks; Arm B), or the combination (Arm C). At initial progression (PFS1), patients on Arm A or B switched to the combination and continued until progression (PFS2). Efficacy was measured by RECIST criteria. RESULTS Study enrolled 42 patients: median age 65 years; female 17 (40.5%); White 31 (73.8%), African American 6 (14.3%), others 5 (11.9); DTC 32 (76.2%); MTC 10 (23.8%). There was no objective response by RECIST criteria across the three arms. Median and 1-year PFS1 rates were 8.3, 1.8, 8.1 months and 49.9%, 36.4%, 25.0% for Arms A, B, C, respectively. Median and 1-year PFS2 rates were 26.3, 17.5, 8.1 months and 78.4%, 70.0%, 25% for Arms A, B, C, respectively. The most frequent adverse events were anemia, stomatitis, fatigue, hyperglycemia, and hypercholesterolemia. CONCLUSIONS The combination of everolimus and pasireotide-LAR showed promising efficacy over single agent. The delayed combination of everolimus and pasireotide-LAR following progression on single agent everolimus appeared intriguing as a combination strategy.
Collapse
Affiliation(s)
- Julie E. Bauman
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.E.B.); (J.P.O.)
| | - Zhengjia Chen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
- Department of Biostatistics, Rollins School of Public Health and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Chao Zhang
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
| | - James P. Ohr
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.E.B.); (J.P.O.)
| | - Robert L. Ferris
- Department of Otolaryngology, Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Gerald M. McGorisk
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA;
| | - Stephen Brandt
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA 30322, USA; (S.B.); (S.S.)
| | - Sumathi Srivatsa
- Department of Medicine, Division of Endocrinology, Emory University, Atlanta, GA 30322, USA; (S.B.); (S.S.)
| | - Amy Y. Chen
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA;
| | - Conor E. Steuer
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | - Dong M. Shin
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | - Nabil F. Saba
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | - Fadlo R. Khuri
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | - Taofeek K. Owonikoko
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.E.B.); (J.P.O.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; (Z.C.); (C.Z.); (D.M.S.); (N.F.S.); (F.R.K.)
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
4
|
Li X, Fan K, Liu Y, Liu Y, Liu PF. Administration of a recombinant ALDH7A1 (rA7) indicates potential regulation of the metabolite and immunology pathways in Atlantic salmon infected with Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2021; 44:961-977. [PMID: 33645734 DOI: 10.1111/jfd.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The bacterium Aeromonas salmonicida is the pathogen responsible for furunculosis, which is a serious disease of salmonids. This disease has a significant economic impact on the economic benefits of the global salmon farming industry. However, the pathogenesis of this disease in fish is still unknown. Members of the aldehyde dehydrogenase gene (ALDH) superfamily play a key role in the enzyme detoxification of endogenous and exogenous aldehydes. In this study, we obtained a recombinant aldehyde dehydrogenase 7A1 (ALDH7A1) protein to find its functions on Atlantic salmon infected by A. salmonicida. The transcriptional response in the liver of Atlantic salmon (Salmo salar) with differing levels of A. salmonicida infection was analysed and compared in order to reveal mechanisms by which ALDH7A1 may confer infection resistance. With the addition of ALDH7A1 protein, it was found that a total of 13,369 genes were annotated with one or more KEGG and localized to 360 KEGG pathways in the high concentration infection group. The differential expression genes were more enriched in immune signalling pathways such as the Toll-like receptor signalling pathway, NF-kappa B signalling pathway and TNF signalling pathway. On the other hand, at low concentrations of infection, KEGG enriched a smaller number of differential expression genes. However, these differential genes were more concentrated in immune signalling pathways such as the PI3K-Akt signalling pathway, JAK-STAT signalling pathway and complement and coagulation cascades. In addition, several known immune-related genes including HSP90α, HSP70, DNA damage-inducible transcript 4, integrin alpha 5 and microtubule-associated protein 2 were among the differentially expressed transcripts. These data provide the first insights into the host-ALDH7A1 vaccine interactome. The results of this study contribute to identifying the potential resistance mechanisms of Atlantic salmon to A. salmonicida infection and determining future treatment strategies.
Collapse
Affiliation(s)
- Xiaohao Li
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Kunpeng Fan
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yafang Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Peng-Fei Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
5
|
Aydemirli MD, van Eendenburg JDH, van Wezel T, Oosting J, Corver WE, Kapiteijn E, Morreau H. Targeting EML4-ALK gene fusion variant 3 in thyroid cancer. Endocr Relat Cancer 2021; 28:377-389. [PMID: 33878728 PMCID: PMC8183637 DOI: 10.1530/erc-20-0436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Finding targetable gene fusions can expand the limited treatment options in radioactive iodine-refractory (RAI-r) thyroid cancer. To that end, we established a novel cell line 'JVE404' derived from an advanced RAI-r papillary thyroid cancer (PTC) patient, harboring an EML4-ALK gene fusion variant 3 (v3). Different EML4-ALK gene fusions can have different clinical repercussions. JVE404 cells were evaluated for cell viability and cell signaling in response to ALK inhibitors crizotinib, ceritinib and lorlatinib, in parallel to the patient's treatment. He received, after first-line lenvatinib, crizotinib (Drug Rediscovery Protocol (DRUP) trial), and lorlatinib (compassionate use). In vitro treatment with crizotinib or ceritinib decreased viability in JVE404, but most potently and significantly only with lorlatinib. Western blot analysis showed a near total decrease of 99% and 89%, respectively, in pALK and pERK expression levels in JVE404 cells with lorlatinib, in contrast to remaining signal intensities of a half and a third of control, respectively, with crizotinib. The patient had a 6-month lasting stable disease on crizotinib, but progressive disease occurred, including the finding of cerebral metastases, at 8 months. With lorlatinib, partial response, including clinical cerebral activity, was already achieved at 11 weeks' use and ongoing partial response at 7 months. To our best knowledge, this is the first reported case describing a patient-specific targeted treatment with lorlatinib based on an EML4-ALK gene fusion v3 in a thyroid cancer patient, and own cancer cell line. Tumor-agnostic targeted therapy may provide valuable treatment options in personalized medicine.
Collapse
Affiliation(s)
- Mehtap Derya Aydemirli
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence should be addressed to H Morreau:
| |
Collapse
|
6
|
Yang Z, Li G, Ding C, Sun W, Zhang J. Long non-coding RNA HULC exerts oncogenic activity on papillary thyroid cancer in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:326-335. [PMID: 31878795 DOI: 10.1080/21691401.2019.1703730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thyroid cancer is a frequently happened malignancy in human endocrine system. Papillary thyroid cancer (PTC) presents 70-80% of all thyroid cancer cases. Herein, we probed the possible oncogenic function of long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) in PTC. First, the HULC and microRNA-106a (miR-106a) expressions in PTC tissues and cells were tested. Plasmids or miRNAs transfections were done for altering HULC and miR-106a expressions. Then, cells viability and apoptosis, along with cell proliferative, migratory and invasive abilities, were tested, respectively. The PI3K/AKT and Wnt/β-catenin pathways activities were measured. Finally, the animal model of PTC was constructed and the tumour volumes and weights were gauged. We discovered that HULC and miR-106a had relative high expression levels in PTC tissues and cells. HULC overexpression enhanced TPC-1 cells viability and cell proliferative, migratory and invasive abilities. Silencing HULC induced TPC-1 cell apoptosis. miR-106a engaged in the oncogenic impacts of HULC. Moreover, HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities via raising miR-106a expression. Besides, HULC overexpression enhanced the volumes and weights of PTC tumours. To sum up, HULC exhibited oncogenic function on PTC in vitro and in vivo.
Collapse
Affiliation(s)
- Zhijia Yang
- Department of Trauma Emergency, Huaihe Hospital, Henan University, Kaifeng, China
| | - Guoqing Li
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Ding
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Wencong Sun
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ji Zhang
- Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Molecular Profiling of Follicular Variant of Papillary Thyroid Cancer. Bull Exp Biol Med 2020; 169:85-88. [PMID: 32495172 DOI: 10.1007/s10517-020-04830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 10/24/2022]
Abstract
The molecular features of the follicular variant of papillary thyroid cancer are closely related to the clinical behavior of the tumor and the prognosis of the disease. BRAF-V600E mutations in patients with a follicular variant of papillary thyroid cancer have not been identified; however, the majority of patients had T3-4N0M0 stage of the disease. Changes in the expression of transcription and growth factors and AKT/m-TOR signaling pathway components were detected. In addition, hyperexpression of m-TOR and 4EBP1 kinases and CAIX enzyme was shown compared to the classical variant of papillary thyroid cancer, where an increase in the nuclear factor NF-κB p65 and c-RAF kinase expression was observed.
Collapse
|
8
|
Qin H, Liu J, Yu M, Wang H, Thomas AM, Li S, Yan Q, Wang L. FUT7 promotes the malignant transformation of follicular thyroid carcinoma through α1,3-fucosylation of EGF receptor. Exp Cell Res 2020; 393:112095. [PMID: 32442537 DOI: 10.1016/j.yexcr.2020.112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Aberrant protein glycosylation is involved in many diseases including cancer. This study investigated the role of fucosyltransferase VII (FUT7) in the progression of follicular thyroid carcinoma (FTC). FUT7 expression was found to be upregulated in FTC compared to paracancerous thyroid tissue, and in FTC with T2 stage of TMN classification compared to FTC with T1 stage. FUT7 overexpression promoted cell proliferation, epithelial-mesenchymal transition (EMT), and the migration and invasion of primary FTC cell line FTC-133. Consistently, FUT7 knock-down inhibited cell proliferation, EMT, as well as the migration and invasion of the metastatic FTC cell line FTC-238. Mechanistic investigation revealed that FUT7 catalyzed the α1,3-fucosylation of epidermal growth factor receptor (EGFR) in FTC cells. The extent of glycan α1,3-fucosylation on EGFR was positively correlated with the activation of EGFR in the presence/absence of epidermal growth factor (EGF) treatment. Furthermore, FUT7 was shown to enhance EGF-induced progression of FTC cells through mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways. These findings provide a new perspective on FUT7 that may be a novel diagnostic and therapeutic target of FTC.
Collapse
Affiliation(s)
- Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China.
| | - Lifen Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Madanes D, Bilotas MA, Bastón JI, Singla JJ, Meresman GF, Barañao RI, Ricci AG. PI3K/AKT pathway is altered in the endometriosis patient's endometrium and presents differences according to severity stage. Gynecol Endocrinol 2020; 36:436-440. [PMID: 31637941 DOI: 10.1080/09513590.2019.1680627] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Based on the inflammatory nature and hormone-dependency of endometriosis, PI3K/AKT signaling appears to influence its progression. Could the endometriosis stages be linked to differential changes in PI3K/AKT pathway regulation? The objective is to evaluate the expression of PI3K, PTEN, AKT and p-AKT in endometrial human biopsies, according to the presence or absence of the disease, and to assess the underlying differences regarding the endometriosis stages. Biopsy specimens of the ectopic and eutopic endometrium were obtained from twenty women with untreated peritoneal endometriosis as well as endometrium biopsies from nine controls. Our study revealed an increased expression of PI3K in eutopic and ectopic endometrium from patients with endometriosis, and a reduced expression of PTEN and increased levels of AKT phosphorylation, compared to control endometrium. Both eutopic and ectopic endometrium from patients with minimal-mild endometriosis expressed a significant reduced PTEN level compared to the respective endometrium from patients with moderate-severe endometriosis. The ratio p-AKT/total AKT showed higher levels of AKT phosphorylation in endometriotic tissue from patients with minimal-mild endometriosis. This study has firmly confirmed the alteration in PI3K/AKT pathway regulation and demonstrated clear differences between the stages of endometriosis, emphasizing the importance of this pathway in the first stage of the disease.
Collapse
Affiliation(s)
- Daniela Madanes
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela A Bilotas
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Bastón
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - José J Singla
- Hospital de Clínicas José de San Martín, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela F Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rosa I Barañao
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía G Ricci
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Bhalla S, Kaur H, Kaur R, Sharma S, Raghava GPS. Expression based biomarkers and models to classify early and late-stage samples of Papillary Thyroid Carcinoma. PLoS One 2020; 15:e0231629. [PMID: 32324757 PMCID: PMC7179925 DOI: 10.1371/journal.pone.0231629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Recently, the rise in the incidences of thyroid cancer worldwide renders it to be the sixth most common cancer among women. Commonly, Fine Needle Aspiration biopsy predominantly facilitates the diagnosis of the nature of thyroid nodules. However, it is inconsiderable in determining the tumor's state, i.e., benign or malignant. This study aims to identify the key RNA transcripts that can segregate the early and late-stage samples of Thyroid Carcinoma (THCA) using RNA expression profiles. MATERIALS AND METHODS In this study, we used the THCA RNA-Seq dataset of The Cancer Genome Atlas, consisting of 500 cancer and 58 normal (adjacent non-tumorous) samples obtained from the Genomics Data Commons (GDC) data portal. This dataset was dissected to identify key RNA expression features using various feature selection techniques. Subsequently, samples were classified based on selected features employing different machine learning algorithms. RESULTS Single gene ranking based on the Area Under the Receiver Operating Characteristics (AUROC) curve identified the DCN transcript that can classify the early-stage samples from late-stage samples with 0.66 AUROC. To further improve the performance, we identified a panel of 36 RNA transcripts that achieved F1 score of 0.75 with 0.73 AUROC (95% CI: 0.62-0.84) on the validation dataset. Moreover, prediction models based on 18-features from this panel correctly predicted 75% of the samples of the external validation dataset. In addition, the multiclass model classified normal, early, and late-stage samples with AUROC of 0.95 (95% CI: 0.84-1), 0.76 (95% CI: 0.66-0.85) and 0.72 (95% CI: 0.61-0.83) on the validation dataset. Besides, a five protein-coding transcripts panel was also recognized, which segregated cancer and normal samples in the validation dataset with F1 score of 0.97 and 0.99 AUROC (95% CI: 0.91-1). CONCLUSION We identified 36 important RNA transcripts whose expression segregated early and late-stage samples with reasonable accuracy. The models and dataset used in this study are available from the webserver CancerTSP (http://webs.iiitd.edu.in/raghava/cancertsp/).
Collapse
Affiliation(s)
- Sherry Bhalla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Harpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organization, Chandigarh, India
| | - Suresh Sharma
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
Zhao X, Hu X. Downregulated long noncoding RNA LINC00313 inhibits the epithelial-mesenchymal transition, invasion, and migration of thyroid cancer cells through inhibiting the methylation of ALX4. J Cell Physiol 2019; 234:20992-21004. [PMID: 31093972 DOI: 10.1002/jcp.28703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
Thyroid cancer represents one of the prevalent endocrine cancer with relatively high incidence rate around the world, accompanied by unchanged fatality rate. We probe into the specific role of LINC00313 in mediation of cellular processes of thyroid cancer including proliferation, migration, and invasion through the methylation of aristaless-like homeobox 4 (ALX4). Thyroid cancer-related long noncoding RNAs (lncRNAs) and genes were analyzed by microarray-based analysis. The antitumor effect of LINC00313 was examined with the gain- and loss-of-function experiments. In addition, the binding of LINC00313 and the promoter region of ALX4, and the interaction of LINC00313 with methylation-related proteins were detected. Later, xenograft tumors in nude mice were induced expecting to dig out the modulatory function of LINC00313 in tumor growth of thyroid carcinoma. The microarray-based analysis manifested that LINC00313 was overexpressed, whereas ALX4 was downregulated in thyroid cancer, the results of which were also verified in thyroid cancer tissues. Besides, our results demonstrated that LINC00313 bound to the ALX4 promoter region, and LINC00313 recruited DNMT1 and DNMT3B proteins to promote the methylation of ALX4 promoter region, thus suppressing the ALX4 expression. Finally, the downregulation of LINC00313 and upregulation of ALX4 repressed the AKT/mTOR signaling axis, thus inhibiting proliferative, migratory, invasive abilities as well as epithelial-to-mesenchymal transition (EMT) of thyroid cancer cells. Collectively, downregulated LINC00313 suppresses cell proliferation, migration, as well as invasion of thyroid cancer by inhibiting the methylation of ALX4 and increasing its expression by inactivation of the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xingzhi Zhao
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinhua Hu
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cell Dev Biol Anim 2019; 55:801-811. [PMID: 31502193 DOI: 10.1007/s11626-019-00395-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
Endothelial cell apoptosis and renin-angiotensin-aldosterone system (RAAS) activation are the major pathological mechanisms for cardiovascular disease and heart failure; however, the interaction and mechanism between them remain unclear. Investigating the role of PTP1B in angiotensin II (Ang II)-induced apoptosis of primary cardiac microvascular endothelial cells (CMECs) may provide direct evidence of the link between endothelial cell apoptosis and RAAS. Isolated rat CMECs were treated with different concentrations of Ang II to induce apoptosis, and an Ang II concentration of 4 nM was selected as the effective dose for the subsequent studies. The CMECs were cultured for 48 h with or without Ang II (4 nM) in the absence or presence of the PTP1B inhibitor TCS 401 (8 μM) and the PI3K inhibitor LY294002 (10 μM). The level of CMEC apoptosis was assessed by TUNEL staining and caspase-3 activity. The protein expressions of PTP1B, PI3K, Akt, p-Akt, Bcl-2, Bax, caspase-3, and cleaved caspase-3 were determined by Western blot (WB). The results showed that Ang II increased apoptosis of CMECs, upregulated PTP1B expression, and inhibited the PI3K/Akt pathway. Furthermore, cotreatment with PTP1B inhibitor significantly decreased the number of apoptotic CMECs induced by Ang II, along with increased PI3K expression, phosphorylation of Akt and the ratio of Bcl-2/Bax, decreased caspase-3 activity, and a cleaved caspase-3/caspase-3 ratio, while treatment with LY294002 partly inhibited the anti-apoptotic effect of the PTP1B inhibitor. Ang II induces apoptosis of primary rat CMECs via regulating the PTP1B/PI3K/Akt pathway.
Collapse
|
13
|
Exogenous Hydrogen Sulfide Regulates the Growth of Human Thyroid Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6927298. [PMID: 31223424 PMCID: PMC6541980 DOI: 10.1155/2019/6927298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/24/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is involved in the development and progression of many types of cancer. However, the effect and mechanism of H2S on the growth of human thyroid carcinoma cells remain unknown. In the present study, we found that the proliferation, viability, migration, and invasion of human thyroid carcinoma cells were enhanced by 25–50 μM NaHS (an H2S donor) and inhibited by 200 μM NaHS. However, H2S showed no obvious effects on the proliferation, viability, and migration of human normal thyroid cells. Administration of 50 μM NaHS increased the expression levels of CBS, SQR, and TST, while 200 μM NaHS showed reverse effects in human thyroid carcinoma cells. After treatment with 25-50 μM NaHS, the ROS levels were decreased and the protein levels of p-PI3K, p-AKT, p-mTOR, H-RAS, p-RAF, p-MEK1/2, and p-ERK1/2 were increased, whereas 200 μM NaHS exerted opposite effects in human thyroid carcinoma cells. Furthermore, 1.4-2.8 mg/kg/day NaHS promoted the tumor growth and blood vessel formation in human thyroid carcinoma xenograft tumors, while 11.2 mg/kg/day NaHS inhibited the tumor growth and angiogenesis. In conclusion, our results demonstrate that exogenous H2S regulates the growth of human thyroid carcinoma cells through ROS/PI3K/Akt/mTOR and RAS/RAF/MEK/ERK signaling pathways. Novel H2S-releasing donors/drugs can be designed and applied for the treatment of thyroid cancer.
Collapse
|
14
|
Zhao J, Zhu D, Zhang X, Zhang Y, Zhou J, Dong M. TMEM206 promotes the malignancy of colorectal cancer cells by interacting with AKT and extracellular signal‐regulated kinase signaling pathways. J Cell Physiol 2018; 234:10888-10898. [DOI: 10.1002/jcp.27751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jinbo Zhao
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Dehua Zhu
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Xiupeng Zhang
- Department of Pathology The First Affiliated Hospital of China Medical University Shenyang China
| | - Yong Zhang
- Department of Pathology Liaoning Provincial People's Hospital China Medical University Shenyang China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| | - Ming Dong
- Department of Gastrointestinal Surgery The First Affiliated Hospital of China Medical University Shenyang China
| |
Collapse
|
15
|
mTOR Pathway in Papillary Thyroid Carcinoma: Different Contributions of mTORC1 and mTORC2 Complexes for Tumor Behavior and SLC5A5 mRNA Expression. Int J Mol Sci 2018; 19:ijms19051448. [PMID: 29757257 PMCID: PMC5983778 DOI: 10.3390/ijms19051448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression.
Collapse
|
16
|
Fu S, Guo J, Li R, Qiu Y, Ye C, Liu Y, Wu Z, Guo L, Hou Y, Hu CAA. Transcriptional Profiling of Host Cell Responses to Virulent Haemophilus parasuis: New Insights into Pathogenesis. Int J Mol Sci 2018; 19:ijms19051320. [PMID: 29710817 PMCID: PMC5983834 DOI: 10.3390/ijms19051320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Haemophilus parasuis is the causative agent of Glässer’s disease in pigs. H. parasuis can cause vascular damage, although the mechanism remains unclear. In this study, we investigated the host cell responses involved in the molecular pathway interactions in porcine aortic vascular endothelial cells (PAVECs) induced by H. parasuis using RNA-Seq. The transcriptome results showed that when PAVECs were infected with H. parasuis for 24 h, 281 differentially expressed genes (DEGs) were identified; of which, 236 were upregulated and 45 downregulated. The 281 DEGs were involved in 136 KEGG signaling pathways that were organismal systems, environmental information processing, metabolism, cellular processes, and genetic information processing. The main pathways were the Rap1, FoxO, and PI3K/Akt signaling pathways, and the overexpressed genes were determined and verified by quantitative reverse transcription polymerase chain reaction. In addition, 252 genes were clustered into biological processes, molecular processes, and cellular components. Our study provides new insights for understanding the interaction between bacterial and host cells, and analyzed, in detail, the possible mechanisms that lead to vascular damage induced by H. parasuis. This may lead to development of novel therapeutic targets to control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Jing Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ruizhi Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
17
|
Shen J, Zeng L, Pan L, Yuan S, Wu M, Kong X. Tetramethylpyrazine regulates breast cancer cell viability, migration, invasion and apoptosis by affecting the activity of Akt and caspase-3. Oncol Lett 2018. [PMID: 29541225 DOI: 10.3892/ol.2018.7851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tetramethylpyrazine (TMP), an effective component of the traditional Chinese medicine Chuanxiong Hort, has been proven to exhibit a beneficial effect in a number of types of malignant epithelial cancer. However, the mode of action of TMP on breast cancer cells remains unknown. The aim of the present study was to investigate the regulatory effect of TMP on breast cancer cells and its underlying molecular mechanism of action. Different concentrations of TMP were used to treat breast cancer cells, and subsequently, the effects on the viability, apoptosis, and migration and invasion abilities were determined. In addition, the expression and activity levels of the protein kinase B (Akt) signaling pathway and caspase-3 were explored via reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results of the present study revealed that TMP significantly inhibited the viability, migration and invasion rates, and increased the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The minimum effective dose was ~1,600 µM. Additional mechanistic studies demonstrated that 1,600 and 3,200 µM TMP significantly decreased the gene expression and activity of Akt and increased the activity of caspase-3. This mechanism may be responsible for the inhibition of viability, migration and invasion, and activation of apoptosis in breast cancer cells. The results of the present study suggested that TMP may be used in chemotherapy against breast cancer.
Collapse
Affiliation(s)
- Jianliang Shen
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Liangming Pan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Shaofeng Yuan
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Ming Wu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| | - Xiongdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai 201505, P.R. China
| |
Collapse
|
18
|
Lu M, Xu X, Xi B, Dai Q, Li C, Su L, Zhou X, Tang M, Yao Y, Yang J. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma. Genes (Basel) 2018; 9:E44. [PMID: 29351231 PMCID: PMC5793195 DOI: 10.3390/genes9010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
RNAs may act as competing endogenous RNAs (ceRNAs), a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA)-messenger RNA (mRNA)long non-coding RNA (lncRNA) networks from miRcode database and weighted correlation network analysis (WGCNA), based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB). We applied the pipeline into The Cancer Genome Atlas (TCGA) thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs) were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA-mRNA-lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients' survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.
Collapse
Affiliation(s)
- Minjia Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xingyu Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chenli Li
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Li Su
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Xiaonan Zhou
- Institute of Basic Medical Sciences, Wannan Medical College, Hefei 241000, China.
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|