1
|
Scuto M, Majzúnová M, Torcitto G, Antonuzzo S, Rampulla F, Di Fatta E, Trovato Salinaro A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int J Mol Sci 2024; 25:12155. [PMID: 39596221 PMCID: PMC11594618 DOI: 10.3390/ijms252212155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between functional food nutrients and neurosteroids has garnered significant attention for its potential to enhance stress resilience in health and/or disease. Several bioactive nutrients, including medicinal herbs, flavonoids, and bioavailable polyphenol-combined nanoparticles, as well as probiotics, vitamin D and omega-3 fatty acids, have been shown to improve blood-brain barrier (BBB) dysfunction, endogenous neurosteroid homeostasis and brain function. These nutrients can inhibit oxidative stress and neuroinflammation, which are linked to the pathogenesis of various neurological disorders. Interestingly, flavonoids exhibit dose-dependent effects, activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway at the physiological/low dose (neurohormesis). This leads to the upregulation of antioxidant phase II genes and proteins such as heme oxygenase-1 (HO-1) and sirtuin-1 (Sirt1), which are activated by curcumin and resveratrol, respectively. These adaptive neuronal response mechanisms help protect against reactive oxygen species (ROS) and neurotoxicity. Impaired Nrf2 and neurosteroid hormone signaling in the brain can exacerbate selective vulnerability to neuroinflammatory conditions, contributing to the onset and progression of neurodegenerative and psychiatric disorders, including Alzheimer's disease, anxiety and depression and other neurological disorders, due to the vulnerability of neurons to stress. This review focuses on functional food nutrients targeting Nrf2 antioxidant pathway and redox resilience genes to regulate the neurosteroid homeostasis and BBB damage associated with altered GABAergic neurotransmission. By exploring the underlying molecular mechanisms using innovative technologies, we aim to develop promising neuroprotective strategies and personalized nutritional and neuroregenerative therapies to prevent or attenuate oxidative stress and neuroinflammation, ultimately promoting brain health.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Miroslava Majzúnová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia;
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovakia
| | - Gessica Torcitto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Silvia Antonuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| |
Collapse
|
2
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
4
|
Lodén H, Schembri LS, Nilsson A, Kaya I, Shariatgorji R, Odell LR, Andrén PE. Hydrazide-based reactive matrices for the sensitive detection of aldehydes and ketones by MALDI mass spectrometry imaging. Chem Commun (Camb) 2024; 60:9238-9241. [PMID: 39114958 DOI: 10.1039/d4cc02475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A one-step, on-tissue chemical derivatisation method for MALDI mass spectrometry imaging was found to improve the detectability of aldehydes and ketones by charge-tagging. The developed reactive matrices, containing a UV-chromophore, ionisable moiety and hydrazide group, showed an equal or higher detection efficiency than Girard's reagent P, enabling improved imaging of brain metabolites without the need for additional co-matrices.
Collapse
Affiliation(s)
- Henrik Lodén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Luke S Schembri
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Cavallieri F, Lucchi C, Grisanti S, Monfrini E, Fioravanti V, Toschi G, Di Rauso G, Rossi J, Di Fonzo A, Biagini G, Valzania F. Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson's Disease: A Possible Factor Influencing Clinical Phenotype? Biomolecules 2024; 14:1022. [PMID: 39199409 PMCID: PMC11352262 DOI: 10.3390/biom14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Neurosteroids are pleiotropic molecules involved in various neurodegenerative diseases with neuroinflammation. We assessed neurosteroids' serum levels in a cohort of Parkinson's Disease (PD) patients with heterozygous glucocerebrosidase (GBA) mutations (GBA-PD) compared with matched cohorts of consecutive non-mutated PD (NM-PD) patients and healthy subjects with (GBA-HC) and without (NM-HC) GBA mutations. A consecutive cohort of GBA-PD was paired for age, sex, disease duration, Hoehn and Yahr stage, and comorbidities with a cohort of consecutive NM-PD. Two cohorts of GBA-HC and HC were also considered. Clinical assessment included the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Montreal Cognitive Assessment (MoCA). Serum samples were processed and analyzed by liquid chromatography coupled with the triple quadrupole mass spectrometry. Twenty-two GBA-PD (males: 11, age: 63.68), 22 NM-PD (males: 11, age: 63.05), 14 GBA-HC (males: 8; age: 49.36), and 15 HC (males: 4; age: 60.60) were studied. Compared to NM-PD, GBA-PD showed more hallucinations and psychosis (p < 0.05, Fisher's exact test) and higher MDS-UPDRS part-II (p < 0.05). Most of the serum neurosteroids were reduced in both GBA-PD and NM-PD compared to the respective control cohorts, except for 5α-dihydroprogesterone. Allopregnanolone was the only neurosteroid significantly lower (p < 0.01, Dunn's test) in NM-PD compared to GBA-PD patients. Only in GBA-PD, allopregnanolone, and pregnanolone levels correlated (Spearman) with a more severe MDS-UPDRS part-III. Allopregnanolone levels also negatively correlated with MoCA scores, and pregnanolone levels correlated with more pronounced bradykinesia. This pilot study provides the first observation of changes in neurosteroid peripheral levels in GBA-PD. The involvement of the observed changes in the development of neuropsychological and motor symptoms of GBA-PD deserves further attention.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Toschi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Jessica Rossi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (A.D.F.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.C.); (V.F.); (G.T.); (G.D.R.); (J.R.); (F.V.)
| |
Collapse
|
6
|
Bäckström T, Doverskog M, Blackburn TP, Scharschmidt BF, Felipo V. Allopregnanolone and its antagonist modulate neuroinflammation and neurological impairment. Neurosci Biobehav Rev 2024; 161:105668. [PMID: 38608826 DOI: 10.1016/j.neubiorev.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
7
|
Chagraoui A, Anouar Y, De Deurwaerdere P, Arias HR. To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease. Int J Biochem Cell Biol 2024; 168:106528. [PMID: 38246261 DOI: 10.1016/j.biocel.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France.
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
8
|
Marecki R, Kałuska J, Kolanek A, Hakało D, Waszkiewicz N. Zuranolone - synthetic neurosteroid in treatment of mental disorders: narrative review. Front Psychiatry 2023; 14:1298359. [PMID: 38116383 PMCID: PMC10729607 DOI: 10.3389/fpsyt.2023.1298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
With each passing year, the number of people suffering from mental disorders grows at a disturbing speed. Neuroactive steroids are a new promising group of drugs with the potential for use in many diseases like postpartum depression, postnatal psychosis, major depression, insomnia, bipolar disorder, and Parkinson's tremor, due to their ability to modulate the activity of GABAA receptor. Neurosteroids are progesterone metabolites that are synthesized from cholesterol or steroid hormones in various brain regions. They regulate neuronal development, regeneration, and neurotransmission. They are implicated in mood disorders, anxiety disorders, schizophrenia, PTSD, and impulsive aggression. Neurosteroids have been studied for their potential to prevent or treat neurodegenerative diseases such as Alzheimer's disease and HIV-associated dementia. They can promote neurogenesis, neuronal survival, myelination, and memory function. They can also affect the growth and sensitivity of hormone-dependent brain tumors such as gliomas. Zuranolone, a newly registered neurosteroid drug has shown huge flexibility in both clinical and ambulatory treatment thanks to its pharmacokinetic traits, especially the possibility for oral administration, unlike its predecessor Brexanolone. Zuranolone is a synthetic positive allosteric modulator of the GABAA receptor that can be taken orally. The review aims to summarize the current knowledge on zuranolone as a novel neurosteroid drug for various mental disorders, especially for postpartum mental disorders for which this drug was meant originally. It covers studies indexed in the PubMed, Scopus, and Web of Science databases published since 2017. Keywords used in the search, as well as inclusion and exclusion criteria, are given in the aims and methodology section. The review explains the evidence for the role of neurosteroids, especially allopregnanolone, in the pathophysiology and treatment of postpartum depression. It discusses the mechanisms of neurosteroid action, the changes in neurosteroid levels during pregnancy and postpartum, and the clinical trials of brexanolone and zuranolone, two synthetic analogs of allopregnanolone, for postpartum depression. It provides an overview of the biosynthesis and metabolism of neurosteroids in the central and peripheral nervous system. Furthermore, it explains the different sources and pathways of neurosteroid production and the factors that influence their synthesis and regulation, such as stress, hormones, drugs, and genetic variations. The review also explores the potential relevance of neurosteroids for other psychiatric disorders, such as major depression, bipolar disorder, post-traumatic stress disorder (PTSD), schizophrenia, and premenstrual dysphoric disorder. Finally, it highlights the associations between neurosteroid levels and symptom severity and the effects of neurosteroid modulation on mood, cognition, and neuroplasticity.
Collapse
|
9
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
10
|
Lucchi C, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Avallone R, Mandrioli J, Biagini G. Human Microglia Synthesize Neurosteroids to Cope with Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040963. [PMID: 37107338 PMCID: PMC10135967 DOI: 10.3390/antiox12040963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We obtained evidence that mouse BV2 microglia synthesize neurosteroids dynamically to modify neurosteroid levels in response to oxidative damage caused by rotenone. Here, we evaluated whether neurosteroids could be produced and altered in response to rotenone by the human microglial clone 3 (HMC3) cell line. To this aim, HMC3 cultures were exposed to rotenone (100 nM) and neurosteroids were measured in the culture medium by liquid chromatography with tandem mass spectrometry. Microglia reactivity was evaluated by measuring interleukin 6 (IL-6) levels, whereas cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. After 24 h (h), rotenone increased IL-6 and reactive oxygen species levels by approximately +37% over the baseline, without affecting cell viability; however, microglia viability was significantly reduced at 48 h (p < 0.01). These changes were accompanied by the downregulation of several neurosteroids, including pregnenolone, pregnenolone sulfate, 5α-dihydroprogesterone, and pregnanolone, except for allopregnanolone, which instead was remarkably increased (p < 0.05). Interestingly, treatment with exogenous allopregnanolone (1 nM) efficiently prevented the reduction in HMC3 cell viability. In conclusion, this is the first evidence that human microglia can produce allopregnanolone and that this neurosteroid is increasingly released in response to oxidative stress, to tentatively support the microglia's survival.
Collapse
Affiliation(s)
- Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandro Codeluppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
11
|
A high performance liquid chromatography tandem mass spectrometry protocol for detection of neurotransmitters in the rat brain tissue. MethodsX 2023; 10:102083. [PMID: 36875344 PMCID: PMC9978030 DOI: 10.1016/j.mex.2023.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The detection of neurotransmitters has extensively been applied to the study of the pathogenesis, diagnosis, and therapeutic effect of drugs on many neuropsychiatric diseases. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been employed to determine neurotransmitters levels due to its distinct advantages. However, neurotransmitter detection still presents some challenges. A rapid and sensitive HPLC-MS/MS protocol has been established in our lab, which can simultaneously detect 5 neurotransmitters with an easy pretreatment procedure. The protocol provides demanded reference value for the lab using an Agilent HPLC-MS/MS system with a triple quadrupole analyzer.
Collapse
|
12
|
Poirier AA, Côté M, Jarras H, Litim N, Lamontagne-Proulx J, Al-Sweidi S, Morissette M, Lachhab A, Pelletier M, Di Paolo T, Soulet D. Peripheral Neuroprotective and Immunomodulatory Effects of 5α-Reductase Inhibitors in Parkinson's Disease Models. Front Pharmacol 2022; 13:898067. [PMID: 35935876 PMCID: PMC9355275 DOI: 10.3389/fphar.2022.898067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal disorders in Parkinson's disease (PD) have been associated with neuronal alteration in the plexus of the gut. We previously demonstrated the immunomodulatory effect of female hormones to treat enteric neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. This study made the hypothesis of obtaining similar neuroprotection as with hormone treatments by affecting steroidogenesis with two 5α-reductase inhibitors, finasteride and dutasteride. These drugs are approved to treat benign prostatic hyperplasia and alopecia and display mitochondrial effects. In MPTP-treated mice, the dopaminergic and vasoactive intestinal peptide (VIP) neurons alteration was prevented by finasteride and dutasteride, while the increase in proinflammatory macrophages density was inhibited by dutasteride treatment but not finasteride. NF-κB response, oxidative stress, and nitric oxide and proinflammatory cytokines production in vitro were only prevented by dutasteride. In addition, mitochondrial production of free radicals, membrane depolarization, decreased basal respiration, and ATP production were inhibited by dutasteride, while finasteride had no effect. In conclusion, the present results indicate that dutasteride treatment prevents enteric neuronal damages in the MPTP mouse model, at least in part through anti-inflammatory and mitochondrial effects. This suggests that drug repurposing of dutasteride might be a promising avenue to treat enteric neuroinflammation in early PD.
Collapse
Affiliation(s)
- Andrée-Anne Poirier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Mélissa Côté
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Hend Jarras
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Nadhir Litim
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Sara Al-Sweidi
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Asmaa Lachhab
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Martin Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, QC, Canada
| |
Collapse
|
13
|
Кузнецов КО, Хайдарова РР, Хабибуллина РХ, Стыценко ЕС, Философова ВИ, Нуриахметова ИР, Хисамеева ЭМ, Важоров ГС, Хайбуллин ФР, Иванова ЕА, Горбатова КВ. [Testosterone and Alzheimer's disease]. PROBLEMY ENDOKRINOLOGII 2022; 68:97-107. [PMID: 36337024 PMCID: PMC9762454 DOI: 10.14341/probl13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes dementia in half of the cases. Asthma is usually found in people over 65 years of age. The etiopathogenesis of the disease is multifactorial and includes genetic factors, nutritional disorders, mitochondrial dysfunction, oxidative stress, and aging. Sex hormones have an important influence on the development of AD, as evidenced by a higher incidence in women than in men. Considering the significant influence of T on the maintenance of normal brain function, the present study is aimed at evaluating the impact of androgen deprivation therapy (ADT), as well as testosterone therapy, on the risk of AD development and progression. Although there is some clinical inconsistency between studies, androgens have a significant effect on brain function and are beneficial for AD patients. Low levels of circulating androgens should be considered as a significant risk factor for the development of AD and memory loss. With a reduced level of T in the plasma of men, its administration improves cognitive performance and memory, treatment should be started at an early stage of the disease. In men and women with AD, androgens improve mental state and slow the progression of the disease, providing a protective effect. In the future, it is necessary to conduct studies on a large population, taking into account personality factors and a more specific approach to assessing cognitive functions and the causal relationship of T administration in AD.
Collapse
Affiliation(s)
- К. О. Кузнецов
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | | | - Р. Х. Хабибуллина
- Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| | - Е. С. Стыценко
- Санкт-Петербургский государственный педиатрический медицинский университет
| | - В. И. Философова
- Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
| | | | | | - Г. С. Важоров
- Чувашский государственный университет им. И.Н. Ульянова
| | | | | | | |
Collapse
|
14
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
15
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
16
|
Bianchi VE. Impact of Testosterone on Alzheimer's Disease. World J Mens Health 2022; 40:243-256. [PMID: 35021306 PMCID: PMC8987133 DOI: 10.5534/wjmh.210175] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease responsible for almost half of all dementia cases in the world and progressively increasing. The etiopathology includes heritability, genetic factors, aging, nutrition, but sex hormones play a relevant role. Animal models demonstrated that testosterone (T) exerted a neuroprotective effect reducing the production of amyloid-beta (Aβ), improving synaptic signaling, and counteracting neuronal death. This study aims to evaluate the impact of T deprivation and T administration in humans on the onset of dementia and AD. A search was conducted on MEDLINE and Scopus for the “androgen deprivation therapy” and “testosterone therapy” with “dementia” and “Alzheimer’s.” Studies lasting twenty years with low risk of bias, randomized clinical trial, and case-controlled studies were considered. Twelve articles on the effect of androgen deprivation therapy (ADT) and AD and seventeen on T therapy and AD were retrieved. Men with prostate cancer under ADT showed a higher incidence of dementia and AD. The effect of T administration in hypogonadal men with AD and cognitive impairment has evidenced some positive results. The majority of studies showed the T administration improved memory and cognition in AD while others did not find any benefit. Although some biases in the studies are evident, T therapy for AD patients may represent an essential clinical therapy to reduce dementia incidence and AD progression. However, more specific case-controlled trials on the effect of androgens therapy in men and women to reducing the onset of AD are necessary.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Research Center Stella Maris, Falciano, San Marino, Italy.
| |
Collapse
|
17
|
Song Y, Gong T, Xiang Y, Mikkelsen M, Wang G, Edden RAE. Single-dose L-dopa increases upper brainstem GABA in Parkinson's disease: A preliminary study. J Neurol Sci 2021; 422:117309. [PMID: 33548666 DOI: 10.1016/j.jns.2021.117309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder, characterized by the dysfunction between dopaminergic and GABAergic neuronal activities. Dopamine (DA) replacement by its precursor L-dopa remains the primary treatment for PD. In this preliminary study, we test the hypotheses that GABA+ levels would be lower in PD patients than controls, and normalized by L-dopa. METHODS Eleven PD patients and eleven age-and gender-matched healthy controls underwent a 1H-MRS scan of the upper brainstem using a J-difference-edited sequence to resolve signals of GABA. PD patients did not take all dopaminergic medicines for at least twelve hours prior to the first scan, and were scanned again after resuming L -dopa (pre- and post-L-dopa). MRS data were processed using the Gannet. Differences of GABA+ (GABA, macromolecules, and homocarnosine) levels within-subject (PD: pre- and post-L-dopa) and between-subjects (HC vs. PD-pre or PD-post) were tested using linear mixed-effects models with Holm-Bonferroni correction applied to pairwise comparisons. RESULTS Significant increased GABA+ levels were observed in the upper brainstem of PD patients post-L-dopa compared with pre-L-dopa (p < 0.001). Patients' GABA+ levels before administration of L-dopa were significantly lower than HCs (p = 0.001). Increased GABA+ level by administration of L-dopa in PD patients (post-L-dopa) was lower compared with HCs, but not significantly (p = 0.52). CONCLUSION Increased GABA+ levels were present in the upper brainstem with PD patients post-L-dopa, suggesting dopaminergic therapy capable of improving dopamine may improve the GABA+ levels in the upper brainstem, thereby achieving the effect of modulating the GABAergic system in the treatment of PD.
Collapse
Affiliation(s)
- Yulu Song
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Tao Gong
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yuanyuan Xiang
- Department of Neurology, Shandong Province Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
18
|
Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:E795. [PMID: 33466831 PMCID: PMC7830608 DOI: 10.3390/ijms22020795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aside from the classical motor symptoms, Parkinson's disease also has various non-classical symptoms. Interestingly, orexin neurons, involved in the regulation of exploratory locomotion, spontaneous physical activity, and energy expenditure, are affected in Parkinson's. In this study, we hypothesized that Parkinson's-disease-associated pathology affects orexin neurons and therefore impairs functions they regulate. To test this, we used a transgenic animal model of Parkinson's, the A53T mouse. We measured body composition, exploratory locomotion, spontaneous physical activity, and energy expenditure. Further, we assessed alpha-synuclein accumulation, inflammation, and astrogliosis. Finally, we hypothesized that chemogenetic inhibition of orexin neurons would ameliorate observed impairments in the A53T mice. We showed that aging in A53T mice was accompanied by reductions in fat mass and increases in exploratory locomotion, spontaneous physical activity, and energy expenditure. We detected the presence of alpha-synuclein accumulations in orexin neurons, increased astrogliosis, and microglial activation. Moreover, loss of inhibitory pre-synaptic terminals and a reduced number of orexin cells were observed in A53T mice. As hypothesized, this chemogenetic intervention mitigated the behavioral disturbances induced by Parkinson's disease pathology. This study implicates the involvement of orexin in early Parkinson's-disease-associated impairment of hypothalamic-regulated physiological functions and highlights the importance of orexin neurons in Parkinson's disease symptomology.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
| | - Catherine M. Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
- Minneapolis VA Health Care System, GRECC, 1 Veterans Dr, Minneapolis, MN 55417, USA
| |
Collapse
|
19
|
Avallone R, Lucchi C, Puja G, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Biagini G. BV-2 Microglial Cells Respond to Rotenone Toxic Insult by Modifying Pregnenolone, 5α-Dihydroprogesterone and Pregnanolone Levels. Cells 2020; 9:E2091. [PMID: 32933155 PMCID: PMC7563827 DOI: 10.3390/cells9092091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation, whose distinctive sign is the activation of microglia, is supposed to play a key role in the development and progression of neurodegenerative diseases. The aim of this investigation was to determine levels of neurosteroids produced by resting and injured BV-2 microglial cells. BV-2 cells were exposed to increasing concentrations of rotenone to progressively reduce their viability by increasing reactive oxygen species (ROS) production. BV-2 cell viability was significantly reduced 24, 48 and 72 h after rotenone (50-1000 nM) exposure. Concomitantly, rotenone (50-100 nM) determined a dose-independent augmentation of ROS production. Then, BV-2 cells were exposed to a single, threshold dose of rotenone (75 nM) to evaluate the overtime release of neurosteroids. In particular, pregnenolone, pregnenolone sulfate, progesterone, 5α-dihydroprogesterone (5α-DHP), allopregnanolone, and pregnanolone, were quantified in the culture medium by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. BV-2 cells synthesized all the investigated neurosteroids and, after exposure to rotenone, 5αDHP and pregnanolone production was remarkably increased. In conclusion, we found that BV-2 cells not only synthesize several neurosteroids, but further increase this production following oxidative damage. Pregnanolone and 5α-DHP may play a role in modifying the progression of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| | - Giulia Puja
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Alessandro Codeluppi
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| | - Giovanni Vitale
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Cecilia Rustichelli
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy; (G.P.); (A.C.); (G.V.); (C.R.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.L.); (M.F.); (G.B.)
| |
Collapse
|
20
|
Qiu ZK, Liu X, Chen Y, Wu RJ, Guan SF, Pan YY, Wang QB, Tang D, Zhu T, Chen JS. Translocator protein 18 kDa: a potential therapeutic biomarker for post traumatic stress disorder. Metab Brain Dis 2020; 35:695-707. [PMID: 32172519 DOI: 10.1007/s11011-020-00548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/10/2020] [Indexed: 11/11/2022]
Abstract
Post traumatic stress disorder (PTSD) is widely regarded as a stress-related and trauma disorder. The symptoms of PTSD are characterized as a spectrum of vulnerabilities after the exposure to an extremely traumatic stressor. Considering as one of complex mental disorders, little progress has been made toward its diagnostic biomarkers, despite the involvement of PTSD has been studied. Many studies into the underlying neurobiology of PTSD implicated the dysfunction of neurosteroids biosynthesis and neuorinflammatory processes. Translocator protein 18 kDa (TSPO) has been considered as one of the promising therapeutic biomarkers for neurological stress disorders (like PTSD, depression, anxiety, et al) without the benzodiazepine-like side effects. This protein participates in the formation of neurosteroids and modulation of neuroinflammation. The review outlines current knowledge involving the role of TSPO in the neuropathology of PTSD and the anti-PTSD-like effects of TSPO ligands.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Xu Liu
- Pharmacy Department of Medical Supplies Center of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, People's Republic of China
| | - Yong Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Rong-Jia Wu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Shi-Feng Guan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Qian-Bo Wang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Tao Zhu
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
21
|
Maegawa H, Adachi N, Hanamoto H, Kudo C, Niwa H. Bilateral Parkinson's disease model rats exhibit hyperalgesia to subcutaneous formalin administration into the vibrissa pad. PLoS One 2019; 14:e0225928. [PMID: 31805115 PMCID: PMC6894844 DOI: 10.1371/journal.pone.0225928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023] Open
Abstract
We bilaterally injected 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle of rats and developed bilateral Parkinson’s disease (PD) model rats in order to experimentally investigate the neural mechanisms underlying the alteration of nociception in the orofacial region of patients with PD. We explored the effects of dopamine depletion on nociception by investigating behavioral responses (face rubbing) triggered by subcutaneous administration of formalin into the vibrissa pad. We also assessed the number of c-Fos–immunoreactive (c-Fos-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Subcutaneous formalin administration evoked a two-phase increase in face rubbing. We observed the first increase 0–5 min after formalin administration (first phase) and the second increase 10–60 min after administration (second phase). The number of face rubbing behaviors of 6OHDA–injected rats did not significantly change compared with saline–injected rats in both phases. Significant increase of c-Fos-IR cells in the Vc was found in 6-OHDA–injected rats after formalin administration compared with those in saline–injected rats after formalin administration. We also assessed expression of c-Fos-IR cells in the paraventricular nucleus (PVN), and significant decrease of c-Fos-IR cells in the PVN of 6-OHDA–injected rats was found. Taken together, these findings suggest that bilateral dopaminergic denervation evoked by 6-OHDA administration causes hyperalgesia in the trigeminal region and the PVN may be involved in the hyperalgesia.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail: ,
| | - Nayuka Adachi
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
22
|
Vidal S, Xiol C, Pascual-Alonso A, O'Callaghan M, Pineda M, Armstrong J. Genetic Landscape of Rett Syndrome Spectrum: Improvements and Challenges. Int J Mol Sci 2019; 20:ijms20163925. [PMID: 31409060 PMCID: PMC6719047 DOI: 10.3390/ijms20163925] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the MECP2 gene, the research community's effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome spectrum and provides an overview of the RTT-related genes described to date, many of which are involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation. Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide proper genetic counselling from a patient's perspective and the appropriate treatment.
Collapse
Affiliation(s)
- Silvia Vidal
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Clara Xiol
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - M O'Callaghan
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Neurology Service, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Mercè Pineda
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
| | - Judith Armstrong
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
| |
Collapse
|
23
|
Xu Y, Sun L, Wang X, Zhu S, You J, Zhao XE, Bai Y, Liu H. Integration of stable isotope labeling derivatization and magnetic dispersive solid phase extraction for measurement of neurosteroids by in vivo microdialysis and UHPLC-MS/MS. Talanta 2019; 199:97-106. [DOI: 10.1016/j.talanta.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
|
24
|
Su AS, Zhang JW, Zou J. The anxiolytic-like effects of puerarin on an animal model of PTSD. Biomed Pharmacother 2019; 115:108978. [PMID: 31102911 DOI: 10.1016/j.biopha.2019.108978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Post traumatic stress disorder (PTSD) is a mental illness that affected numerous people. The anti-PTSD-like effects of puerarin is unknown, although the antidepressant- and anxiolytic- like effects of puerarin have been reported. The PTSD behavioral deficits in rats were induced by single prolonged stress (SPS), mainly including the reduced time/entries in the open arms and the elevated time/entries in the closed arms in elevated plus maze test, increased freezing duration in contextual fear paradigm and lowered time/entries in the central zone in open field test. However, the behavioral deficits were attenuated by puerarin (50 and 100 mg/kg) without affecting the locomotor activity. For the evaluation of mechanism, the decreased levels of progesterone, allopregnanolone, and the increased levels of corticosterone, corticotropin releasing hormone, and adrenocorticotropic hormone in the brain or serum were induced by SPS, which is blocked by puerarin. In summary, the anti-PTSD-like effects of puerarin were associated with biosynthesis of neurosteroids and normalized levels of stress hormones in HPA axis.
Collapse
Affiliation(s)
- Ai-Shan Su
- GCP Center, Nangfang Hospital of Southern Medical University, Guangzhou, 501515, China
| | - Jun-Wei Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Jing Zou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
25
|
Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Parkinson's disease and pain: Modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol 2019; 315:72-81. [PMID: 30772369 DOI: 10.1016/j.expneurol.2019.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that causes progressive dysfunction of dopaminergic and non-dopaminergic neurons, generating motor and nonmotor signs and symptoms. Pain is reported as the most bothersome nonmotor symptom in PD; however, pain remains overlooked and poorly understood. In this study, we evaluated the nociceptive behavior and the descending analgesia circuitry in a rat model of PD. Three independent experiments were performed to investigate: i) thermal nociceptive behavior; ii) mechanical nociceptive behavior and dopaminergic repositioning; and iii) modulation of the pain control circuitry. The rat model of PD, induced by unilateral striatal 6-hydroxydopamine (6-OHDA), did not interfere with thermal nociceptive responses; however, the mechanical nociceptive threshold was decreased bilaterally compared to that of naive or striatal saline-injected rats. This response was reversed by apomorphine or levodopa treatment. Striatal 6-OHDA induced motor impairments and reduced dopaminergic neuron immunolabeling as well as the pattern of neuronal activation (c-Fos) in the substantia nigra ipsilateral (IPL) to the lesion. In the midbrain periaqueductal gray (PAG), 6-OHDA-induced lesion increased IPL and decreased contralateral PAG GABAergic labeling compared to control. In the dorsal horn of the spinal cord, lesioned rats showed bilateral inhibition of enkephalin and μ-opioid receptor labeling. Taken together, we demonstrated that the unilateral 6-OHDA-induced PD model induces bilateral mechanical hypernociception, which is reversed by dopamine restoration, changes in the PAG circuitry, and inhibition of spinal opioidergic regulation, probably due to impaired descending analgesic control. A better understanding of pain mechanisms in PD patients is critical for developing better therapeutic strategies to improve their quality of life.
Collapse
Affiliation(s)
- Roberta A Domenici
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Soraya T Maciel
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Miriã B Berzuino
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Marina S Hernandes
- Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Erich T Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil; Division of Functional Neurosurgery, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Jamwal S, Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson's Disease and Huntington's Disease: A Review. Curr Neuropharmacol 2019; 17:165-175. [PMID: 29512464 PMCID: PMC6343208 DOI: 10.2174/1570159x16666180302115032] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Alteration in neurotransmitters signaling in basal ganglia has been consistently shown to significantly contribute to the pathophysiological basis of Parkinson's disease and Huntington's disease. Dopamine is an important neurotransmitter which plays a critical role in coordinated body movements. Alteration in the level of brain dopamine and receptor radically contributes to irregular movements, glutamate mediated excitotoxic neuronal death and further leads to imbalance in the levels of other neurotransmitters viz. GABA, adenosine, acetylcholine and endocannabinoids. This review is based upon the data from clinical and preclinical studies to characterize the role of various striatal neurotransmitters in the pathogenesis of Parkinson's disease and Huntington's disease. Further, we have collected data of altered level of various neurotransmitters and their metabolites and receptor density in basal ganglia region. Although the exact mechanisms underlying neuropathology of movement disorders are not fully understood, but several mechanisms related to neurotransmitters alteration, excitotoxic neuronal death, oxidative stress, mitochondrial dysfunction, neuroinflammation are being put forward. Restoring neurotransmitters level and downstream signaling has been considered to be beneficial in the treatment of Parkinson's disease and Huntington's disease. Therefore, there is an urgent need to identify more specific drugs and drug targets that can restore the altered neurotransmitters level in brain and prevent/delay neurodegeneration.
Collapse
Affiliation(s)
| | - Puneet Kumar
- Address correspondence to this author at the Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Panjab, India; E-mail:
| |
Collapse
|
27
|
Litim N, Morissette M, Caruso D, Melcangi RC, Di Paolo T. Effect of the 5α-reductase enzyme inhibitor dutasteride in the brain of intact and parkinsonian mice. J Steroid Biochem Mol Biol 2017; 174:242-256. [PMID: 28982631 DOI: 10.1016/j.jsbmb.2017.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/08/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022]
Abstract
Dutasteride is a 5alpha-reductase inhibitor in clinical use to treat endocrine conditions. The present study investigated the neuroprotective mechanisms of action of dutasteride in intact and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice using a low dose of MPTP not affecting motor activity modeling early stages of Parkinson's disease (PD). We hypothesized that dutasteride neuroprotection is due to altered steroids levels. Dutasteride pre-treatment prevented loss of striatal dopamine (DA) and its metabolite DOPAC. Dutasteride decreased effects of MPTP on striatal dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2) and D2 DA receptor specific binding while D1 receptor specific binding remained unchanged. Dutasteride enhanced DAT specific binding and the glycosylated form of DAT in intact mice. MPTP-lesioned mice had plasma and brain testosterone and dihydrotestosterone levels lower than control mice whereas progesterone and its metabolites (dihydroprogesterone, isopregnanolone and tetrahydroprogesterone) pathway showed increases. Dutasteride treatment by inhibiting transformation of progesterone and testosterone to its metabolites elevated plasma and brain concentrations of testosterone compared to MPTP mice and decreased DHT levels in intact mice. Plasma and brain estradiol levels were low and remained unchanged by MPTP and/or dutasteride treatment. Dutasteride treatment did not affect striatal phosphorylation of Akt and its downstream substrate GSK3β as well as phosphorylation of ERK1/2 in intact and MPTP lesioned MPTP mice. Striatal glial fibrillary acidic protein (GFAP) levels were markedly elevated in MPTP compared to control mice and dutasteride reduced GFAP levels in MPTP mice. Treatment with dutasteride post-lesion left unchanged striatal DA levels. These results suggest dutasteride as promising drug for PD neuroprotection.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
28
|
Marto N, Morello J, Monteiro EC, Pereira SA. Implications of sulfotransferase activity in interindividual variability in drug response: clinical perspective on current knowledge. Drug Metab Rev 2017; 49:357-371. [PMID: 28554218 DOI: 10.1080/03602532.2017.1335749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interindividual variability in drug response is a major issue in clinical practice and in drug development. Sulfoconjugation is an important Phase II reaction catalyzed by cytosolic sulfotransferases (SULTs), playing a major role in homeostatic functions, xenobiotic detoxification, and carcinogen bioactivation. SULT display wide interindividual variability, explained only partially by genetic variation, suggesting that other non-genetic, epigenetic, and environmental influences could be major determinants of variability in SULT activity. This review focuses on the factors known to influence SULT variability in expression and activity and the available evidence regarding the impact of SULT variability on drug response.
Collapse
Affiliation(s)
- Natalia Marto
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisboa , Portugal.,b Department of Internal Medicine , Hospital da Luz , Lisboa , Portugal
| | - Judit Morello
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Emilia C Monteiro
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Sofia A Pereira
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisboa , Portugal
| |
Collapse
|
29
|
Litim N, Morissette M, Di Paolo T. Effects of progesterone administered after MPTP on dopaminergic neurons of male mice. Neuropharmacology 2017; 117:209-218. [PMID: 28192111 DOI: 10.1016/j.neuropharm.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/18/2022]
Abstract
Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
30
|
Singh S, Jamwal S, Kumar P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res 2017; 12:1137-1144. [PMID: 28852397 PMCID: PMC5558494 DOI: 10.4103/1673-5374.211194] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC) is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well established bioavailability enhancer used pre-clinically to improve the bioavailability of antioxidants (e.g., Quercetin). Therefore, the present study was designed to evaluate the neuroprotective potential of QC together with piperine against MPTP-induced neurotoxicity in rats. MPTP (100 μg/μL/rat, bilaterally) was injected intranigrally on days 1, 4 and 7 using a digital stereotaxic apparatus. QC (25 and 50 mg/kg, intragastrically) and QC (25 mg/kg, intragastrically) in combination with piperine (2.5 mg/kg, intragastrically) were administered daily for 14 days starting from day 8 after the 3rd injection of MPTP. On day 22, animals were sacrificed and the striatum was isolated for oxidative stress parameter (thiobarbituric acid reactive substances, nitrite and glutathione), neuroinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) and neurotransmitter (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid, glutamate, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid) evaluations. Bilateral infusion of MPTP into substantia nigra pars compacta led to significant motor deficits as evidenced by impairments in locomotor activity and rotarod performance in open field test and grip strength and narrow beam walk performance. Both QC (25 and 50 mg/kg) and QC (25 mg/kg) in combination with piperine (2.5 mg/kg), in particular the combination therapy, significantly improved MPTP-induced behavioral abnormalities in rats, reversed the abnormal alterations of neurotransmitters in the striatum, and alleviated oxidative stress and inflammatory response in the striatum. These findings indicate that piperine can enhance the antioxidant and anti-inflammatory properties of QC, and QC in combination with piperine exhibits strong neuroprotective effects against MPTP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shamsher Singh
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India.,I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Sumit Jamwal
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India.,I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Moga, Punjab, India
| |
Collapse
|
31
|
Ehrhart F, Coort SLM, Cirillo E, Smeets E, Evelo CT, Curfs LMG. Rett syndrome - biological pathways leading from MECP2 to disorder phenotypes. Orphanet J Rare Dis 2016; 11:158. [PMID: 27884167 PMCID: PMC5123333 DOI: 10.1186/s13023-016-0545-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6-18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands. .,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Susan L M Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric Smeets
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris T Evelo
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
32
|
Herrera A, Muñoz P, Paris I, Díaz-Veliz G, Mora S, Inzunza J, Hultenby K, Cardenas C, Jaña F, Raisman-Vozari R, Gysling K, Abarca J, Steinbusch HWM, Segura-Aguilar J. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cell Mol Life Sci 2016; 73:3583-97. [PMID: 27001668 PMCID: PMC11108377 DOI: 10.1007/s00018-016-2182-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022]
Abstract
L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
- Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Irmgard Paris
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
- Departamento de Ciencias Básicas, Universidad Santo Tomas, Viña del Mar, Chile
| | - Gabriela Díaz-Veliz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Sergio Mora
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesar Cardenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Geroscience Center for Brain Health and Metabolism, , Santiago, Chile
| | - Fabián Jaña
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Geroscience Center for Brain Health and Metabolism, , Santiago, Chile
| | | | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jorge Abarca
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Harry W M Steinbusch
- Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
| |
Collapse
|
33
|
Schipper HM. The Impact of Gonadal Hormones on the Expression of Human Neurological Disorders. Neuroendocrinology 2016; 103:417-31. [PMID: 26335277 DOI: 10.1159/000440620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
The effects of gonadal steroids on neurological well-being and disease constitute a rich and rapidly expanding area of basic and clinical neuroscience. Gonadal hormones exert potent effects on monoaminergic, cholinergic and peptidergic pathways as well as neurosteroidogenesis which, in turn, impact normal brain organization and function. A spectrum of human neurological conditions are influenced by hormonal fluctuations associated with the menstrual cycle, pregnancy, the menopause and use of oral contraceptives. An appreciation of these relationships may facilitate the development of specific hormonal and anti-hormonal therapies for neurological disorders as disparate as catamenial epilepsy and acute intermittent porphyria.
Collapse
Affiliation(s)
- Hyman M Schipper
- Lady Davis Institute, Jewish General Hospital; and Department of Neurology and Neurosurgery, McGill University, Montreal, Que., Canada
| |
Collapse
|
34
|
Regulation of the Neurodegenerative Process Associated to Parkinson's Disease by CD4+ T-cells. J Neuroimmune Pharmacol 2015; 10:561-75. [PMID: 26018603 DOI: 10.1007/s11481-015-9618-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
Abstract
Neuroinflammation constitutes a fundamental process involved in the physiopathology of Parkinson's disease (PD). Microglial cells play a central role in the outcome of neuroinflammation and consequent neurodegeneration of dopaminergic neurons in the substantia nigra. Current evidence indicates that CD4+ T-cells infiltrate the central nervous system (CNS) in PD, where they play a critical role determining the functional phenotype of microglia, thus regulating the progression of the neurodegenerative process. Here, we first analysed the pathogenic role of inflammatory phenotypes and the beneficial role of anti-inflammatory phenotypes of encephalitogenic CD4+ T-cells involved in the physiopathology of PD. Next, we discussed how alterations of neurotransmitter levels observed in the basal ganglia throughout the time course of PD progression could be strongly affecting the behaviour of encephalitogenic CD4+ T-cells and thereby the outcome of the neuroinflammatory process and the consequent neurodegeneration of dopaminergic neurons. Afterward, we integrated the evidence indicating the involvement of an antigen-specific immune response mediated by T-cells and B-cells against CNS-derived self-constituents in PD. Consistent with the involvement of a relevant autoimmune component in PD, we also reviewed the polymorphisms of both, class I and class II major histocompatibility complexes, associated to the risk of PD. Overall, this study gives an overview of how an autoimmune component involved in PD plays a fundamental role in the progression of the neurodegenerative process.
Collapse
|
35
|
Litim N, Bourque M, Al Sweidi S, Morissette M, Di Paolo T. The 5α-reductase inhibitor Dutasteride but not Finasteride protects dopamine neurons in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2015; 97:86-94. [PMID: 26006269 DOI: 10.1016/j.neuropharm.2015.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022]
Abstract
Finasteride and Dutasteride are 5α-reductase inhibitors used in the clinic to treat endocrine conditions and were recently found to modulate brain dopamine (DA) neurotransmission and motor behavior. We investigated if Finasteride and Dutasteride have a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice as a model of Parkinson's disease (PD). Experimental groups included saline treated controls and mice treated with saline, Finasteride (5 and 12.5 mg/kg) or Dutasteride (5 and 12.5 mg/kg) for 5 days before and 5 days after MPTP administration (4 MPTP injections, 6.5 mg/kg on day 5 inducing a moderate DA depletion) and then they were euthanized. MPTP administration decreased striatal DA contents measured by HPLC while serotonin contents remained unchanged. MPTP mice treated with Dutasteride 5 and 12.5 mg/kg had higher striatal DA and metabolites (DOPAC and HVA) contents with a decrease of metabolites/DA ratios compared to saline-treated MPTP mice. Finasteride had no protective effect on striatal DA contents. Tyrosine hydroxylase (TH) mRNA levels measured by in situ hybridization in the substantia nigra pars compacta were unchanged. Dutasteride at 12.5 mg/kg reduced the effect of MPTP on specific binding to striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) measured by autoradiography. MPTP reduced compared to controls plasma testosterone (T) and dihydrotestosterone (DHT) concentrations measured by liquid chromatography-tandem mass spectrometry; Dutasteride and Finasteride increased plasma T levels while DHT levels remained low. In summary, our results showed that a 5α-reductase inhibitor, Dutasteride has neuroprotective activity preventing in male mice the MPTP-induced loss of several dopaminergic markers.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Sara Al Sweidi
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
36
|
Amano S, Kegelmeyer D, Hong SL. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits. Front Syst Neurosci 2015; 8:242. [PMID: 25610377 PMCID: PMC4285053 DOI: 10.3389/fnsys.2014.00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/07/2014] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.
Collapse
Affiliation(s)
- Shinichi Amano
- Department of Biomedical Sciences, Ohio University Athens, OH, USA ; Ohio Musculoskeletal and Neurological Institute, Ohio University Athens, OH, USA
| | - Deborah Kegelmeyer
- Division of Physical Therapy, College of Medicine, The Ohio State University Columbus, OH, USA
| | - S Lee Hong
- Department of Biomedical Sciences, Ohio University Athens, OH, USA ; Ohio Musculoskeletal and Neurological Institute, Ohio University Athens, OH, USA
| |
Collapse
|
37
|
Wang M, Zhu J, Pan Y, Dong J, Zhang L, Zhang X, Zhang L. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson's disease. J Neurosci Res 2014; 93:487-94. [PMID: 25388401 DOI: 10.1002/jnr.23504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S), a novel endogenous gasotransmitter, has been considered a neuromodulator to enhance hippocampal long-term potentiation and exerts neuroprotective effects against neurotoxin-induced neurodegeneration in rodent models of Parkinson's disease (PD). However, whether H2S can function as a neuromodulator to regulate the levels of nigrostriatal neurotransmitters and then impact the vulnerability of dopaminergic (DA) neurons in response to neurotoxins remains unknown. For this study, we prepared a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTP/p)-induced mouse subacute model of PD to explore the modulatory effect of H2S on monoamine and amino acid neurotransmitters in the striatum of MPTP-treated mice. This study shows that NaHS (an H2S donor, 5.6 mg/kg/day, i.p.) administration improves the survival rate and significantly ameliorates the weight loss of MPTP-treated mice. NaHS treatment attenuated MPTP-induced neuronal damage, restored the diminution of DA neurons, and suppressed the overactivation of astrocytes in the mouse striatum. Additionally, NaHS upregulated striatal serotonin levels and modulated the balance of excitatory glutamate and the inhibitory γ-aminobutyric acid system in response to MPTP challenge. The current study indicates that H2S may function as an effective neuromodulator to regulate striatal neurotransmission and provides insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer's disease and other neurological disorders. Front Cell Neurosci 2014; 8:203. [PMID: 25126056 PMCID: PMC4115668 DOI: 10.3389/fncel.2014.00203] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Christine M Solinsky
- Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
39
|
Cannon J, McCarthy MM, Lee S, Lee J, Börgers C, Whittington MA, Kopell N. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci 2014; 39:705-19. [PMID: 24329933 PMCID: PMC4916881 DOI: 10.1111/ejn.12453] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | - Michelle M. McCarthy
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | - Shane Lee
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Jung Lee
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| | | | | | - Nancy Kopell
- Department of Mathematics and StatisticsBoston University111 Cummington MallBostonMA02215USA
| |
Collapse
|
40
|
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014; 121:849-59. [DOI: 10.1007/s00702-013-1149-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|