1
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
2
|
Lattanzi R, Miele R. Genetic Polymorphisms of Prokineticins and Prokineticin Receptors Associated with Human Disease. Life (Basel) 2024; 14:1254. [PMID: 39459554 PMCID: PMC11509077 DOI: 10.3390/life14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Prokineticins (PKs) are low molecular weight proteins that exert their effects by binding to two seven-transmembrane G-protein-coupled receptors (prokineticin receptors, PKRs). The prokineticin system is an important player in the development of various diseases. Several polymorphisms that are associated with infertility, neuroendocrine disorders, Hirschsprung's syndrome (HSCR), idiopathic central precocious puberty (CPP) and congenital disorders such as Kallmann syndrome (KS) have been described for both the PKs and PKR genes. The aim of this study is to summarize and describe the impact of PK/PKR polymorphisms on the pathogenesis and outcome of the above diseases, highlighting the PK system as a therapeutic target and diagnostic biomarker in pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
3
|
Ooi E, Xiang R, Chamberlain AJ, Goddard ME. Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle. J Dairy Sci 2024; 107:4726-4742. [PMID: 38369117 DOI: 10.3168/jds.2023-23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Fertility in dairy cattle has declined as an unintended consequence of single-trait selection for high milk yield. The unfavorable genetic correlation between milk yield and fertility is now well documented; however, the underlying physiological mechanisms are still uncertain. To understand the relationship between these traits, we developed a method that clusters variants with similar patterns of effects and, after the integration of gene expression data, identifies the genes through which they are likely to act. Biological processes that are enriched in the genes of each cluster were then identified. We identified several clusters with unique patterns of effects. One of the clusters included variants associated with increased milk yield and decreased fertility, where the "archetypal" variant (i.e., the one with the largest effect) was associated with the GC gene, whereas others were associated with TRIM32, LRRK2, and U6-associated snRNA. These genes have been linked to transcription and alternative splicing, suggesting that these processes are likely contributors to the unfavorable relationship between the 2 traits. Another cluster, with archetypal variant near DGAT1 and including variants associated with CDH2, BTRC, SFRP2, ZFHX3, and SLITRK5, appeared to affect milk yield but have little effect on fertility. These genes have been linked to insulin, adipose tissue, and energy metabolism. A third cluster with archetypal variant near ZNF613 and including variants associated with ROBO1, EFNA5, PALLD, GPC6, and PTPRT were associated with fertility but not milk yield. These genes have been linked to GnRH neuronal migration, embryonic development, or ovarian function. The use of archetypal clustering to group variants with similar patterns of effects may assist in identifying the biological processes underlying correlated traits. The method is hypothesis generating and requires experimental confirmation. However, we have uncovered several novel mechanisms potentially affecting milk production and fertility such as GnRH neuronal migration. We anticipate our method to be a starting point for experimental research into novel pathways, which have been previously unexplored within the context of dairy production.
Collapse
Affiliation(s)
- E Ooi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - R Xiang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| |
Collapse
|
4
|
Ye Z, Elaswad A, Su B, Alsaqufi A, Shang M, Bugg WS, Qin G, Drescher D, Li H, Qin Z, Odin R, Makhubu N, Abass N, Dong S, Dunham R. Reversible Sterilization of Channel Catfish via Overexpression of Glutamic Acid Decarboxylase Gene. Animals (Basel) 2024; 14:1899. [PMID: 38998011 PMCID: PMC11240427 DOI: 10.3390/ani14131899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The confinement of transgenic fish is essential to prevent their escape and reproduction in natural ecosystems. Reversible transgenic sterilization is a promising approach to control the reproduction of transgenic fish. Therefore, the present study was conducted to develop a reversibly sterile channel catfish (Ictalurus punctatus) via the transgenic overexpression of the goldfish (Carassius auratus) glutamic acid decarboxylase (GAD) gene driven by the common carp (Cyprinus carpio) β-actin promoter to disrupt normal gamma-aminobutyric acid (GABA) regulation. Three generations of GAD-transgenic fish were produced. All studied generations showed repressed reproductive performance; however, this was not always statistically significant. In F1, 5.4% of the transgenic fish showed a sexual maturity score ≥ 4 (maximum = 5) at five years of age, which was lower (p = 0.07) than that of the control group (16.8%). In the spawning experiments conducted on F1 transgenic fish at six and nine years of age, 45.5% and 20.0% of fish spawned naturally, representing lower values (p = 0.09 and 0.12, respectively) than the percentages in the sibling control fish of the same age (83.3% and 66.7%, respectively). Four of six pairs of the putative infertile six-year-old fish spawned successfully after luteinizing hormone-releasing hormone analog (LHRHa) therapy. Similar outcomes were noted in the three-year-old F2 fish, with a lower spawning percentage in transgenic fish (20.0%) than in the control (66.7%). In one-year-old F2-generation transgenic fish, the observed mean serum gonadotropin-releasing hormone (GnRH) levels were 9.23 ± 2.49 and 8.14 ± 2.21 ng/mL for the females and males, respectively. In the control fish, the mean levels of GnRH were 11.04 ± 4.06 and 9.03 ± 2.36 ng/mL for the females and males, respectively, which did not differ significantly from the control (p = 0.15 and 0.27 for females and males, respectively). There was no significant difference in the estradiol levels of the female transgenic and non-transgenic fish in the one- and four-year-old F2-generation fish. The four-year-old F2-generation male transgenic fish exhibited significantly (p < 0.05) lower levels of GnRH and testosterone than the control fish. In conclusion, while overexpressing GAD repressed the reproductive abilities of channel catfish, it did not completely sterilize transgenic fish. The sterilization rate might be improved through selection in future generations.
Collapse
Affiliation(s)
- Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman
| | - Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Ahmed Alsaqufi
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mei Shang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - William S. Bugg
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Guyu Qin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Drescher
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Fisheries Department, Muckleshoot Indian Tribe, Auburn, WA 98092, USA
| | - Hanbo Li
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Zhenkui Qin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Ramjie Odin
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- College of Fisheries, Mindanao State University-Maguindanao, Datu Odin Sinsuat 9601, Philippines
| | - Nonkonzo Makhubu
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| | - Nermeen Abass
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Agricultural Botany, Faculty of Agriculture Saba-Basha, Alexandria University, Alexandria 21531, Egypt
| | - Sheng Dong
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (A.E.); (B.S.); (A.A.); (M.S.); (W.S.B.); (G.Q.); (D.D.); (H.L.); (Z.Q.); (R.O.); (N.M.); (N.A.); (S.D.); (R.D.)
| |
Collapse
|
5
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Transcriptome Analysis Reveals Differentially Expressed circRNAs Associated with Fecundity in Small-Tail Han Sheep Thyroid with Different FecB Genotypes. Animals (Basel) 2023; 14:105. [PMID: 38200837 PMCID: PMC10777913 DOI: 10.3390/ani14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Litter size is an economically important trait in sheep, and it is a complex trait controlled by multiple genes in multiple organs. Among them, the regulation of lamb number trait by the thyroid gland is a very important part. However, the molecular mechanisms of the thyroid gland in sheep reproduction remain unclear. Here, RNA-seq was used to detect transcriptome expression patterns in the thyroid gland between follicular phase (FP) and luteal phase (LP) in FecB BB (MM) and FecB ++ (ww) STH sheep, respectively, and to identify differentially expressed circRNAs (DECs) associated with reproduction. Bioinformatic analysis of the source genes of these DECs revealed that they can be enriched in multiple signaling pathways involved in the reproductive process of animals. We found that the source genes of these DECs, such as GNAQ, VEGFC, MAPK1, STAT1, and HSD17B7, may play important roles in the reproductive process of animals. To better understand the function of these DECs, we constructed circRNA-miRNA co-expression networks. Dual luciferase reporter assays suggested that a ceRNA regulatory mechanism between circ_0003259-oar-miR-133-TXLNA and circ_0012128-oar-miR-370-3p-FGFR1 may hold. All of these DEC expression profiles in the thyroid gland provide a novel resource for elucidating the regulatory mechanisms underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
6
|
Lettieri A, Oleari R, van den Munkhof MH, van Battum EY, Verhagen MG, Tacconi C, Spreafico M, Paganoni AJJ, Azzarelli R, Andre' V, Amoruso F, Palazzolo L, Eberini I, Dunkel L, Howard SR, Fantin A, Pasterkamp RJ, Cariboni A. SEMA6A drives GnRH neuron-dependent puberty onset by tuning median eminence vascular permeability. Nat Commun 2023; 14:8097. [PMID: 38062045 PMCID: PMC10703890 DOI: 10.1038/s41467-023-43820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marleen Hester van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Eljo Yvette van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marieke Geerte Verhagen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
| | - Carlotta Tacconi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spreafico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | | - Roberta Azzarelli
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Leo Dunkel
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sasha Rose Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, E1 1FR, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
7
|
Mohammadzadeh P, Roueinfar M, Amberg GC. AXL receptor tyrosine kinase modulates gonadotropin-releasing hormone receptor signaling. Cell Commun Signal 2023; 21:284. [PMID: 37828510 PMCID: PMC10568877 DOI: 10.1186/s12964-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS We used clonal murine pituitary αT3-1 and LβT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LβT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHβ. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LβT2 migration responses to GnRH and AXL. RESULTS We observed AXL, along with the GnRH receptor, expression in αT3-1 and LβT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LβT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LβT2 cells, Gas6/AXL signaling stimulated LHβ production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Gregory C Amberg
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
8
|
Paganoni AJJ, Cannarella R, Oleari R, Amoruso F, Antal R, Ruzza M, Olivieri C, Condorelli RA, La Vignera S, Tolaj F, Cariboni A, Calogero AE, Magni P. Insulin-like Growth Factor 1, Growth Hormone, and Anti-Müllerian Hormone Receptors Are Differentially Expressed during GnRH Neuron Development. Int J Mol Sci 2023; 24:13073. [PMID: 37685880 PMCID: PMC10487694 DOI: 10.3390/ijms241713073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are key neuroendocrine cells in the brain as they control reproduction by regulating hypothalamic-pituitary-gonadal axis function. In this context, anti-Müllerian hormone (AMH), growth hormone (GH), and insulin-like growth factor 1 (IGF1) were shown to improve GnRH neuron migration and function in vitro. Whether AMH, GH, and IGF1 signaling pathways participate in the development and function of GnRH neurons in vivo is, however, currently still unknown. To assess the role of AMH, GH, and IGF1 systems in the development of GnRH neuron, we evaluated the expression of AMH receptors (AMHR2), GH (GHR), and IGF1 (IGF1R) on sections of ex vivo mice at different development stages. The expression of AMHR2, GHR, and IGF1R was assessed by immunofluorescence using established protocols and commercial antibodies. The head sections of mice were analyzed at E12.5, E14.5, and E18.5. In particular, at E12.5, we focused on the neurogenic epithelium of the vomeronasal organ (VNO), where GnRH neurons, migratory mass cells, and the pioneering vomeronasal axon give rise. At E14.5, we focused on the VNO and nasal forebrain junction (NFJ), the two regions where GnRH neurons originate and migrate to the hypothalamus, respectively. At E18.5, the median eminence, which is the hypothalamic area where GnRH is released, was analyzed. At E12.5, double staining for the neuronal marker ß-tubulin III and AMHR2, GHR, or IGF1R revealed a signal in the neurogenic niches of the olfactory and VNO during early embryo development. Furthermore, IGF1R and GHR were expressed by VNO-emerging GnRH neurons. At E14.5, a similar expression pattern was found for the neuronal marker ß-tubulin III, while the expression of IGF1R and GHR began to decline, as also observed at E18.5. Of note, hypothalamic GnRH neurons labeled for PLXND1 tested positive for AMHR2 expression. Ex vivo experiments on mouse sections revealed differential protein expression patterns for AMHR2, GHR, and IGF1R at any time point in development between neurogenic areas and hypothalamic compartments. These findings suggest a differential functional role of related systems in the development of GnRH neurons.
Collapse
Affiliation(s)
- Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 10681, USA
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Renata Antal
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Marco Ruzza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Chiara Olivieri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Fationa Tolaj
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| |
Collapse
|
9
|
Kharlamova AS, Godovalova OS, Otlyga EG, Proshchina AE. Primary and secondary olfactory centres in human ontogeny. Neurosci Res 2023; 190:1-16. [PMID: 36521642 DOI: 10.1016/j.neures.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The olfactory centres are the evolutionary oldest and most conservative area of the telencephalon. Olfactory deficiencies are involved in a large spectrum of neurologic disorders and neurodegenerative diseases. The growing interest in human olfaction has been also been driven by COVID-19-induced transitional anosmia. Nevertheless, recent data on the human olfactory centres concerning normal histology and morphogenesis are rare. Published data in the field are mainly restricted to classic studies with non-uniform nomenclature and varied definitions of certain olfactory areas. While the olfactory system in model animals (rats, mice, and more rarely non-human primates) has been extensively investigated, the developmental timetable of olfactory centres in both human prenatal and postnatal ontogeny are poorly understood and unsystemised, which complicates the process of analysing human material, including medical researches. The main purpose of this review is to provide and discuss relevant morphological data on the normal ontogeny of the human olfactory centres, with a focus on the timetable of maturation and developmental cytoarchitecture, and with special reference to the definitions and terminology of certain olfactory areas.
Collapse
Affiliation(s)
- A S Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia.
| | - O S Godovalova
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, 101000 Moscow, Russia
| | - E G Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia
| | - A E Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy st., 3, 117418 Moscow, Russia
| |
Collapse
|
10
|
Chung WCJ, Tsai PS. The initiation and maintenance of gonadotropin-releasing hormone neuron identity in congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1166132. [PMID: 37181038 PMCID: PMC10173152 DOI: 10.3389/fendo.2023.1166132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Neurons that secrete gonadotropin-releasing hormone (GnRH) drive vertebrate reproduction. Genetic lesions that disrupt these neurons in humans lead to congenital hypogonadotropic hypogonadism (CHH) and reproductive failure. Studies on CHH have largely focused on the disruption of prenatal GnRH neuronal migration and postnatal GnRH secretory activity. However, recent evidence suggests a need to also focus on how GnRH neurons initiate and maintain their identity during prenatal and postnatal periods. This review will provide a brief overview of what is known about these processes and several gaps in our knowledge, with an emphasis on how disruption of GnRH neuronal identity can lead to CHH phenotypes.
Collapse
Affiliation(s)
- Wilson CJ Chung
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
11
|
Hour NL, Cabana T, Pflieger JF. Transient expression of NF200 by fibers in the nasal septum and rostral telencephalon of developing opossums (Monodelphis domestica). Anat Rec (Hoboken) 2023; 306:879-888. [PMID: 36056623 DOI: 10.1002/ar.25057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Marsupials are born very immature and crawl on their mother's belly to attach to teats. Sensory information is required to guide the newborn and to induce attachment to the teat. Olfaction has been classically proposed to influence neonatal behaviors, but recent studies suggest that the central olfactory structures are too immature to account for them. In the newborn opossum, we previously described a fascicle of nerve fibers expressing neurofilament-200 (NF200, a marker of fiber maturity) from the olfactory bulbs to the rostral telencephalon. The course of these fibers is compatible with that of the terminal nerve that, during development, is characterized by the presence of neurons synthetizing gonadotropin hormones (GnRH). To evaluate if these fibers are related to the terminal nerve and if they play a role in precocious behaviors in opossums, we used immunohistochemistry against NF200 and GnRH. The results show that NF200-labeled fibers are present between P0 and P11, but do not reach much further caudally than the septal region. Only a few NF200-labeled fibers were found near the olfactory and vomeronasal epitheliums and they did not penetrate the olfactory bulbs. NF200-labeled fibers follow the same path as fibers labeled for GnRH. In contrast to the latter, NF200-labeled fibers are no longer visible at P15. These results suggest that these fibers are neither from the olfactory nor from the vomeronasal nerves but may be part of the terminal nerve. Their limited caudal extension does not support a role in the sensorimotor behaviors of the newborn opossum.
Collapse
|
12
|
Bortolotto Felippe Trentin M, Borges Daniel K, Reis F, Adolfo Silva Junior N, Appenzeller S, Rittner L, Benetti Pinto C, Garmes HM. Reconsidering the olfactory and brain structures in Kallmann's syndrome: New findings in the analysis of volumetry. Clin Endocrinol (Oxf) 2023; 98:554-558. [PMID: 36536529 DOI: 10.1111/cen.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Kallmann's syndrome (KS) is characterized by hypogonadotropic hypogonadism and olfactory disorders. The complementary exams for evaluating of patients with hypogonadotrophic hypogonadism are important for the diagnosis and management of these patients. PATIENTS We performed a well-established olfactory Sniffin' Stick test (SST) on 17 adult patients with KS and brain magnetic resonance imaging (MRI) to evaluate olfactory structures and further analysis by Freesurfer, a software for segmentation and volumetric evaluation of brain structures. We compared the Freesurfer results with 34 healthy patients matched for age and sex and performed correlations between the data studied. RESULTS More than half of the patients with KS reported preserved smell but had olfactory disorders in the SST. In the MRI, 16 patients showed changes in the olfactory groove, the olfactory bulb-tract complex was altered in all of them and 52% had symmetrical structural changes. Interestingly, the pituitary gland was normal in only 29%. Regarding correlations, symmetrical changes in the olfactory structures were related to anosmia in 100%, while asymmetric changes induced anosmia in only 50% (p = .0294). In Freesurfer's assessment, patients with KS, compared to controls, had lower brainstem volume. In those with aplastic anterior olfactory sulcus, the brainstem volume was lower than in hypoplasia (p = .0333). CONCLUSIONS Olfactory assessment and MRI proved to be important auxiliary tools for the diagnosis and management of patients with KS. New studies are needed to confirm the decrease in brainstem volume found by the Freesurfer software in patients with KS. Further studies are needed to confirm the decrease in brainstem volume found by the Freesurfer software in patients with KS.
Collapse
Affiliation(s)
| | - Karla Borges Daniel
- Clinical Medicine Department, Division of Endocrinology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabiano Reis
- Radiology Department, Division of Radiology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Nivaldo Adolfo Silva Junior
- Radiology Department, Division of Radiology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Simone Appenzeller
- Rheumatology Department, Division of Orthopedics, Rheumatology and Traumatology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Letícia Rittner
- Division of Engineering Electrical and Computer, Faculty of Electrical Engineering Computing, University of Campinas, Campinas, Brazil
| | - Cristina Benetti Pinto
- Gynecology Department, Division of Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Heraldo M Garmes
- Clinical Medicine Department, Division of Endocrinology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
13
|
Cotellessa L, Marelli F, Duminuco P, Adamo M, Papadakis GE, Bartoloni L, Sato N, Lang-Muritano M, Troendle A, Dhillo WS, Morelli A, Guarnieri G, Pitteloud N, Persani L, Bonomi M, Giacobini P, Vezzoli V. Defective jagged-1 signaling affects GnRH development and contributes to congenital hypogonadotropic hypogonadism. JCI Insight 2023; 8:161998. [PMID: 36729644 PMCID: PMC10077483 DOI: 10.1172/jci.insight.161998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome are rare genetic disorders characterized by infertility, and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of the jagged-1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knockdown of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands, leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibited reduced protein levels and altered subcellular localization. Together our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons, and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Federica Marelli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios E Papadakis
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lucia Bartoloni
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Naoko Sato
- Department of Pediatrics, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mariarosaria Lang-Muritano
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Amineh Troendle
- Department of Endocrinology, Diabetology, and Metabolism, Lindenhofspital, Bern, Switzerland
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Giacobini
- University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
14
|
Wang Y, Madhusudan S, Cotellessa L, Kvist J, Eskici N, Yellapragada V, Pulli K, Lund C, Vaaralahti K, Tuuri T, Giacobini P, Raivio T. Deciphering the Transcriptional Landscape of Human Pluripotent Stem Cell-Derived GnRH Neurons: The Role of Wnt Signaling in Patterning the Neural Fate. Stem Cells 2022; 40:1107-1121. [PMID: 36153707 PMCID: PMC9806769 DOI: 10.1093/stmcls/sxac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction; however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by using our established human pluripotent stem cell-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.
Collapse
Affiliation(s)
- Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Folkhälsan Research Center, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Taneli Raivio
- Corresponding author: Taneli Raivio, Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Duittoz AH, Tillet Y, Geller S. The great migration: how glial cells could regulate GnRH neuron development and shape adult reproductive life. J Chem Neuroanat 2022; 125:102149. [PMID: 36058434 DOI: 10.1016/j.jchemneu.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).
Collapse
Affiliation(s)
- Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
PASSARELLI A, LETTIERI A, DEMIRCI TN, MAGNI P. Gonadotropin-releasing hormone-secreting neuron development and function: an update. Minerva Endocrinol (Torino) 2022; 47:58-69. [DOI: 10.23736/s2724-6507.22.03683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Liang C, Han M, Zhou Z, Liu Y, He X, Jiang Y, Ouyang Y, Hong Q, Chu M. Hypothalamic Transcriptome Analysis Reveals the Crucial MicroRNAs and mRNAs Affecting Litter Size in Goats. Front Vet Sci 2021; 8:747100. [PMID: 34790713 PMCID: PMC8591166 DOI: 10.3389/fvets.2021.747100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
The hypothalamus was the coordination center of the endocrine system, which played an important role in goat reproduction. However, the molecular mechanism of hypothalamus regulating litter size in goats was still poorly understood. This study aims to investigate the key functional genes associated with prolificacy by hypothalamus transcriptome analysis of goats. In this research, an integrated analysis of microRNAs (miRNAs)-mRNA was conducted using the hypothalamic tissue of Yunshang black goats in the follicular stage. A total of 72,220 transcripts were detected in RNA-seq. Besides, 1,836 differentially expressed genes (DEGs) were identified between high fecundity goats at the follicular phase (FP-HY) and low fecundity goats at the follicular phase (FP-LY). DEGs were significantly enriched in 71 Gene Ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome data suggested that DEGs such as BMPR1B, FGFR1, IGF1 and CREB1 are directly or indirectly involved in many processes like hypothalamic gonadal hormone secretion. The miRNA-seq identified 1,837 miRNAs, of which 28 differentially expressed miRNAs (DEMs). These DEMs may affect the nerve cells survival of goat hypothalamic regulating the function of target genes and further affect the hormone secretion activities related to reproduction. They were enriched in prolactin signaling pathway, Jak-STAT signaling pathway and GnRH signaling pathway, as well as various metabolic pathways. Integrated analysis of DEMs and DEGs showed that 87 DEGs were potential target genes of 28 DEMs. After constructing a miRNA-mRNA pathway network, we identified several mRNA-miRNAs pairs by functional enrichment analysis, which was involved in hypothalamic nerve apoptosis. For example, NTRK3 was co-regulated by Novel-1187 and Novel-566, as well as another target PPP1R13L regulated by Novel-566. These results indicated that these key genes and miRNAs may play an important role in the development of goat hypothalamus and represent candidate targets for further research. This study provides a basis for further explanation of the basic molecular mechanism of hypothalamus, but also provides a new idea for a comprehensive understanding of prolificacy characteristics in Yunshang black goats.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
19
|
Kwon A, Kim HS. Congenital hypogonadotropic hypogonadism: from clinical characteristics to genetic aspects. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2021.00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder caused by a deficiency in gonadotropin-releasing hormone (GnRH). CHH is characterized by delayed puberty and/or infertility; this is because GnRH is the main component of the hypothalamic-pituitary-gonadal (HPG) axis, which is a key factor in pubertal development and reproductive function completion. However, since the development of sexual characteristics and reproduction begins in the prenatal period and is very complex and delicate, the clinical characteristics and involved genes are very diverse. In particular, the HPG axis is activated three times in a lifetime, and the symptoms and biochemical findings of CHH vary by period. In addition, related genes also vary according to the formation and activation process of the HPG axis. In this review, the clinical characteristics and treatment of CHH according to HPG axis activation and different developmental periods are reviewed, and the related genes are summarized according to their pathological mechanisms.
Collapse
|
20
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
21
|
Katreddi RR, Forni PE. Mechanisms underlying pre- and postnatal development of the vomeronasal organ. Cell Mol Life Sci 2021; 78:5069-5082. [PMID: 33871676 PMCID: PMC8254721 DOI: 10.1007/s00018-021-03829-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The vomeronasal organ (VNO) is sensory organ located in the ventral region of the nasal cavity in rodents. The VNO develops from the olfactory placode during the secondary invagination of olfactory pit. The embryonic vomeronasal structure appears as a neurogenic area where migratory neuronal populations like endocrine gonadotropin-releasing hormone-1 (GnRH-1) neurons form. Even though embryonic vomeronasal structures are conserved across most vertebrate species, many species including humans do not have a functional VNO after birth. The vomeronasal epithelium (VNE) of rodents is composed of two major types of vomeronasal sensory neurons (VSNs): (1) VSNs distributed in the apical VNE regions that express vomeronasal type-1 receptors (V1Rs) and the G protein subunit Gαi2, and (2) VSNs in the basal territories of the VNE that express vomeronasal type-2 receptors (V2Rs) and the G subunit Gαo. Recent studies identified a third subclass of Gαi2 and Gαo VSNs that express the formyl peptide receptor family. VSNs expressing V1Rs or V2Rs send their axons to distinct regions of the accessory olfactory bulb (AOB). Together, VNO and AOB form the accessory olfactory system (AOS), an olfactory subsystem that coordinates the social and sexual behaviors of many vertebrate species. In this review, we summarize our current understanding of cellular and molecular mechanisms that underlie VNO development. We also discuss open questions for study, which we suggest will further enhance our understanding of VNO morphogenesis at embryonic and postnatal stages.
Collapse
Affiliation(s)
- Raghu Ram Katreddi
- Department of Biological Sciences, Center for Neuroscience Research, The RNA Institute, University At Albany, State University of New York, Albany, NY, USA
| | - Paolo E Forni
- Department of Biological Sciences, Center for Neuroscience Research, The RNA Institute, University At Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
22
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Dai W, Li JD, Wang X, Zeng W, Jiang F, Zheng R. Discovery of a Novel Variant of SEMA3A in a Chinese Patient with Isolated Hypogonadotropic Hypogonadism. Int J Endocrinol 2021; 2021:7752526. [PMID: 34721574 PMCID: PMC8553509 DOI: 10.1155/2021/7752526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Semaphorin (SEMA) has an important role in nerve development, organ formation, immune response, angiogenesis, and tumor growth. SEMA can regulate the growth and branching of axons, the morphology of dendrites, and the migration of neurons. The loss-of-function in SEMA and its receptors PLXNs and NRP affect the migration of GnRH neurons, leading to idiopathic hypogonadotropic hypogonadism (IHH). As a member of the SEMA family, SEMA3A has an important role in axonal rejection, dendritic branching, synaptic formation, and neuronal migration. There are more and more SEMA3A variants identified in IHH patients. In this study, we identified a novel SEMA3A variant (c.1369A > G (p.T457A)) in a male nIHH patient. Functional studies indicated that the T457A SEMA3A variant led to the defect of FAK phosphorylation and GN11 cell migration, which strongly argued in favor of its pathogenic effect in the nIHH patient. Our findings substantiated that the 435-457 position of SEMA3A might be very important for the secretion of SEMA3A. Haploin-sufficiency of SEMA3A in humans was sufficient to cause the IHH phenotype. SEMA3A variants might have a role in modifying the IHH phenotype, according to the variants at different positions of SEMA3A. SEMAs and its receptors formed a complex network, and other members of the SEMA-signaling pathway might also be involved in the pathogenesis of IHH.
Collapse
Affiliation(s)
- Wenting Dai
- Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412007, China
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Wang Zeng
- School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Fang Jiang
- School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Ruizhi Zheng
- Department of Endocrinology, The People's Hospital of Henan Province, Zhengzhou, Henan 450003, China
| |
Collapse
|
24
|
Oleari R, André V, Lettieri A, Tahir S, Roth L, Paganoni A, Eberini I, Parravicini C, Scagliotti V, Cotellessa L, Bedogni F, De Martini LB, Corridori MV, Gulli S, Augustin HG, Gaston-Massuet C, Hussain K, Cariboni A. A Novel SEMA3G Mutation in Two Siblings Affected by Syndromic GnRH Deficiency. Neuroendocrinology 2021; 111:421-441. [PMID: 32365351 DOI: 10.1159/000508375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sophia Tahir
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lise Roth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ludovica Cotellessa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- IRCCS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff, United Kingdom
| | | | | | - Simona Gulli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Khalid Hussain
- Sidra Medical & Research Center, Division of Endocrinology OPC, Department of Pediatric Medicine, Doha, Qatar
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
25
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
26
|
Ustunel S, Prévôt ME, Clements RJ, Hegmann E. Cradle-to-cradle: designing biomaterials to fit as truly biomimetic cell scaffolds– a review. LIQUID CRYSTALS TODAY 2020. [DOI: 10.1080/1358314x.2020.1855919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Senay Ustunel
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Marianne E. Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Robert J. Clements
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Biomedical Sciences Program, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- Biomedical Sciences Program, Kent State University, Kent, OH, USA
- Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
27
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos V. GABAergic input through GABA B receptors is necessary during a perinatal window to shape gene expression of factors critical to reproduction such as Kiss1. Am J Physiol Endocrinol Metab 2020; 318:E901-E919. [PMID: 32286880 DOI: 10.1152/ajpendo.00547.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Estradiol/metabolism
- Female
- Follicle Stimulating Hormone/metabolism
- GABA-B Receptor Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/drug effects
- Hypothalamus, Anterior/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Ovary/drug effects
- Ovary/metabolism
- Phosphinic Acids/pharmacology
- Propanolamines/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Puberty/drug effects
- Puberty/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sex Differentiation/drug effects
- Sex Differentiation/genetics
- Tachykinins/genetics
- Tachykinins/metabolism
- Testis/drug effects
- Testis/metabolism
- Testosterone/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
28
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
29
|
Renault CH, Aksglaede L, Wøjdemann D, Hansen AB, Jensen RB, Juul A. Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development? Ann Pediatr Endocrinol Metab 2020; 25:84-91. [PMID: 32615687 PMCID: PMC7336259 DOI: 10.6065/apem.2040094.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Activation of the hypothalamic-pituitary-gonadal (HPG) axis happens in 3 phases during life. The first phase is during fetal life and is only separated from the second phase, called minipuberty, by the high concentration of placental hormones at birth. The third period of activation of the HPG axis is puberty and is well-described. Minipuberty consists of the neonatal activation of the HPG axis, mainly in the first 1-6 months, where the resulting high levels of gonadotropins and sex steroids induce the maturation of sexual organs in both sexes. With gonadal activation, testosterone levels rise in boys with peak levels after 1-3 months, which results in penile and testicular growth. In girls, gonadal activation leads to follicular maturation and a fluctuating increase in estrogen levels, with more controversy regarding the actual influence on the target tissue. The regulation of the HPG axis is complex, involving many biological and environmental factors. Only a few of these have known effects. Many details of this complex interaction of factors remain to be elucidated in order to understand the mechanisms underlying the first postnatal activation of the HPG axis as well as mechanisms shutting down the HPG axis, resulting in the hormonal quiescence observed between minipuberty and puberty. Minipuberty allows for the maturation of sexual organs and forms a platform for future fertility, but the long-term significance is still not absolutely clear. However, it provides a window of opportunity in the early detection of differences of sexual development, offering the possibility of initiating early medical treatment in some cases.
Collapse
Affiliation(s)
| | - Lise Aksglaede
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Wøjdemann
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Berg Hansen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Characterizing the Role of SMYD2 in Mammalian Embryogenesis-Future Directions. Vet Sci 2020; 7:vetsci7020063. [PMID: 32408548 PMCID: PMC7357037 DOI: 10.3390/vetsci7020063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022] Open
Abstract
The SET and MYND domain-containing (SMYD) family of lysine methyltransferases are essential in several mammalian developmental pathways. Although predominantly expressed in the heart, the role of SMYD2 in heart development has yet to be fully elucidated and has even been shown to be dispensable in a murine Nkx2-5-associated conditional knockout. Additionally, SMYD2 was recently shown to be necessary not only for lymphocyte development but also for the viability of hematopoietic leukemias. Based on the broad expression pattern of SMYD2 in mammalian tissues, it is likely that it plays pivotal roles in a host of additional normal and pathological processes. In this brief review, we consider what is currently known about the normal and pathogenic functions of SMYD2 and propose specific future directions for characterizing its role in embryogenesis.
Collapse
|
31
|
Di Giorgio NP, Bizzozzero-Hiriart M, Libertun C, Lux-Lantos V. Unraveling the connection between GABA and kisspeptin in the control of reproduction. Reproduction 2020; 157:R225-R233. [PMID: 30844750 DOI: 10.1530/rep-18-0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Zhao Y, Yang F, Qiu L, Wang L, Che H. A novel heterozygous intron mutation in SEMA7A causing kallmann syndrome in a female. Gynecol Endocrinol 2020; 36:218-221. [PMID: 31650878 DOI: 10.1080/09513590.2019.1680624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Kallmann syndrome (KS) is a rare inherited disorder, which has significantly genotypic and phenotypic heterogeneity. KS is clinically characterized by the combination of hypogonadotropic hypogonadism and hypo/anosmia. At present, there is no relevant report that intron mutation in SEMA7A gene helps induce KS. A 17-year-old Chinese female (46, XX) came to our department due to primary amenorrhea, who actually had hyposmia since her childhood. Hypogonadotropic hypogonadism was then detected. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were remarkably low. And estradiol level was extremely low. The laboratory test results were consistent with KS. A heterozygous point mutation of intron 13 in SEMA7A (NM_003612.3:c.1640-3C > A) was identified. The patient received the treatment of pulsatile gonadotropin-releasing hormone (GnRH) pump, which could imitate physiological ovarian stimulation, thus resulting in mature follicle and a peak of LH. The patient was injected subcutaneously every 90 min with a dose of 10 µg per pulse, which had bona efficacy. She acquired menarche at about 43 days after the treatment. We firstly report a case of KS caused by a novel mutation site in the intron of SEMA7A gene. We mainly provide insight into the clinical manifestations, genetic diagnosis and treatment of KS.
Collapse
Affiliation(s)
- Yongting Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Fan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Lili Qiu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
33
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Messina A, Pulli K, Santini S, Acierno J, Känsäkoski J, Cassatella D, Xu C, Casoni F, Malone SA, Ternier G, Conte D, Sidis Y, Tommiska J, Vaaralahti K, Dwyer A, Gothilf Y, Merlo GR, Santoni F, Niederländer NJ, Giacobini P, Raivio T, Pitteloud N. Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism. Am J Hum Genet 2020; 106:58-70. [PMID: 31883645 DOI: 10.1016/j.ajhg.2019.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.
Collapse
Affiliation(s)
- Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sara Santini
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Johanna Känsäkoski
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Daniele Cassatella
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Filippo Casoni
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France; Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy, Milan 20132, Italy; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Samuel A Malone
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Gaetan Ternier
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Daniele Conte
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Yisrael Sidis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Johanna Tommiska
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Dwyer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|
35
|
Oleari R, Caramello A, Campinoti S, Lettieri A, Ioannou E, Paganoni A, Fantin A, Cariboni A, Ruhrberg C. PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development 2019; 146:146/21/dev176461. [PMID: 31690636 DOI: 10.1242/dev.176461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/27/2019] [Indexed: 01/16/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.
Collapse
Affiliation(s)
- Roberto Oleari
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Alessia Caramello
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Sara Campinoti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Antonella Lettieri
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alyssa Paganoni
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anna Cariboni
- University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy .,UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
36
|
Pandolfi EC, Tonsfeldt KJ, Hoffmann HM, Mellon PL. Deletion of the Homeodomain Protein Six6 From GnRH Neurons Decreases GnRH Gene Expression, Resulting in Infertility. Endocrinology 2019; 160:2151-2164. [PMID: 31211355 PMCID: PMC6821215 DOI: 10.1210/en.2019-00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Hypothalamic GnRH (luteinizing hormone-releasing hormone) neurons are crucial for the hypothalamic-pituitary-gonadal (HPG) axis, which regulates mammalian fertility. Insufficient GnRH disrupts the HPG axis and is often associated with the genetic condition idiopathic hypogonadotropic hypogonadism (IHH). The homeodomain protein sine oculis-related homeobox 6 (Six6) is required for the development of GnRH neurons. Although it is known that Six6 is specifically expressed within a more mature GnRH neuronal cell line and that overexpression of Six6 induces GnRH transcription in these cells, the direct role of Six6 within the GnRH neuron in vivo is unknown. Here we find that global Six6 knockout (KO) embryos show apoptosis of GnRH neurons beginning at embryonic day 14.5 with 90% loss of GnRH neurons by postnatal day 1. We sought to determine whether the hypogonadism and infertility reported in the Six6KO mice are generated via actions within the GnRH neuron in vivo by creating a Six6-flox mouse and crossing it with the LHRHcre mouse. Loss of Six6 specifically within the GnRH neuron abolished GnRH expression in ∼0% of GnRH neurons. We further demonstrated that deletion of Six6 only within the GnRH neuron leads to infertility, hypogonadism, hypogonadotropism, and delayed puberty. We conclude that Six6 plays distinct roles in maintaining fertility in the GnRH neuron vs in the migratory environment of the GnRH neuron by maintaining expression of GnRH and survival of GnRH neurons, respectively. These results increase knowledge of the role of Six6 in the brain and may offer insight into the mechanism of IHH.
Collapse
Affiliation(s)
- Erica C Pandolfi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
37
|
Fuller EA, Younesi S, Xavier S, Sominsky L. Neuroimmune regulation of female reproduction in health and disease. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Gonadoliberin – Synthesis, Secretion, Molecular Mechanisms and Targets of Action. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Decapeptide gonadoliberin (GnRH) is the most important regulator of the hypothalamic-pituitary-gonadal (HPG) axis that controls the synthesis and secretion of the luteinizing and follicle-stimulating hormones by gonadotrophs in the adenohypophysis. GnRH is produced by the specialized hypothalamic neurons using the site-specific proteolysis of the precursor protein and is secreted into the portal pituitary system, where it binds to the specific receptors. These receptors belong to the family of G protein-coupled receptors, and they are located on the surface of gonadotrophs and mediate the regulatory effects of GnRH on the gonadotropins production. The result of GnRH binding to them is the activation of phospholipase C and the calcium-dependent pathways, the stimulation of different forms of mitogen-activated protein kinases, as well as the activation of the enzyme adenylyl cyclase and the triggering of cAMP-dependent signaling pathways in the gonadotrophs. The gonadotropins, kisspeptin, sex steroid hormones, insulin, melatonin and a number of transcription factors have an important role in the regulation of GnRH1 gene expression, which encodes the GnRH precursor, as well as the synthesis and secretion of GnRH. The functional activity of GnRH-producing neurons depends on their migration to the hypothalamic region at the early stages of ontogenesis, which is controlled by anosmin, ephrins, and lactosamine-rich surface glycoconjugate. Dysregulation of the migration of GnRH-producing neurons and the impaired production and secretion of GnRH, lead to hypogonadotropic hypogonadism and other dysfunctions of the reproductive system. This review is devoted to the current state of the problem of regulating the synthesis and secretion of GnRH, the mechanisms of migration of hypothalamic GnRH-producing neurons at the early stages of brain development, the functional activity of the GnRH-producing neurons in the adult hypothalamus and the molecular mechanisms of GnRH action on the pituitary gonadotrophs. New experimental data are analyzed, which significantly change the current understanding of the functioning of GnRH-producing neurons and the secretion of GnRH, which is very important for the development of effective approaches for correcting the functions of the HPG axis.
Collapse
|
39
|
Taroc EZM, Lin JM, Tulloch AJ, Jaworski A, Forni PE. GnRH-1 Neural Migration From the Nose to the Brain Is Independent From Slit2, Robo3 and NELL2 Signaling. Front Cell Neurosci 2019; 13:70. [PMID: 30881290 PMCID: PMC6406018 DOI: 10.3389/fncel.2019.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. Defective migration of the GnRH-1 neurons to the brain, lack of GnRH-1 secretion or signaling cause hypogonadotropic hypogonadism (HH), a pathology characterized by delayed or absence of puberty. Binding of the guidance cue Slit2 to the receptor roundabout 3 (Robo3) has been proposed to modulate GnRH-1 cell motility and basal forebrain (bFB) access during migration. However, evidence suggests that Neural EGFL Like 2 (NELL2), not Slit2, binds to Robo3. To resolve this discrepancy, we analyzed GnRH-1 neuronal migration in NELL2, Robo3, and Slit2 knock-out mouse lines. Our data do not confirm a negative effect for monogenic Robo3 and Slit2 mutations on GnRH-1 neuronal migration from the nasal area to the brain. Moreover, we found no changes in GnRH-1 neuronal migration in the brain after NELL2 loss-of-function. However, we found that Slit2 loss-of-function alters the patterning of GnRH-1 cells in the brain, suggesting that Slit2 loss-of-function affects GnRH-1 cell positioning in the brain in a Robo3 independent fashion. Our results challenge previous theories on GnRH-1 neuronal migration mechanisms and provide a new impetus to identify and understand the complex genetic mechanisms causing disorders like Kallmann syndrome (KS) and HH.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
40
|
Bouilly J, Messina A, Papadakis G, Cassatella D, Xu C, Acierno JS, Tata B, Sykiotis G, Santini S, Sidis Y, Elowe-Gruau E, Phan-Hug F, Hauschild M, Bouloux PM, Quinton R, Lang-Muritano M, Favre L, Marino L, Giacobini P, Dwyer AA, Niederländer NJ, Pitteloud N. DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Hum Mol Genet 2019; 27:359-372. [PMID: 29202173 DOI: 10.1093/hmg/ddx408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice.
Collapse
Affiliation(s)
- Justine Bouilly
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Andrea Messina
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Georgios Papadakis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Daniele Cassatella
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cheng Xu
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - James S Acierno
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Brooke Tata
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Gerasimos Sykiotis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sara Santini
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Yisrael Sidis
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eglantine Elowe-Gruau
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Franziska Phan-Hug
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Michael Hauschild
- Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| | - Pierre-Marc Bouloux
- Center for Neuroendocrinology, Royal Free Campus, University College Medical School, London WC1E6BT, UK
| | - Richard Quinton
- Institute of Genetic Medicine and the Royal Victoria Infirmary, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE13BZ, UK
| | - Mariarosaria Lang-Muritano
- Department of Endocrinology/Diabetology and Children's Research Centre, University Children's Hospital Zurich, 8091 Zurich, Switzerland
| | - Lucie Favre
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Marino
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Paolo Giacobini
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, University of Lille, 59000 Lille, France.,Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, UMR-S 1172, 59000 Lille, France
| | - Andrew A Dwyer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nelly Pitteloud
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology & Medicine, University of Lausanne, 1005 Lausanne, Switzerland.,Division of Endocrinology, Diabetology and Obesity, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
41
|
Oleari R, Lettieri A, Paganoni A, Zanieri L, Cariboni A. Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology 2019; 109:193-199. [PMID: 30504719 DOI: 10.1159/000495916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/02/2018] [Indexed: 11/19/2022]
Abstract
In mammals, fertility critically depends on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) by scattered hypothalamic neurons (GnRH neurons). During development, GnRH neurons originate in the nasal placode and migrate first into the nasal compartment and then through the nasal/forebrain junction, before they reach their final position in the hypothalamus. This neurodevelopmental process, which has been extensively studied in mouse models, is regulated by a plethora of factors that might control GnRH neuron migration or survival as well as the fasciculation/targeting of the olfactory/vomeronasal axons along which the GnRH neurons migrate. Defects in GnRH neuron development or release can lead to isolated GnRH deficiency, with the underlying genetic causes still being partially unknown. Recently, semaphorins and their receptors neuropilins and plexins, a large family of molecules implicated in neuronal development and plasticity, are emerging as key regulators of GnRH neuron biology and deficiency. Specifically, semaphorins have been shown to play different roles in GnRH neuron biology by regulating migration and survival during embryonic development as well as secretion in adulthood.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
42
|
Lainez NM, Coss D. Leukemia Inhibitory Factor Represses GnRH Gene Expression via cFOS during Inflammation in Male Mice. Neuroendocrinology 2019; 108:291-307. [PMID: 30630179 PMCID: PMC6561803 DOI: 10.1159/000496754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens. METHODS To examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7. RESULTS GnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away. CONCLUSION Our results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA,
| |
Collapse
|
43
|
Hoffmann HM, Pandolfi EC, Larder R, Mellon PL. Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2 Causes Subfertility in Mice via Distinct Mechanisms. Neuroendocrinology 2018; 109:200-207. [PMID: 30261489 PMCID: PMC6437011 DOI: 10.1159/000494086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a single copy to prevent any loss of normal activity and function. Reproduction is a complex process relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found that the deletion of one allele for any of these genes in mice produces subfertility or infertility in one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review compares the subfertility phenotypes and their mechanisms.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Erica C Pandolfi
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rachel Larder
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA,
| |
Collapse
|
44
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
45
|
Ko EK, Chorich LP, Sullivan ME, Cameron RS, Layman LC. JAK/STAT signaling pathway gene expression is reduced following Nelf knockdown in GnRH neurons. Mol Cell Endocrinol 2018; 470:151-159. [PMID: 29050862 DOI: 10.1016/j.mce.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/27/2022]
Abstract
Hypothalamic gonadotropin releasing hormone (GnRH) is crucial for the proper function of the hypothalamic-pituitary-gonadal (HPG) axis, subsequent puberty, and reproduction. When GnRH neuron migration or GnRH regulation is impaired, hypogonadotropic hypogonadism results. Mutations in the gene for nasal embryonic luteinizing hormone-releasing factor (NELF) have been identified in GnRH-deficient humans. NELF is a predominantly nuclear protein that may participate in gene transcription, but the genes NELF regulates are unknown. To address this question, RNA was extracted from NLT GnRH neuronal cells following either stable Nelf knockdown or scrambled control and subjected to cDNA arrays. Transcription factors and cell migration gene expression was altered most commonly. Members of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, including Stat1, Stat2, Stat5a, Jak2, Irf7 and Irf9, were significantly down regulated as assessed by RT-qPCR. Protein levels of STAT1, phospho-STAT1, and JAK2 were reduced, but the protein level of phospho-JAK2 was not. These findings suggest a role for NELF in the regulation of the JAK/STAT signaling pathway, which have important functions in GnRH neurons.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Megan E Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Richard S Cameron
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
46
|
Tan CL, Sheard PW, Jasoni CL. Developing neurites from mouse basal forebrain gonadotropin-releasing hormone neurons use Sonic hedgehog to modulate their growth. Int J Dev Neurosci 2018; 68:89-97. [PMID: 29787797 DOI: 10.1016/j.ijdevneu.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/14/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are required for fertility in all mammalian species studied to date. GnRH neuron cell bodies reside in the basal forebrain, and most extend long neurites in the caudal direction to terminate at the median eminence (ME), the site of hormone secretion. Using in vitro neurite growth assays, histological methods, and genetic deletion strategies in mice we have analysed the role of the morphogen and neurite growth and guidance molecule, Sonic hedgehog (Shh), in the growth of GnRH neurites to their target. Immunohistochemistry revealed that Shh was present in the basal forebrain, the preoptic area (POA) and mediobasal hypothalamus (MBH) at gestational day 14.5 (GD 14.5), a time when GnRH neurites grow towards the ME. Furthermore, in situ hybridization revealed that mRNA encoding the Shh receptor, Smoothened (Smo), was present in GnRH neurons from GD 15.5, when the first GnRH neurites are extending towards the MBH. In vitro neurite growth assays using hypothalamic explants from GD 15.5 fetuses in 3-D collagen gels showed that Shh was able to significantly stimulate GnRH neurite outgrowth. Finally, genetic deletion of Smo specifically from GnRH neurons in vivo, using Cre-loxP technology, resulted in a significant decrease in GnRH neurites innervating the ME. These experiments demonstrate that GnRH neurites use Shh for their neurite development, provide further understanding of the mechanisms by which GnRH nerve terminals arrive at their site of hormone secretion, and identify an additional hypothalamic neuronal population for which Shh/Smo signaling is developmentally important.
Collapse
Affiliation(s)
- C L Tan
- Department of Anatomy, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand; Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| | - P W Sheard
- Department of Physiology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| | - C L Jasoni
- Department of Anatomy, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand; Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| |
Collapse
|
47
|
Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology 2018; 159. [PMID: 29522155 PMCID: PMC6287592 DOI: 10.1210/en.2018-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | | | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,
Michigan
- Correspondence: Laura L. Burger, PhD, University of Michigan, 7725 Med Sci II, 1137 E. Catherine
Street, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
48
|
Larco DO, Bauman BM, Cho-Clark M, Mani SK, Wu TJ. GnRH-(1-5) Inhibits TGF-β Signaling to Regulate the Migration of Immortalized Gonadotropin-Releasing Hormone Neurons. Front Endocrinol (Lausanne) 2018; 9:45. [PMID: 29515521 PMCID: PMC5826220 DOI: 10.3389/fendo.2018.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons originate outside the central nervous system (CNS) in the nasal placode where their migration to the basal forebrain is dependent on the integration of multiple signaling cues during development. The proper migration and establishment of the GnRH neuronal population within the CNS are critical for normal pubertal onset and reproductive function. The endopeptidase EP24.15 is expressed along the migratory path of GnRH neurons and cleaves the full-length GnRH to generate the metabolite GnRH-(1-5). Using the GN11 cell model, which is considered a pre-migratory GnRH neuronal cell line, we demonstrated that GnRH-(1-5) inhibits cellular migration in a wound closure assay by binding the orphan G protein-coupled receptor 173 (GPR173). In our current experiments, we sought to utilize an in vitro migration assay that better reflects the external environment that migrating GnRH neurons are exposed to during development. Therefore, we used a transwell assay where the inserts were coated with or without a matrigel, a gelatinous mixture containing extracellular matrix (ECM) proteins, to mimic the extracellular environment. Interestingly, GnRH-(1-5) inhibited the ability of GN11 cells to migrate only through ECM mimetic and was dependent on GPR173. Furthermore, we found that GN11 cells secrete TGF-β1, 2, and 3 but only TGF-β1 release and signaling were inhibited by GnRH-(1-5). To identify potential mechanisms involved in the proteolytic activation of TGF-β, we measured a panel of genes implicated in ECM remodeling. We found that GnRH-(1-5) consistently increased tissue inhibitors of metalloproteinase 1 expression, which is an inhibitor of proteinase activity, leading to a decrease in bioactive TGF-β and subsequent signaling. These results suggest that GnRH-(1-5) activating GPR173 may modulate the response of migrating GnRH neurons to external cues present in the ECM environment via an autocrine-dependent mechanism involving TGF-β.
Collapse
Affiliation(s)
- Darwin O. Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bradly M. Bauman
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shaila K. Mani
- Department of Molecular, Baylor College of Medicine, Houston, TX, United States
- Department of Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - T. John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
49
|
Domínguez-Ordóñez R, Garcia-Juárez M, Lima-Hernández FJ, Gómora-Arrati P, Domínguez-Salazar E, Blaustein JD, Etgen AM, González-Flores O. Lordosis facilitated by GPER-1 receptor activation involves GnRH-1, progestin and estrogen receptors in estrogen-primed rats. Horm Behav 2018; 98:77-87. [PMID: 29269179 DOI: 10.1016/j.yhbeh.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
The present study assessed the participation of membrane G-protein coupled estrogen receptor 1 (GPER-1) and gonadotropin releasing hormone 1 (GnRH-1) receptor in the display of lordosis induced by intracerebroventricular (icv) administration of G1, a GPER-1 agonist, and by unesterified 17β-estradiol (free E2). In addition, we assessed the participation of both estrogen and progestin receptors in the lordosis behavior induced by G1 in ovariectomized (OVX), E2-benzoate (EB)-primed rats. In Experiment 1, icv injection of G1 induced lordosis behavior at 120 and 240min. In Experiment 2, icv injection of the GPER-1 antagonist G15 significantly reduced lordosis behavior induced by either G1 or free E2. In addition, Antide, a GnRH-1 receptor antagonist, significantly depressed G1 facilitation of lordosis behavior in OVX, EB-primed rats. Similarly, icv injection of Antide blocked the stimulatory effect of E2 on lordosis behavior. In Experiment 3, systemic injection of either tamoxifen or RU486 significantly reduced lordosis behavior induced by icv administration of G1 in OVX, EB-primed rats. The results suggest that GnRH release activates both estrogen and progestin receptors and that this activation is important in the chain of events leading to the display of lordosis behavior in response to activation of GPER-1 in estrogen-primed rats.
Collapse
Affiliation(s)
- R Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - M Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - F J Lima-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - P Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - E Domínguez-Salazar
- Area de Neurosciencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, México
| | - J D Blaustein
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - A M Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - O González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México; Area de Neurosciencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, México.
| |
Collapse
|
50
|
Abstract
Importance of the neuroendocrine brain for health and happiness has become clear since the 1960s. Foundations laid 100 years ago culminated in Geoffrey W Harris's model of control by the brain of secretion of anterior and posterior pituitary gland hormones through, respectively, releasing factors secreted into the hypothalamic-hypophysial portal system, and directly from axon terminals into the systemic circulation. Confirmation, expansion and deepening of knowledge and understanding have followed increasingly sophisticated technology. This allowed chemical characterisation of the posterior pituitary hormones, oxytocin and vasopressin, the releasing factors, their receptors and genes, location of the neurosecretory neurons in the hypothalamus, and how their activity is controlled, including by neural and hormonal feedback, and how hormone rhythms are generated. Wider roles of these neurons and their peptides in the brain are now recognised: in reproductive and social behaviours, emotions and appetite. Plasticity and epigenetic programming of neuroendocrine systems have emerged as important features.
Collapse
Affiliation(s)
- John A. Russell
- Professor Emeritus, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| |
Collapse
|