1
|
Zhang D, Xu F, Liu Y. Research progress on regulating factors of muscle fiber heterogeneity in poultry: a review. Poult Sci 2024; 103:104031. [PMID: 39033575 PMCID: PMC11295477 DOI: 10.1016/j.psj.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Control of meat quality traits is an important goal of any farm animal production, including poultry. A better understanding of the biochemical properties of muscle fiber properties that drive muscle development and ultimately meat quality constitutes one of the major challenging topics in animal production and meat science. In this paper, the existing classification methods of skeletal muscle fibers in poultry were reviewed and the relationship between contractile and metabolic characteristics of muscle fibers and poultry meat quality was described. Finally, a comprehensive review of multiple potential factors affecting muscle fiber distribution and conversion is presented, including breed, sex, hormones, growth performance, diet, muscle position, exercise, and ambient temperature. We emphasize that knowledge of muscle fiber typing is essential to better understand how to control muscle characteristics throughout the life cycle of animals to better manage the final quality of poultry meat.
Collapse
Affiliation(s)
- Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Al-Jabar WAA, Al-Thuwaini TM. Reproduction of Awassi and Hamdani Sheep Is Associated With a Novel Missense SNP (p.24Ile>Thr) of the GnIH Gene. Bioinform Biol Insights 2024; 18:11779322241267188. [PMID: 39114480 PMCID: PMC11304492 DOI: 10.1177/11779322241267188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Objectives Litter size is a crucial economic factor in the sheep industry. Several factors and genes influence litter size, making the identification of genes or loci involved a genetic challenge. Gonadotropin-inhibitory hormone (GnIH) is one of several genes that influence sheep's reproductive traits. Thus, this study aimed to investigate whether variations in the GnIH gene affect the reproductive performance of Awassi and Hamdani ewes. Methods DNA was extracted from 99 single-progeny ewes and 101 twin ewes. The polymerase chain reaction (PCR) produced amplicons of 262 bp, 275 bp, and 284 bp from exons 1, 2, and 3 of the GnIH gene. Single-strand conformational polymorphism (SSCP) technique was used for genotyping experiments. Sequencing and in silico analysis were performed on each set of SSCP-resolved bands. Results Two genotypes of 262 bp amplicons were found: TT and TC. Sequence analysis revealed a novel missense mutation in the TC genotype at position c.122T>C. Five in silico tools were used to assess the impact of this mutation on GnIH protein structure, function, and stability, all of them demonstrated a deleterious effect. An analysis of statistical data revealed a strong correlation between the c.122T>C single-nucleotide polymorphism (SNP) and reproductive performance. Ewes with the SNP 122T>C exhibited a significant increase in litter size, twinning rates, lambing rates, and days to lambing when compared with ewes with the TT genotype. A lower number of lambs were born to ewes with the TT genotype than those with the TC genotype. Conclusion These results concluded that the c.122T>C SNP variant positively influences the reproductive performance of Awassi and Hamdani sheep. Sheep that carry the c.122T>C SNP show higher litter size and increased productivity.
Collapse
Affiliation(s)
- Waleed A Abd Al-Jabar
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| |
Collapse
|
3
|
An K, Yao B, Tan Y, Kang Y, Wang Z, Su J. Spermatocytes are the terminals of germ cell differentiation in plateau zokor (Eospalax baileyi) during the non-breeding season. Integr Zool 2024. [PMID: 38816925 DOI: 10.1111/1749-4877.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Plateau zokor (Eospalax baileyi) is a subterranean rodent and seasonal breeder. During the non-breeding season, the testicles regress, leading to the arrest of spermatogenesis and loss of fertility. The identification of the specific germ cell type at which spermatogenesis is arrested, as well as potential regulatory factors during the non-breeding season, is important for understanding seasonal spermatogenesis in subterranean species. This study analyzed genes in spermatocytes of plateau zokor by referring to single-cell RNA results in mice. We discovered that spermatogenesis is arrested at the spermatocyte during the non-breeding season, which was corroborated via immunofluorescence staining results. The analysis of gene expression during different stages of meiotic prophase I has revealed that germ cell development may be arrested, starting from zygonema, during the non-breeding season. Meanwhile, we discovered that the apoptosis genes were up-regulated, leading to apoptosis in spermatocytes. To confirm that the germ cell differentiation was blocked during the non-breeding season due to a decrease in the androgen level, we used androgen receptor antagonist (flutamide) to intervene in the breeding season and found that the inner diameter of the seminiferous tubules was significantly reduced, spermatogenesis was arrested, and spermatocytes underwent apoptosis. This study revealed that spermatocytes are the terminal of germ cell differentiation in plateau zokor during the non-breeding season and that the arrest of differentiation is attributed to a decline in androgen levels. Our results complement the theoretical basis of seasonal reproduction in plateau zokor.
Collapse
Affiliation(s)
- Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Przybył BJ, Szlis M, Wysoczański B, Wójcik-Gładysz A. The role of QRFP43 in the secretory activity of the gonadotrophic axis in female sheep. Sci Rep 2024; 14:8989. [PMID: 38637687 PMCID: PMC11026372 DOI: 10.1038/s41598-024-59801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 μg per day and 50 μg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartłomiej Wysoczański
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
5
|
Liu-Fu S, Pan JQ, Sun JF, Shen X, Jiang DL, Ouyang HJ, Xu DN, Tian YB, Huang YM. Effect of immunization against OPN5 on the reproductive performance in Shan Partridge ducks under different photoperiods. Poult Sci 2024; 103:103413. [PMID: 38442558 DOI: 10.1016/j.psj.2023.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 03/07/2024] Open
Abstract
Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHβ, DIO2, THRβ, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHβ and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.
Collapse
Affiliation(s)
- Sui Liu-Fu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian-Qiu Pan
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun-Feng Sun
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Li Jiang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong-Jia Ouyang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Guo X, Dai T, Wei S, Ma Z, Zhao H, Dan X. Rfamide-related peptide-3(RFRP-3) receptor gene is expressed in mouse ovarian granulosa cells: Potential role of RFRP-3 in steroidogenesis and apoptosis. Steroids 2024; 202:109349. [PMID: 38072091 DOI: 10.1016/j.steroids.2023.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
RFRP-3 is a functional ortholog of avian GnIH and regulates reproductive activities in the gonads of animals. However, the role of RFRP-3 in the function of ovarian granulosa cells in mice remains unclear. First, we detected the expression of the RFRP-3 receptor (GPR147) in the ovarian granulosa cells of mice. Second, the effect of RFRP-3 treatment on estradiol and progesterone secretions from granulosa cells was tested by ELISA. Meanwhile, the expression of genes and proteins regulating steroid hormone synthesis was respectively examined by qPCR and western blot. Furthermore, the effect of RFRP-3 treatment on the apoptosis of granulosa cells was analyzed. The results revealed that the GPR147 protein (a RFRP-3 receptor) was expressed in the ovarian granulosa cells of mice. Low and medium doses RFRP-3 treatment significantly reduced progesterone secretion in the granulosa cells (P < 0.05), while RFRP-3 suppressed p450scc, 3β-HSD, StAR, and FSHR expression in a non-dose-dependent manner. Moreover, RFRP-3 treatment might induce the apoptosis of granulosa cells. Additionally, low doses RFRP-3 significantly reduced p-ERK1/2 protein expression (P < 0.05) in the ovarian granulosa cells. We here, for the first time, confirmed that GPR147 was expressed in the ovarian granulosa cells of mice. Our findings suggested that and RFRP-3 regulates the granulosa cell function through the ERK signaling pathway, which will lay the foundation for uncovering molecular mechanisms by which RFRP-3 regulates follicle development in future.
Collapse
Affiliation(s)
- Xingru Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Tianshu Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Shihao Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Ziming Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Hongxi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China.
| | - Xingang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China; Ningxia Province's Key Laboratory of animal cell and molecular breeding, Yinchuan, PR China.
| |
Collapse
|
8
|
Marchese NA, Ríos MN, Guido ME, Valdez DJ. Three different seasonally expressed opsins are present in the brain of the Eared Dove, an opportunist breeder. ZOOLOGY 2024; 162:126147. [PMID: 38277721 DOI: 10.1016/j.zool.2024.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.
Collapse
Affiliation(s)
- Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego J Valdez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
9
|
Zhou X, Jiang D, Xu Y, Pan J, Xu D, Tian Y, Shen X, Huang Y. Endocrine and molecular regulation mechanisms of follicular development and egg-laying in quails under different photoperiods. Anim Biotechnol 2023; 34:4809-4818. [PMID: 37022011 DOI: 10.1080/10495398.2023.2196551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Photoperiod is a key environmental factor in regulating bird reproduction and induces neuroendocrine changes through the hypothalamic-pituitary-gonadal (HPG) axis. OPN5, as a deep-brain photoreceptor, transmits light signals to regulate follicular development through TSH-DIO2/DIO3. However, the mechanism among OPN5, TSH-DIO2/DIO3, and VIP/PRL in the HPG axis underlying the photoperiodic regulation of bird reproduction is unclear. In this study, 72 laying quails with 8-week-old were randomly divided into the long-day (LD) group [16 light (L): 8 dark (D)] and the short-day (SD) group (8 L:16 D), and then samples were collected on d 1, d 11, d 22, and d 36 of the experiment. The results showed that compared with the LD group, the SD group significantly inhibited follicular development (P < 0.05), decreased the P4, E2, LH, and PRL in serum (P < 0.05), downregulated the expression of GnRHR, VIP, PRL, OPN5, DIO2, and LHβ (P < 0.05), reduced the expression of GnRH and TSHβ (P > 0.05), and promoted DIO3, GnIH gene expression (P < 0.01). The short photoperiod downregulates OPN5, TSHβ, and DIO2 and upregulates DIO3 expression to regulate the GnRH/GnIH system. The downregulation of GnRHR and upregulation of GnIH resulted in a decrease in LH secretion, which withdrew the gonadotropic effects on ovarian follicles development. Slow down of follicular development and egg laying may also arise from lack of PRL potentiation to small follicle development under short days.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science & Technology, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
10
|
Song F, Ma S, Zhang Y, Yang X, Zhang H, Han Y, Liu Y, Gao F, Yuan Z. Seasonal Variation in Gut Microbiota of the Wild Daurian Ground Squirrel ( Spermophilus dauricus): Metagenomic Insights into Seasonal Breeding. Animals (Basel) 2023; 13:2235. [PMID: 37444034 DOI: 10.3390/ani13132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The Spermophilus dauricus, the wild Daurian ground squirrel, is known to exhibit seasonal breeding behavior. Although the importance of gut microbiota in animal digestion, metabolism, and immunity is well-established, the correlation between gut microbiota and seasonal breeding in this species remains inadequately explored. In the present study, using metagenomic sequencing technology, the compositions and functions of the gut microbiota of wild Daurian ground squirrels in different breeding seasons were explored. The dominant gut microbial phyla were Firmicutes and Bacteroidetes. The Firmicutes were predominant in the breeding season, whereas Bacteroidetes were predominant in the non-breeding season. At the genus level, Lactobacillus accumulated during the breeding season, whereas Odoribacter and Alistipes increased during the non-breeding season. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genome) annotations indicated that genes in gut samples were highly associated with metabolic functions. The differential expression gene analysis showed that genes related to the phosphotransferase system, cysteine, and methionine metabolism were highly expressed during the breeding season, whereas the non-breeding season upregulated genes were enriched in starch and sucrose metabolism and bacterial chemotaxis pathways. In conclusion, this study could provide a reference for investigating gut microbiota in seasonal breeding animals and offer new insight into gut microbial function.
Collapse
Affiliation(s)
- Fengcheng Song
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shubao Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoying Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fuli Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Ding Y, Jiang X, Jing H, Liu G, Cheng J. Recombinant HBsAg-S and RFRP-3 DNA vaccine promotes reproduction hormone secretion in sheep. Theriogenology 2023; 201:68-75. [PMID: 36842263 DOI: 10.1016/j.theriogenology.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
RF-amide related peptides (RFRP) have been proposed as critical regulators of gonadotropin secretion in mammals. This study was designed to construct a DNA vaccine and investigate the effect of vaccine encoding RFRP-3 on reproduction physiology in ewe. A recombinant vaccine was constructed using two copies of the RFRP-3 gene and HBsAg-S that generate a fusion protein to induce an immunology response. Results showed this recombinant vaccine could produce a significant antibody titer in the treated animals (P < 0.05). The specific RFRP-3 antibody response induced by the vaccine was detected at week 2 with a peak at week 6 after the initial immunization. Furthermore, we found that ewes inoculated with pVAX-tPA-HBsAg-S-2RFRP-asd vaccine significantly raised the concentration of GnRH, LH and E2 in serum compared to the control group. LH and E2 concentration in the treated ewes (Group T) was significantly higher than that in control ewes (Group C) at weeks 10, 12 and 14 after the initial immunization, respectively (P < 0.05). Therefore, RFRP-3 can be used as a target for DNA immunization to promote reproductive hormone secretion in ewes and RFRP-3 gene immunization might be a candidate tool to regulate mammal reproduction.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haijing Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Junjun Cheng
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
12
|
Xiong X, Hu Y, Pan B, Zhu Y, Fei X, Yang Q, Xie Y, Xiong Y, Lan D, Fu W, Li J. RFRP-3 Influences Apoptosis and Steroidogenesis of Yak Cumulus Cells and Compromises Oocyte Meiotic Maturation and Subsequent Developmental Competence. Int J Mol Sci 2023; 24:ijms24087000. [PMID: 37108163 PMCID: PMC10138887 DOI: 10.3390/ijms24087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
RF amide-related peptide 3 (RFRP-3), a mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), is identified to be a novel inhibitory endogenous neurohormonal peptide that regulates mammalian reproduction by binding with specific G protein-coupled receptors (GPRs) in various species. Herein, our objectives were to explore the biological functions of exogenous RFRP-3 on the apoptosis and steroidogenesis of yak cumulus cells (CCs) and the developmental potential of yak oocytes. The spatiotemporal expression pattern and localization of GnIH/RFRP-3 and its receptor GPR147 were determined in follicles and CCs. The effects of RFRP-3 on the proliferation and apoptosis of yak CCs were initially estimated by EdU assay and TUNEL staining. We confirmed that high-dose (10-6 mol/L) RFRP-3 suppressed viability and increased the apoptotic rates, implying that RFRP-3 could repress proliferation and induce apoptosis. Subsequently, the concentrations of E2 and P4 were significantly lower with 10-6 mol/L RFRP-3 treatment than that of the control counterparts, which indicated that the steroidogenesis of CCs was impaired after RFRP-3 treatment. Compared with the control group, 10-6 mol/L RFRP-3 treatment decreased the maturation of yak oocytes efficiently and subsequent developmental potential. We sought to explore the potential mechanism of RFRP-3-induced apoptosis and steroidogenesis, so we observed the levels of apoptotic regulatory factors and hormone synthesis-related factors in yak CCs after RFRP-3 treatment. Our results indicated that RFRP-3 dose-dependently elevated the expression of apoptosis markers (Caspase and Bax), whereas the expression levels of steroidogenesis-related factors (LHR, StAR, 3β-HSD) were downregulated in a dose-dependent manner. However, all these effects were moderated by cotreatment with inhibitory RF9 of GPR147. These results demonstrated that RFRP-3 adjusted the expression of apoptotic and steroidogenic regulatory factors to induce apoptosis of CCs, probably through binding with its receptor GPR147, as well as compromised oocyte maturation and developmental potential. This research revealed the expression profiles of GnIH/RFRP-3 and GPR147 in yak CCs and supported a conserved inhibitory action on oocyte developmental competence.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
13
|
Exogenous Melatonin Regulates Puberty and the Hypothalamic GnRH-GnIH System in Female Mice. Brain Sci 2022; 12:brainsci12111550. [PMID: 36421874 PMCID: PMC9688274 DOI: 10.3390/brainsci12111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic–pituitary–gonadal axis.
Collapse
|
14
|
Liu J, Dai S, Shao X, Wei C, Dai Z, Yang P, Lei M, Chen R, Zhu H. Spexin mRNA profile and its response to different photoperiods in Chinese Yangzhou geese (Anas cygnoides). Front Vet Sci 2022; 9:961431. [PMID: 36118333 PMCID: PMC9479540 DOI: 10.3389/fvets.2022.961431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/29/2022] [Indexed: 11/14/2022] Open
Abstract
Spexin (SPX, NPQ), a novel neuropeptide composed of 14 amino acid residues, is evolutionarily conserved among different species. Spexin has been suggested to have pleiotropic functions in mammals. However, reports on spexin in birds are limited. To clarify the role of spexin in goose reproduction, the spexin gene was cloned and analyzed. Analysis of tissue distribution by RT-PCR showed that the expression of spexin and its two receptors was widespread. During the long photoperiod, the expression levels of spexin in the pituitary and hypothalamus and of GALR2/3 in the pituitary decreased, and the GnRH, LHβ, and FSHβ expression levels increased significantly. This suggests that a long photoperiod regulates reproductive activities by activating the gonadotrope-axis, which is modulated by decreased spexin levels.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shudi Dai
- School of Life Science, Jiangsu University, Zhenjiang, China
| | - Xibing Shao
- Anhui Tianzhi-jiao Goose Industry Co., Ltd., Chuzhou, China
| | - Chuankun Wei
- Anhui Tianzhi-jiao Goose Industry Co., Ltd., Chuzhou, China
| | - Zichun Dai
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pengxia Yang
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingming Lei
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huanxi Zhu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Huanxi Zhu
| |
Collapse
|
15
|
Liufu S, Pan J, Sun J, Shen X, Jiang D, Ouyang H, Xu D, Tian Y, Huang Y. OPN5 Regulating Mechanism of Follicle Development Through the TSH-DIO2/DIO3 Pathway in Mountain Ducks Under Different Photoperiods. Front Physiol 2022; 13:813881. [PMID: 35733985 PMCID: PMC9208676 DOI: 10.3389/fphys.2022.813881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract: Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird. Birds translates photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered as candidate DBPs involving in regulation of seasonal reproduction in birds. However, little is known about the effect of OPN5 in non-seasonal breeding birds. Thus, we pondered on whether OPN5 regulating follicular development through TSH-DIO2/DIO3 system responds to different photoperiods in non-seasonal laying ducks. As an ideal non-seasonal breeding bird, a total of 120 mountain ducks were randomly divided into three groups and treated respectively to a different photoperiod: group S (8 L:16D), group C (17 L:7D), and group L (24 L:0D). The ducks were caged in a fully enclosed shelter with the same feeding conditions for each group, free water and limited feeding (150 g per duck each day). Samples were collected from each group at d 0, d 5, d 8, d 20, and d 35 (n = 8). The ducks in 24 h photoperiod had the highest laying rate and the lowest feed-to-egg ratio, while the ducks in 8 h photoperiod had the lowest laying rate and the highest feed-to-egg ratio. Long-day photoperiod for 24 h significantly increased the ovarian index and GnRH, LH, E2, and P4 levels in serum; short-day photoperiod for 8 h increased testosterone levels in serum. Compared with 8 h photoperiod, long-day photoperiod significantly or highly significantly increased the mRNA level and protein expression of OPN5 in the hypothalamus of long-day photoperiod on d 35 (p < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHβ, DIO2, THRβ, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DI O 3 were negatively correlated with OPN5. The results revealed that OPN5 mediated the effect of light on follicular development through the TSH-DIO2/DIO3 pathway, the expression of OPN5 increased with light duration and improved the efficiency of the HPG axis to promote follicular development in mountain ducks.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Junfeng Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- *Correspondence: Yunbo Tian, ; Yunmao Huang,
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- *Correspondence: Yunbo Tian, ; Yunmao Huang,
| |
Collapse
|
16
|
Photoperiodic Modulation in Immune and Reproductive Systems in Japanese Quails ( Coturnix japonica): A Morphometric Perspective. Vet Sci 2022; 9:vetsci9050248. [PMID: 35622776 PMCID: PMC9147197 DOI: 10.3390/vetsci9050248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to elucidate a relationship between lymphoid organs and reproductive activity in male Japanese quails (Coturnix japonica) bred in a temperate region of Pakistan (30.3753° N, 69.3451° E) in response to photoperiodic changes. The research focused primarily on the relative morphological changes in primary (thymus and bursa of Fabricius) and secondary (spleen) lymphoid organs with respect to seasonal variations in the histomorphometry of testicular tissue. For this purpose, a comparable number of clinically healthy Japanese quails were exsanguinated during active (April–May), regressive (September–October) and inactive (January–February) reproductive phases. Following an extensive gross measurement of lymphoid and reproductive organs, a histomorphometric analysis was performed on sampled tissues by employing ImageJ® software. Blood was collected for hormonal and leukocytic analysis. One-way ANOVA was used for statistical comparison. Testes had the highest parenchymal development in the active phase (80.66 ± 21.22 µm) and the lowest in the inactive phase (27.80 ± 7.22 µm). Conversely, a percentage change was evident in the sizes of primary (bursa: 61.5%, thymus: 46.9%) and secondary (spleen: 23.9%) lymphoid organs during inactive and active reproductive phases. This study demonstrated that a physiological trade-off is imperative between immune and reproductive systems for optimum survivability and reproductive performance.
Collapse
|
17
|
Xu Y, Jiang D, Liu J, Fu Y, Song Y, Fan D, Huang X, Liufu S, Pan J, Ouyang H, Tian Y, Shen X, Huang Y. Photoperiodic Changes in Both Hypothalamus Neurotransmitters and Circulating Gonadal Steroids Metabolomic Profiles in Relation to Seasonal Reproduction in Male Quail. Front Physiol 2022; 13:824228. [PMID: 35399254 PMCID: PMC8993408 DOI: 10.3389/fphys.2022.824228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Both hypothalamic neurotransmitters and serum steroid hormones are impacted by photoperiod and have effects on physiology and seasonal reproductive. However, the relationship between circulating gonadal steroids and hypothalamic neurotransmitters underlying different photoperiod is still unclear. To further understand the crosstalk of neurotransmitters and steroids in seasonal reproduction, metabolic changes of 27 neurotransmitters concentrated in hypothalamus tissues and 42 steroids hormones in serum were assessed during two artificial photoperiodic programs. The results showed that photoperiod induce testicular atrophy and recrudescence. In L-to-S groups, significantly decreased levels of testosterone concentration were found in serum (P < 0.001) and increased 11-Dehydrocorticosterone (P < 0.05); Testosterone were almost undetectable at SD_14d. In addition, the hypothalamus exhibited significantly increased arginine and 4-aminobutyric acid (GABA) concentration and decreased serotonin and epinephrine content (P < 0.01 or P < 0.05). Accordingly, serum testosterone and androstenedione became detectable at LD_3d in the S-to-L group and were markedly increase at LD_7d. Furthermore, Serum androstenedione showed a significant increase with long light expose (P < 0.01). Additionally, the hypothalamus exhibited both significantly increased L.Tryptophan and phenylalanine concentration, as well as decreased L-glutamine and L-glutamine.acid content (P < 0.01 or P < 0.05). Serotonin metabolism showed significant differences between L-to-S group and S-to-L group. Furthermore, in the correlation analysis, serum testosterone had a positive correlation with 5-Hydroxyindole-3-acetic acid (5-HIAA), while Androstenedione was significantly negative with L.Tryptophan in L-to-S (P < 0.05). However, in S-to-L group, serum testosterone showed strong negative correlation with both serotonin and 5-HIAA (P < 0.05), but positive correlation with L.Tryptophan (P < 0.01), while Androstenedione was significantly negative correlation with both serotonin (P < 0.05) and L-Glutamine (P < 0.01). Photoperiod also had significant effects on the mRNA expression. We found significant differences in gene expression patterns of both serotonin signaling and steroid biosynthesis, while MAOB, NR5A1, and 3β-HSD showed an opposite tendency between two groups. Taken together, our results revealed that circulating gonadal steroids and hypothalamic neurotransmitters were significantly impact quail’s seasonal reproduction. Circulating gonadal steroids have different effects on neurotransmitter at different photoperiodism, which may coordinately influence the seasonal reproduction of quails.
Collapse
Affiliation(s)
- Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jiaxin Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yuting Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yan Song
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Di Fan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xuefei Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
18
|
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior. Front Neuroendocrinol 2022; 64:100955. [PMID: 34767778 DOI: 10.1016/j.yfrne.2021.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.
Collapse
|
19
|
Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front Neuroendocrinol 2022; 64:100953. [PMID: 34757094 DOI: 10.1016/j.yfrne.2021.100953] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.
Collapse
|
20
|
Cheng L, Yang S, Si L, Wei M, Guo S, Chen Z, Wang S, Qiao Y. Direct effect of RFRP-3 microinjection into the lateral ventricle on the hypothalamic kisspeptin neurons in ovariectomized estrogen-primed rats. Exp Ther Med 2021; 23:24. [PMID: 34815776 PMCID: PMC8593914 DOI: 10.3892/etm.2021.10946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3) may be involved in the inhibition of kisspeptin, but there is no direct evidence that RFRP-3 can directly act on kisspeptin neurons. The present study aimed to investigate the role and mechanism of RFRP-3 and kisspeptin in the hypothalamic-pituitary reproductive axis. In order to detect the expression and localization of RFRP-3 and kisspeptin in dorsomedial hypothalamic nucleus, double immunofluorescence method combined with confocal microscopy were performed. RFRP-3 was injected into the lateral ventricle of ovariectomized estrogen primed rats. Blood and brain tissues were collected at 60-, 120-, 240- and 360-min. Serum levels of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were detected by ELISA. Kisspeptin expression in hypothalamus was detected by western blotting. Finally, surface plasmon resonance was used to verify whether RFRP-3 can directly interact with kisspeptin. Confocal images indicated that RFRP-3 and kisspeptin were co-expressed in the same neurons in the hypothalamus of ovariectomized estrogen-primed rats. Serum concentrations of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were demonstrated to be significantly reduced following microinjection of RFRP-3 into the lateral ventricle for 60, 120, 240 and 360 min compared with the corresponding saline groups. The expression levels of kisspeptin in hypothalamus were gradually decreased following microinjection of RFRP-3 into the lateral ventricle. In addition, the affinity constant (KD) of RFRP-3 binding to kisspeptin was 6.005x10-5 M, indicating that RFRP-3 bound directly to kisspeptin in the range of protein-protein binding strength (KD, 10-3-10-6 M). In conclusion, RFRP-3 may regulate the hypothalamic-pituitary reproductive axis by inhibiting the expression of hypothalamic kisspeptin and direct binding.
Collapse
Affiliation(s)
- Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Sen Guo
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Shusong Wang
- Hebei Provincial Key Laboratory of Reproductive Medicine, Family Planning Science and Technology Research Institute of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuebing Qiao
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
21
|
Tsutsui K, Ubuka T. Gonadotropin-inhibitory hormone (GnIH): A new key neurohormone controlling reproductive physiology and behavior. Front Neuroendocrinol 2021; 61:100900. [PMID: 33450199 DOI: 10.1016/j.yfrne.2021.100900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
22
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
23
|
Soni R, Haldar C, Mohini Chaturvedi C. Retinal and extra-retinal photoreceptor responses and reproductive performance of Japanese quail (Coturnix coturnix japonica) following exposure to different photoperiodic regime. Gen Comp Endocrinol 2021; 302:113667. [PMID: 33221313 DOI: 10.1016/j.ygcen.2020.113667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Japanese quail is a truly photoperiodic avian species. In general long days are gonado-stimulatory and short days are gonado-inhibitory for this poultry bird. To investigate the correlation of retinal and extra-retinal photoreceptors with different photoperiodic conditions quail were divided into 2 groups and kept under long day (16L: 8D) and short day (8L: 16D) condition separately to develop photosensitivity and scotosensitivity respectively. Transfer of long day quail to intermediate day-length (13.5L: 10.5D) developed photorefractoriness (relative) and prolonged exposure to short photoperiodic conditions led the birds to develop scotorefractoriness. Increased expression of mRNA and immunosignaling of photoreceptors rhodopsin, transducin in eye and hypothalamus while decreased mRNA expression of melatonin receptors (Mel1b, Mel1c) were noted in the eyes of photosensitive (PS) and scotorefractory (SR) quail compared to photorefractory (PR) and scotosensitive (SS) birds respectively. Decreased expression of hypothalamic GnIH and melatonin receptors mRNA was observed in PS and SR birds compared to PR and SS birds respectively. Modulation of retinal and extra retinal photoreceptors leads to increased spermatogenesis as well as mRNA expression of steroidogenic genes and androgen receptor in the testis of sexually active PS and SR quail. These results led us to conclude that gonadal stimulation in PS as well as SR quail is outcome of activated retinal and extra retinal photoreceptors which lowered melatonin receptors and GnIH expression. Contrarily testicular inhibition in PR and SS is the outcome of decreased photoperception. It is suggested that decreased photoperception in SS quail increases after prolong exposure of the short day (in SR) leading to increased activity of HPG axis.
Collapse
Affiliation(s)
- Richa Soni
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Chandana Haldar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
24
|
Tan YG, Xu XL, Cao HY, Mao HG, Yin ZZ. RFamide-related peptides' gene expression, polymorphism, and their association with reproductive traits in chickens. Poult Sci 2021; 100:488-495. [PMID: 33518101 PMCID: PMC7858160 DOI: 10.1016/j.psj.2020.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
RFamide-related peptides (RFRP) are synthesized by the hypothalamus and have a regulatory role in gonad development. The goal of this study was to investigate the association between SNP of the RFRP gene and the reproductive traits and hormone levels of Zhenning yellow chickens. The mRNA expression levels were detected based on different tissues, ages, and genotypes. Eleven mutation sites were detected in the RFRP gene, 4 of which were significantly related to reproductive traits and hormone levels. Association analysis revealed that A276G was associated with egg production at 300 d of age (EP300) and amount of prehierarchical follicles (P < 0.05). G1396A was associated with egg weight at 300 d of age and luteinizing hormone (LH) and prolactin levels (P < 0.05). G1694A showed significant associations with fertilization rate and LH levels (P < 0.05), and A2659G was associated with EP300 (P < 0.05). The results of expression analysis showed that the RFRP mRNA expression levels in the hypothalamus were higher than those in other tissues (P < 0.01). The expression in immature individuals was higher than that in mature ones (P < 0.01). There were also differences in mRNA expression levels between different genotypes (P < 0.05). In summary, the results of this study might provide potential markers and a theoretical basis for the improvement of chicken reproductive traits.
Collapse
Affiliation(s)
- Y G Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - X L Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - H Y Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - H G Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Z Z Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
25
|
Beriotto AC, Di Yorio MP, Pérez Sirkin DI, Toledo-Solis FJ, Peña-Marín ES, Álvarez-González CA, Tsutsui K, Vissio PG. Gonadotropin-inhibitory hormone (GnIH) distribution in the brain of the ancient fish Atractosteus tropicus (Holostei, Lepisosteiformes). Gen Comp Endocrinol 2020; 299:113623. [PMID: 32976836 DOI: 10.1016/j.ygcen.2020.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
The Holostei group occupies a critical phylogenetic position as the sister group of the Teleostei. However, little is known about holostean pituitary anatomy or brain distribution of important reproductive neuropeptides, such as the gonadotropin-inhibitory hormone (GnIH). Thus, the present study set out to characterize the structure of the pituitary and to localize GnIH-immunoreactive cells in the brain of Atractosteus tropicus from the viewpoint of comparative neuroanatomy. Juveniles of both sexes were processed for general histology and immunohistochemistry. Based on the differences in cell organization, morphology, and staining properties, the neurohypophysis and three regions in the adenohypophysis were identified: the rostral and proximal pars distalis (PPD) and the pars intermedia. This last region was found to be innervated by the neurohypophysis. This organization, together with the presence of a saccus vasculosus, resembles the general teleost pituitary organization. A vast number of blood vessels were also recognized between the infundibulum floor of the hypothalamus and the PPD, evidencing the characteristic presence of a median eminence and a portal system. However, this well-developed pituitary portal system resembles that of tetrapods. As regards the immunohistochemical localization of GnIH, we found four GnIH-immunoreactive (GnIH-ir) populations in three hypothalamic nuclei (suprachiasmatic, retrotuberal, and tuberal nuclei) and one in the diencephalon (prethalamic nucleus), as well as a few scattered neurons throughout the olfactory bulbs, the telencephalon, and the intersection between them. GnIH-ir fibers showed a widespread distribution over almost all brain regions, suggesting that GnIH function is not restricted to reproduction only. In conclusion, the present study describes, for the first time, the pituitary of A. tropicus and the neuroanatomical localization of GnIH in a holostean fish that exhibits a similar distribution pattern to that of teleosts and other vertebrates, suggesting a high degree of phylogenetic conservation of this system.
Collapse
Affiliation(s)
- Agustina C Beriotto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Francisco J Toledo-Solis
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Emyr S Peña-Marín
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University. Tokyo, Japan
| | - Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina.
| |
Collapse
|
26
|
Piñeiro A, Hernández MC, Silván G, Illera JC, Barja I. Reproductive hormones monthly variation in free‐ranging European wildcats: Lack of association with faecal marking. Reprod Domest Anim 2020; 55:1784-1793. [DOI: 10.1111/rda.13843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Ana Piñeiro
- Escuela de Medicina Veterinaria Universidad Andrés Bello, Republica 440 Santiago de Chile Chile
- Unidad Zoología Departamento de Biología Universidad Autónoma de Madrid Madrid Spain
| | - Mª Carmen Hernández
- Unidad Zoología Departamento de Biología Universidad Autónoma de Madrid Madrid Spain
| | - Gema Silván
- Departamento de Fisiología (Fisiología Animal) Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Juan Carlos Illera
- Departamento de Fisiología (Fisiología Animal) Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Isabel Barja
- Unidad Zoología Departamento de Biología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
27
|
Tsutsui K, Ubuka T. Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol Cell Endocrinol 2020; 514:110914. [PMID: 32535039 DOI: 10.1016/j.mce.2020.110914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Based on extensive studies on gonadotropin-releasing hormone (GnRH) it was assumed that GnRH is the only hypothalamic neurohormone regulating gonadotropin release in vertebrates. In 2000, however, Tsutsui's group discovered gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that inhibits gonadotropin release, in quail. Subsequent studies by Tsutsui's group demonstrated that GnIH is conserved among vertebrates, acting as a new key neurohormone regulating reproduction. GnIH inhibits gonadotropin synthesis and release through actions on gonadotropes and GnRH neurons via GnIH receptor, GPR147. Thus, GnRH is not the sole hypothalamic neurohormone controlling vertebrate reproduction. The following studies by Tsutsui's group have further demonstrated that GnIH has several important functions in addition to the control of reproduction. Accordingly, GnIH has drastically changed our understanding about reproductive neuroendocrinology. This review summarizes the discovery of GnIH, progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan.
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
28
|
Chen J, Huang S, Zhang J, Li J, Wang Y. Characterization of the neuropeptide FF (NPFF) gene in chickens: evidence for a single bioactive NPAF peptide encoded by the NPFF gene in birds. Domest Anim Endocrinol 2020; 72:106435. [PMID: 32247990 DOI: 10.1016/j.domaniend.2020.106435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/09/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - S Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Y Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Caro SP, Cornil CA, van Oers K, Visser ME. Personality and gonadal development as sources of individual variation in response to GnRH challenge in female great tits. Proc Biol Sci 2020; 286:20190142. [PMID: 31039718 DOI: 10.1098/rspb.2019.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seasonal timing of reproduction is a key life-history trait, but we know little about the mechanisms underlying individual variation in female endocrine profiles associated with reproduction. In birds, 17β-oestradiol is a key reproductive hormone that links brain neuroendocrine mechanisms, involved in information processing and decision-making, to downstream mechanisms in the liver, where egg-yolk is produced. Here, we test, using a simulated induction of the reproductive system through a Gonadotropin-Releasing Hormone (GnRH) challenge, whether the ovary of pre-breeding female great tits responds to brain stimulation by increasing oestradiol. We also assess how this response is modified by individual-specific traits like age, ovarian follicle size, and personality, using females from lines artificially selected for divergent levels of exploratory behaviour. We show that a GnRH injection leads to a rapid increase in circulating concentrations of oestradiol, but responses varied among individuals. Females with more developed ovarian follicles showed stronger responses and females from lines selected for fast exploratory behaviour showed stronger increases compared to females from the slow line, indicating a heritable component. This study shows that the response of the ovary to reproductive stimulation from the brain greatly varies among individuals and that this variation can be attributed to several commonly measured individual traits, which sheds light on the mechanisms shaping heritable endocrine phenotypes.
Collapse
Affiliation(s)
- Samuel P Caro
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,2 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), Unité Mixte de Recherche CNRS 5175 , Montpellier , France
| | | | - Kees van Oers
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| | - Marcel E Visser
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| |
Collapse
|
30
|
Fernandes JRD, Moitra A, Tsutsui K, Banerjee A. Regulation of the hypothalamic GnRH-GnIH system by putrescine in adult female rats and GT1-7 neuronal cell line. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:214-229. [PMID: 32039555 DOI: 10.1002/jez.2351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.
Collapse
Affiliation(s)
- Joseph R D Fernandes
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Abhishek Moitra
- Department of Electrical and Electronics Engineering, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science of Waseda University, Waseda University, Tokyo, Japan
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| |
Collapse
|
31
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
32
|
Pinelli C, Jadhao AG, Bhoyar RC, Tsutsui K, D’Aniello B. Distribution of gonadotropin-inhibitory hormone (GnIH)-like immunoreactivity in the brain and pituitary of the frog (Pelophylax esculentus) during development. Cell Tissue Res 2019; 380:115-127. [DOI: 10.1007/s00441-019-03139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
|
33
|
Malek I, Haim A, Izhaki I. Melatonin mends adverse temporal effects of bright light at night partially independent of its effect on stress responses in captive birds. Chronobiol Int 2019; 37:189-208. [DOI: 10.1080/07420528.2019.1698590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- I. Malek
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A. Haim
- The Israeli Centre for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| | - I. Izhaki
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
34
|
MALEK I, HAIM A. Bright artificial light at night is associated with increased body mass, poor reproductive success and compromised disease tolerance in Australian budgerigars (
Melopsittacus undulatus
). Integr Zool 2019; 14:589-603. [DOI: 10.1111/1749-4877.12409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Itay MALEK
- Department of Evolutionary and Environmental BiologyUniversity of Haifa Mount Carmel Haifa Israel
| | - Abraham HAIM
- The Israeli Center for Interdisciplinary Research in ChronobiologyUniversity of Haifa Haifa Israel
| |
Collapse
|
35
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
36
|
Soni R, Haldar C, Chaturvedi CM. Paraquat induced impaired reproductive function and modulation of retinal and extra-retinal photoreceptors in Japanese quail (Coturnix coturnix japonica). Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108568. [PMID: 31302232 DOI: 10.1016/j.cbpc.2019.108568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
Paraquat (PQ) being a potent herbicide, causes toxic effect on growth, development and reproduction of plant as well as in animals. In this study we have mainly focused on the toxic effect of PQ on photoperception via different photoreceptors present in retina, pineal and hypothalamus and thereby its effect on hypothalamic - pituitary - gonadal (HPG) axis. PQ was administered i.p.10 mg/kg body weight daily for 1 week in poultry birds Japanese quail (Coturnix coturnix japonica). Our findings clearly indicated decrease in immunoreactivity of retinal and extra retinal photoreceptors (Iodopsin, rhodopsin and transducin) following PQ treatment in comparison to control group. Increased immunoreactivity of GnIH was observed in testis and epididymis of PQ treated group. Decreased mRNA expression of photoreceptors (rhodopsin and melanopsin), steroidogenic genes, androgen receptor, GnRH-I were found in PQ treated group while increased mRNA expression of melatonin receptors (Mel 1a R, Mel 1b R, Mel 1c R) and GnIH were found in PQ treated group. Thus, from the present results it may be concluded that PQ treatment alters the photoperception via altering the expression of photoreceptors and also modulates the HPG axis thereby alters the reproductive functions in Japanese quails.
Collapse
Affiliation(s)
- Richa Soni
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Chandana Haldar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
37
|
Verhagen I, Laine VN, Mateman AC, Pijl A, de Wit R, van Lith B, Kamphuis W, Viitaniemi HM, Williams TD, Caro SP, Meddle SL, Gienapp P, van Oers K, Visser ME. Fine-tuning of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202481. [PMID: 31371403 DOI: 10.1242/jeb.202481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.
Collapse
Affiliation(s)
- Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Agata Pijl
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Ruben de Wit
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Bart van Lith
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam-Zuidoost, The Netherlands
| | - Heidi M Viitaniemi
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Samuel P Caro
- Departement d'Ecologie Evolutive, Centre d'Ecologie Fonctionnelle & Evolutive, 34293 Montpellier 5, France
| | - Simone L Meddle
- Department of Behavioural Neuroendocrinology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
38
|
Paullada-Salmerón JA, Cowan ME, Loentgen GH, Aliaga-Guerrero M, Zanuy S, Mañanós EL, Muñoz-Cueto JA. The gonadotropin-inhibitory hormone system of fish: The case of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2019; 279:184-195. [PMID: 30923006 DOI: 10.1016/j.ygcen.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.
Collapse
Affiliation(s)
- José Antonio Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| | - Mairi E Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Guillaume H Loentgen
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | | | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, Puerto Real (Cádiz), Spain.
| |
Collapse
|
39
|
Poissenot K, Anger K, Constantin P, Cornilleau F, Lomet D, Tsutsui K, Dardente H, Calandreau L, Beltramo M. Brain mapping of the gonadotropin-inhibitory hormone-related peptide 2 with a novel antibody suggests a connection with emotional reactivity in the Japanese quail (Coturnix japonica, Temminck & Schlegel, 1849). J Comp Neurol 2019; 527:1872-1884. [PMID: 30734308 DOI: 10.1002/cne.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide first discovered in the quail brain that is involved in the control of reproductive physiology and behaviors, and stress response. GnIH gene encodes a second peptide, GnIH-related peptide-2 (RP2), the distribution and function of which remain unknown. We therefore studied GnIH-RP2 distribution by immunohistochemistry using a novel antibody capable of discriminating between GnIH and GnIH-RP2. The overall distribution of GnIH-RP2 is similar to that of GnIH. The vast majority of labeled neurons is located in the paraventricular nucleus (PVN) of the hypothalamus. Labeling of fibers is conspicuous in the diencephalon, but present also in the mesencephalon and telencephalon. Several regions involved in the control of reproduction and stress response (the PVN, septum, bed nucleus of the stria terminalis and nucleus commissura pallii) showed a dense network of immunolabeled fibers. To investigate the potential function of GnIH-RP2 we compared its expression in two quail lines genetically selected for divergence in their emotional reactivity. A quantitative analysis in the above-mentioned brain regions showed that the density of fibers was similar in the two lines. However, the number of GnIH-RP2 labeled neurons was higher in the median portion of the PVN in birds with higher emotional reactivity. These results point to a possible involvement of GnRH-RP2 in modulating stress response and/or emotional reactivity.
Collapse
Affiliation(s)
- Kevin Poissenot
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Karine Anger
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Paul Constantin
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Fabien Cornilleau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hugues Dardente
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Ludovic Calandreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Massimiliano Beltramo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
40
|
Zhang H, Chen L, Zhang B, Lin Q. Molecular identification of GnIH and its potential role in reproductive physiology and male pregnancy of the lined seahorse (Hippocampus erectus). Gen Comp Endocrinol 2019; 279:196-202. [PMID: 31002825 DOI: 10.1016/j.ygcen.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023]
Abstract
The gonadotropin-inhibitory hormone (GnIH) plays a negative role in the hypothalamic-pituitary-gonadal (HPG) axis by inhibiting gonadotropin secretion in vertebrates. Male pregnancy and ovoviviparous behavior are unique phenomena among vertebrates. To better understand the neuroendocrine regulatory mechanisms in ovoviviparous fish with male pregnancy, we identified the orthologous GnIH gene in the lined seahorse (Hippocampus erectus). The full-length cDNA of the GnIH precursor was 658 base pairs with an open reading frame of 528 base pairs that encoded a 175-amino acid prepro-GnIH peptide. The seahorse GnIH precursor contained two putative LPXRFamide peptides. Both seahorse LPXRFa-1 and LPXRFa-2 were found to be unique among vertebrates. The synteny blocks of GnIH gene loci were conserved in mammals and teleosts. Tissue distribution analysis revealed that seahorse GnIH mRNA was mainly expressed in the hypothalamus, with relatively high levels observed in the brood pouch. The expression patterns of seahorse GnIH during different reproductive stages and pregnancy stages were also detected, and GnIH mRNA expression was significantly reduced during the early puberty stage. In addition, GnIH mRNA expression was significantly increased during the pregnancy stage compared to non-pregnancy stages. In summary, our results reveal the existence of GnIH in ovoviviparous fish and suggest its involvement in regulation of reproductive behavior and male pregnancy in the male seahorse.
Collapse
Affiliation(s)
- Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Lingzhen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
42
|
Lonstein JS, Linning-Duffy K, Yan L. Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Front Behav Neurosci 2019; 13:72. [PMID: 31031606 PMCID: PMC6473160 DOI: 10.3389/fnbeh.2019.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
Seasonal affective disorder (SAD) involves a number of psychological and behavioral impairments that emerge during the low daytime light intensity associated with winter, but which remit during the high daytime light intensity associated with summer. One symptom frequently reported by SAD patients is reduced sexual interest and activity, but the endocrine and neural bases of this particular impairment during low daylight intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects males’ copulatory behavior, reproductive organ weight, and circulating testosterone. We also examined the expression of mRNAs for the aromatase enzyme, estrogen receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA; brain site involved in the sensory and hormonal control of copulation), and mRNAs for the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens (NAC; brain site involved in stimulus salience and motivation to respond to reward). Compared to male grass rats housed in high-intensity daylight, males in low-intensity daylight displayed fewer mounts and intromissions when interacting with females, but the groups did not differ in their testes or seminal vesicle weights, or in their circulating levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1, AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD, dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal rodent. This effect is not due to reduced circulating testosterone and is associated with upregulation of mPOA steroid and DA receptors that may help maintain some sexual motivation and behavior under winter-like lighting conditions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lily Yan
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
43
|
Kumar P, Wisdom KS, Bhat IA, Pathakota GB, Nayak SK, Reang D, Nagpure NS, Sharma R. Molecular characterization of gonadotropin-inhibitory hormone (GnIH) gene and effect of intramuscular injection of GnIH peptide on the reproductive axis in Catla catla. Anim Biotechnol 2019; 31:335-349. [DOI: 10.1080/10495398.2019.1597730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pravesh Kumar
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
- Department of Aquaculture, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - K. S. Wisdom
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Irfan Ahmad Bhat
- College of Fisheries, Birsa Agricultural University, Gumla, India
| | - Gireesh-Babu Pathakota
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Sunil Kumar Nayak
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Dhalongsaih Reang
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - N. S. Nagpure
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
44
|
Hu KL, Chang HM, Li R, Yu Y, Qiao J. Regulation of LH secretion by RFRP-3 - From the hypothalamus to the pituitary. Front Neuroendocrinol 2019; 52:12-21. [PMID: 29608929 DOI: 10.1016/j.yfrne.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
RFamide-related peptides (RFRPs) have long been identified as inhibitors of the hypothalamus-pituitary-gonad axis in mammals. However, less progress has been made in the detailed roles of RFRPs in the control of LH secretion. Recent studies have suggested that RFRP-3 neurons in the hypothalamus can regulate the secretion of LH at different levels, including kisspeptin neurons, GnRH neurons, and the pituitary. Additionally, conflicting results regarding the effects of RFRP-3 on these levels exist. In this review, we collect the latest evidence related to the effects of RFRP-3 neurons in regulating LH secretion by acting on kisspeptin neurons, GnRH neurons, and the pituitary and discuss the potential role of the timely reduction of RFRP-3 signaling in the modulation of the preovulatory LH surge.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Department of Obstetrics and Gynaecology, University of British Columbia, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
45
|
Spool JA, Merullo DP, Zhao C, Riters LV. Co-localization of mu-opioid and dopamine D1 receptors in the medial preoptic area and bed nucleus of the stria terminalis across seasonal states in male European starlings. Horm Behav 2019; 107:1-10. [PMID: 30423316 PMCID: PMC6348025 DOI: 10.1016/j.yhbeh.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
In seasonally breeding animals, changes in photoperiod and sex-steroid hormones may modify sexual behavior in part by altering the activity of neuromodulators, including opioids and dopamine. In rats and birds, activation of mu-opioid receptors (MOR) and dopamine D1 receptors in the medial preoptic area (mPOA) often have opposing effects on sexual behavior, yet mechanisms by which the mPOA integrates these opposing effects to modulate behavior remain unknown. Here, we used male European starlings (Sturnus vulgaris) to provide insight into the hypothesis that MOR and D1 receptors modify sexual behavior seasonally by altering activity in the same neurons in the mPOA. To do this, using fluorescent immunohistochemistry, we examined the extent to which MOR and D1 receptors co-localize in mPOA neurons and the degree to which photoperiod and the sex-steroid hormone testosterone alter co-localization. We found that MOR and D1 receptors co-localize throughout the mPOA and the bed nucleus of the stria terminalis, a region also implicated in the control of sexual behavior. Numbers of single and co-labeled MOR and D1 receptor labeled cells were higher in the rostral mPOA in photosensitive males (a condition observed just prior to the breeding season) compared to photosensitive males treated with testosterone (breeding season condition). In the caudal mPOA co-localization of MOR and D1 receptors was highest in photosensitive males compared to photorefractory males (a post-breeding season condition). Seasonal shifts in the degree to which neurons in the mPOA integrate signaling from opioids and dopamine may underlie seasonal changes in the production of sexual behavior.
Collapse
Affiliation(s)
- Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
46
|
Tobari Y, Tsutsui K. Effects of Social Information on the Release and Expression of Gonadotropin-Inhibitory Hormone in Birds. Front Endocrinol (Lausanne) 2019; 10:243. [PMID: 31068902 PMCID: PMC6491735 DOI: 10.3389/fendo.2019.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
The social environment changes circulating hormone levels and associated behavior in animals. Although social information is perceived by sensory systems in the brain, and peripheral reproductive hormonal levels are regulated mainly by the hypothalamus-pituitary-gonadal (HPG) axis, the neurochemical systems that convey social information to the HPG axis were not well-understood until the 2000s. In recent years, a growing body of evidence has demonstrated that a neuropeptide localized in the hypothalamus, gonadotropin-inhibitory hormone (GnIH), is responsive to social information. GnIH was first identified in the quail hypothalamo-hypophyseal system and named for its ability to inhibit gonadotropin secretion. Hypothalamic GnIH neurons have thus begun to be regarded as integrators, translating social information into changes in the levels of circulating gonadal hormones through the HPG axis. Here, we review current research investigating the responses of the GnIH neuronal systems to social status, offspring, and the presence/absence of conspecifics, and describe the neurochemical pathways linking visual perception of a potential mate to a rapid change in blood gonadotropin levels via the hypothalamus-pituitary axis in male birds.
Collapse
Affiliation(s)
- Yasuko Tobari
- Laboratory of Animal Genetics and Breeding, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- *Correspondence: Yasuko Tobari
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| |
Collapse
|
47
|
Tsutsui K, Ubuka T. How to Contribute to the Progress of Neuroendocrinology: Discovery of GnIH and Progress of GnIH Research. Front Endocrinol (Lausanne) 2018; 9:662. [PMID: 30483217 PMCID: PMC6241250 DOI: 10.3389/fendo.2018.00662] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
It is essential to discover novel neuropeptides that regulate the functions of pituitary, brain and peripheral secretory glands for the progress of neuroendocrinology. Gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide stimulating gonadotropin release was isolated and its structure was determined by Schally's and Guillemin's groups at the beginning of the 1970s. It was subsequently shown that GnRH is highly conserved among vertebrates. GnRH was assumed the sole hypothalamic neuropeptide that regulates gonadotropin release in vertebrates based on extensive studies of GnRH over the following three decades. However, in 2000, Tsutsui's group isolated and determined the structure of a novel hypothalamic neuropeptide, which inhibits gonadotropin release, in quail, an avian species, and named it gonadotropin-inhibitory hormone (GnIH). Following studies by Tsutsui's group demonstrated that GnIH is highly conserved among vertebrates, from humans to agnathans, and acts as a key neuropeptide inhibiting reproduction. Intensive research on GnIH demonstrated that GnIH inhibits gonadotropin synthesis and release by acting on gonadotropes and GnRH neurons via GPR147 in birds and mammals. Fish GnIH also regulates gonadotropin release according to its reproductive condition, indicating the conserved role of GnIH in the regulation of the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. Therefore, we can now say that GnRH is not the only hypothalamic neuropeptide controlling vertebrate reproduction. In addition, recent studies by Tsutsui's group demonstrated that GnIH acts in the brain to regulate behaviors, including reproductive behavior. The 18 years of GnIH research with leading laboratories in the world have significantly advanced our knowledge of the neuroendocrine control mechanism of reproductive physiology and behavior as well as interactions of the HPG, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes. This review describes how GnIH was discovered and GnIH research progressed in this new research era of reproductive neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
48
|
Are female camels capital breeders? Influence of seasons, age, and body condition on reproduction in an extremely arid region. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Bauer CM, Fudickar AM, Anderson-Buckingham S, Abolins-Abols M, Atwell JW, Ketterson ED, Greives TJ. Seasonally sympatric but allochronic: differential expression of hypothalamic genes in a songbird during gonadal development. Proc Biol Sci 2018; 285:20181735. [PMID: 30355713 PMCID: PMC6234895 DOI: 10.1098/rspb.2018.1735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
Allochrony, the mismatch of reproductive schedules, is one mechanism that can mediate sympatric speciation and diversification. In songbirds, the transition into breeding condition and gonadal growth is regulated by the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. We investigated whether the difference in reproductive timing between two seasonally sympatric subspecies of dark-eyed juncos (Junco hyemalis) was related to gene expression along the HPG axis. During the sympatric pre-breeding stage, we measured hypothalamic and testicular mRNA expression of candidate genes via qPCR in captive male juncos. For hypothalamic mRNA, we found our earlier breeding subspecies had increased expression of gonadotropin-releasing hormone (GnRH) and decreased expression of androgen receptor, oestrogen receptor alpha and mineralocorticoid receptor (MR). Subspecies did not differ in expression of hypothalamic gonadotropin-inhibitory hormone (GnIH) and glucocorticoid receptor (GR). While our earlier breeding subspecies had higher mRNA expression of testicular GR, subspecies did not differ in testicular luteinizing hormone receptor, follicle-stimulating hormone receptor or MR mRNA expression levels. Our findings indicate increased GnRH production and decreased hypothalamic sensitivity to sex steroid negative feedback as factors promoting differences in the timing of gonadal recrudescence between recently diverged populations. Differential gene expression along the HPG axis may facilitate species diversification under seasonal sympatry.
Collapse
Affiliation(s)
- Carolyn M Bauer
- Department of Biology, Adelphi University, Garden City, NY, USA
| | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Mikus Abolins-Abols
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Animal Biology, University of Illinois Urbana Champaign, Urbana, IL, USA
| | | | - Ellen D Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
50
|
Zhang W, Wang L, Yu X, Jia A, Ming J, Ji Q. RFamide-related peptide-3 promotes alpha TC1 clone 6 cell survival likely via GPR147. Peptides 2018; 107:39-44. [PMID: 30081043 DOI: 10.1016/j.peptides.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is closely related to islet alpha cell mass and viability. Several types of RFamide-related peptides (RFRPs) are involved in regulating proliferation and function of islet cells. However, current understanding of the role of RFamide-related peptide-3 (RFRP-3) in pancreatic alpha cells is limited. Therefore, we investigated the expression of the RFRP-3 receptor, G protein-coupled receptor 147 (GPR147), in mouse islets and alpha TC1 clone 6 cells, and evaluated the function of RFRP-3 on alpha cells. We show that GPR147 is expressed in mouse islets and alpha cell lines. In addition, RFRP-3 promotes survival of alpha cells under conditions of hyperglycemia and serum starvation. Mechanistic evidence demonstrates that RFRP-3 activated PI3K/AKT and ERK1/2 signaling cascades and treatment with an antagonist of GPR147, 1-adamantanecarbonyl-Arg-Phe-NH₂ (RF9) blocked this function. These findings indicate a novel effect of RFRP-3 in promoting alpha cell survival, likely via GPR147.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Li Wang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Xinwen Yu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Aihua Jia
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Jie Ming
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China.
| |
Collapse
|