1
|
Livia R, Kim H, Emily M, Luise MM, Haiko S, Julia S. "Estrogens and human brain networks: A systematic review of structural and functional neuroimaging studies". Front Neuroendocrinol 2024:101174. [PMID: 39733923 DOI: 10.1016/j.yfrne.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Estrogen fluctuations during the menstrual cycle, puberty, postpartum, or in the menopausal transition are associated with cognitive, affective, and behavioral effects. Additionally, estrogens are essential in hormonal contraception, menopausal hormone therapy, or gender-affirming hormone therapy. This systematic review summarizes findings on the role of estrogens for structure, function, and connectivity of human brain networks. We searched PubMed, Web of Science, and ScienceDirect for neuroimaging articles assessing estrogens published since 2008. We included 54 studies (N = 2,494 participants) on endogenous estrogen, and 28 studies (N = 1740 participants) on exogenous estrogen conditions. Estrogen-related changes were reported for emotion, reward, memory, and resting-state networks, and in regional white and gray matter, with a particular neural plasticity in the hippocampus and amygdala. By examining study designs, imaging measures, and analysis methods, this review highlights the role of neuroimaging in advancing neuroendocrine and neurocognitive research, particularly promoting brain health for women and individuals with ovaries.
Collapse
Affiliation(s)
- Ruehr Livia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Hoffmann Kim
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099 Berlin, Germany.
| | - May Emily
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Münch Marie Luise
- Leipzig Reproductive Health Research Center, Liebigstraße 20A, 04103 Leipzig, Germany.
| | - Schlögl Haiko
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany.
| | - Sacher Julia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Lacasse JM, Heller C, Kheloui S, Ismail N, Raval AP, Schuh KM, Tronson NC, Leuner B. Beyond Birth Control: The Neuroscience of Hormonal Contraceptives. J Neurosci 2024; 44:e1235242024. [PMID: 39358019 PMCID: PMC11450536 DOI: 10.1523/jneurosci.1235-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Hormonal contraceptives (HCs) are one of the most highly prescribed classes of drugs in the world used for both contraceptive and noncontraceptive purposes. Despite their prevalent use, the impact of HCs on the brain remains inadequately explored. This review synthesizes recent findings on the neuroscience of HCs, with a focus on human structural neuroimaging as well as translational, nonhuman animal studies investigating the cellular, molecular, and behavioral effects of HCs. Additionally, we consider data linking HCs to mood disorders and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and stress response as a potential mediator. The review also addresses the unique sensitivity of the adolescent brain to HCs, noting significant changes in brain structure and function when HCs are used during this developmental period. Finally, we discuss potential effects of HCs in combination with smoking-derived nicotine on outcomes of ischemic brain damage. Methodological challenges, such as the variability in HC formulations and user-specific factors, are acknowledged, emphasizing the need for precise and individualized research approaches. Overall, this review underscores the necessity for continued interdisciplinary research to elucidate the neurobiological mechanisms of HCs, aiming to optimize their use and improve women's health.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Department of Psychology, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Carina Heller
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
- German Center for Mental Health (DZPG), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
| | - Sarah Kheloui
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida 33136
| | - Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
3
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
VonDoepp S, Mohammed Z, Dougherty R, Hilton-Vanosdall E, Charette S, Kraus A, Van Horn S, Quirk A, Toufexis D. Levonorgestrel maintains goal-directed behavior in habit-trained intact female rats. Horm Behav 2024; 158:105468. [PMID: 38101144 DOI: 10.1016/j.yhbeh.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Hormonal contraceptives are utilized by millions of women worldwide. However, it remains unclear if these powerful endocrine modulators may alter cognitive function. Habit formation involves the progression of instrumental learning as it goes from being a conscious goal-directed process to a cue-driven automatic habitual motor response. Dysregulated goal and/or habit is implicated in numerous psychopathologies, underscoring the relevance of examining the effect of hormonal contraceptives on goal-directed and habitual behavior. This study examined the effect of levonorgestrel (LNG), a widely used progestin-type contraceptive, on the development of habit in intact female rats. Rats were implanted with subcutaneous capsules that slowly released LNG over the course of the experiment or cholesterol-filled capsules. All female rats underwent operant training followed by reward devaluation to test for habit. One group of females was trained at a level that is sub-threshold to habit, while another group of females was trained to a level well over the habit threshold observed in intact females. The results reveal that all sub-threshold trained rats remained goal-directed irrespective of LGN treatment, suggesting LNG is not advancing habit formation in female rats at this level of reinforcement. However, in rats that were overtrained well above the threshold, cholesterol females showed habitual behavior, thus replicating a portion of our original studies. In contrast, LNG-treated habit-trained rats remained goal-directed, indicating that LNG impedes the development and/or expression of habit following this level of supra-threshold to habit training. Thus, LNG may offset habit formation by sustaining attentional or motivational processes during learning in intact female rats. These results may be clinically relevant to women using this type of hormonal contraceptive as well as in other progestin-based hormone therapies.
Collapse
Affiliation(s)
- Sarah VonDoepp
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Zaidan Mohammed
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Russell Dougherty
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Ella Hilton-Vanosdall
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Sam Charette
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Adina Kraus
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Sarah Van Horn
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Adrianna Quirk
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Donna Toufexis
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America.
| |
Collapse
|
5
|
Schuh KM, Ahmed J, Kwak E, Xu CX, Davis TT, Aronoff CB, Tronson NC. A mouse model of oral contraceptive exposure: Depression, motivation, and the stress response. Horm Behav 2024; 158:105470. [PMID: 38061232 DOI: 10.1016/j.yhbeh.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024]
Abstract
Hormonal contraceptives, including oral contraceptives (OCs), regulate hormonal cycles and broadly affect physiological processes, including stress responsivity. Whereas many users describe overall improved mood, up to 10 % of OC users experience adverse effects, including depression and anxiety. Given the link between regulation of hypothalamic-pituitary-adrenal (HPA) axis, stress exposure, and risk for depression, it is likely that OC-effects on stress mediate increased risk or increased resilience to these disorders. In this study, we developed and characterized a tractable mouse model of OC exposure with which to identify the mechanisms underlying OC modulation of brain, behavior, and mood. Specifically, we aimed to determine whether translationally relevant doses of OC-hormones in mice mimic changes in stress responsivity observed in humans taking OCs and describe behavioral changes during OC exposure. Young adult female C57Bl/6 N mice received daily ethinyl estradiol (EE) and levonorgestrel (LVNG) in 10 % sucrose, EE and drospirenone (DRSP) in 10 % sucrose, or 10 % sucrose alone. Translationally relevant doses of EE + LVNG-exposure, but not EE + DRSP, suppressed the acute stress response, consistent with effects observed in human OC users. EE + LVNG caused a specific anhedonia-like effect, without broad changes in stress-coping behavior, other depression-like behaviors, or anxiety-like behaviors. The suppression of regular estrous cycling, together with the blunting of the corticosterone response to acute stress, demonstrate the utility of this model for future studies to identify the mechanisms underlying OC interactions with stress, motivation, and risk for depression.
Collapse
Affiliation(s)
- Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jabir Ahmed
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Esther Kwak
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Cecilia X Xu
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Tronjay T Davis
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Chloe B Aronoff
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
6
|
Hidalgo-Lopez E, Noachtar I, Pletzer B. Hormonal contraceptive exposure relates to changes in resting state functional connectivity of anterior cingulate cortex and amygdala. Front Endocrinol (Lausanne) 2023; 14:1131995. [PMID: 37522123 PMCID: PMC10374315 DOI: 10.3389/fendo.2023.1131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Hormonal contraceptives (HCs), nowadays one of the most used contraceptive methods, downregulate endogenous ovarian hormones, which have multiple plastic effects in the adult brain. HCs usually contain a synthetic estrogen, ethinyl-estradiol, and a synthetic progestin, which can be classified as androgenic or anti-androgenic, depending on their interaction with androgen receptors. Both the anterior cingulate cortex (ACC) and the amygdala express steroid receptors and have shown differential functionality depending on the hormonal status of the participant and the use of HC. In this work, we investigated for the first time the relationship between ACC and amygdala resting state functional connectivity (rs-FC) and HC use duration, while controlling for progestin androgenicity. Methods A total of 231 healthy young women participated in five different magnetic resonance imaging studies and were included in the final analysis. The relation between HC use duration and (i) gray matter volume, (ii) fractional amplitude of low-frequency fluctuations, and (iii) seed-based connectivity during resting state in the amygdalae and ACC was investigated in this large sample of women. Results In general, rs-FC of the amygdalae with frontal areas, and between the ACC and temporoparietal areas, decreased the longer the HC exposure and independently of the progestin's androgenicity. The type of HC's progestin did show a differential effect in the gray matter volume of left ACC and the connectivity between bilateral ACC and the right inferior frontal gyrus.
Collapse
Affiliation(s)
- Esmeralda Hidalgo-Lopez
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Isabel Noachtar
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Lacasse JM, Ismail N, Tronson NC. Editorial overview: Hormonal contraceptives and the brain: A call for translational research. Front Neuroendocrinol 2023; 69:101063. [PMID: 36806552 DOI: 10.1016/j.yfrne.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Jesse M Lacasse
- Department of Psychology, Brock University, St Catharines, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
8
|
Lacasse JM, Boulos V, Fisher C, Hamilton S, Heron M, Mac Cionnaith CE, Peronace V, Tito N, Brake WG. Combined effects of the contraceptive hormones, ethinyl estradiol and levonorgestrel, on the use of place and response memory in gonadally-intact female rats. Psychoneuroendocrinology 2023; 147:105974. [PMID: 36403510 DOI: 10.1016/j.psyneuen.2022.105974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
During maze navigation rats can rely on hippocampus-mediated place memory or striatum-mediated response memory. Ovarian hormones bias whether females use place or response memory to reach a reward. Here, we investigated the impact of the contraceptive hormones, ethinyl estradiol (EE) and levonorgestrel (LNG), on memory bias. A total of 63 gonadally-intact female rats were treated with either 10 μg/kg of EE alone, 20 μg/kg of LNG alone, both 10 μg/kg of EE and 20 μg/kg of LNG together, or a sesame oil injection with 5% ethanol as a vehicle control. Rats in the control condition were tested during the diestrus phase of the estrous cycle in order to control for the low circulating levels of gonadotropin and ovarian hormones that occur with oral contraceptive administration. Rats treated with LNG alone had a bias towards the use of place memory compared to diestrus phase control rats. This bias was not observed if LNG was administered in combination with EE. Rats treated with EE or EE+LNG did not have a statistically significant difference in memory bias compared to rats in the control group. These data show that synthetic hormones contained in oral contraceptives administered to females influence which cognitive strategy is predominantly used during navigation.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Vanessa Boulos
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Caleigh Fisher
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Sarran Hamilton
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Megan Heron
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Conall E Mac Cionnaith
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Vanessa Peronace
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Noémie Tito
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
9
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
10
|
Casto KV, Jordan T, Petersen N. Hormone-based models for comparing menstrual cycle and hormonal contraceptive effects on human resting-state functional connectivity. Front Neuroendocrinol 2022; 67:101036. [PMID: 36126748 PMCID: PMC9649880 DOI: 10.1016/j.yfrne.2022.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Oral contraceptives (OCs) are widely used yet understudied given their potential for public health consequences. Emerging investigations scaling from single-subject, dense-sampling neuroimaging studies to population-level metrics have linked OCs to altered brain structure and function. Modeling the hypogonadal, hypergonadal, or mixed state effects of OCs in terms of their impact on hormone action in the brain is a valuable approach to synthesizing results across neuroimaging studies and comparing OC effects to companion findings from research on menstrual cycle phase effects on brain anatomy and function. Resting-state functional connectivity studies provide a powerful tool to evaluate the role of OCs on the intrinsic network connectivity that underlies multiple behavioral domains. The preponderance (but not consensus) of the current literature indicates that (1) as the menstrual cycle proceeds from a low to high progesterone state, prefrontal connectivity increases and parietal connectivity decreases; (2) OCs tend to mimic this connectivity pattern; therefore (3) OCs may produce a hyperprogestogenic state in the brain, in spite of overall reductions in endogenous steroid hormone levels. Alternative models are also considered.
Collapse
Affiliation(s)
- Kathleen V Casto
- Social Sciences Division, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA
| | - Timothy Jordan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Petersen
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|