1
|
Backström T, Thörnqvist PO, Winberg S. Social effects on AVT and CRF systems. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1699-1709. [PMID: 34476683 PMCID: PMC8636423 DOI: 10.1007/s10695-021-00995-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Stress and aggression have negative effects on fish welfare and productivity in aquaculture. Thus, research to understand aggression and stress in farmed fish is required. The neuropeptides arginine-vasotocin (AVT) and corticotropin-releasing factor (CRF) are involved in the control of stress and aggression. Therefore, we investigated the effect of agonistic interactions on the gene expression of AVT, CRF and their receptors in juvenile rainbow trout (Oncorhynchus mykiss). The social interactions lead to a clear dominant-subordinate relationship with dominant fish feeding more and being more aggressive. Subordinate fish had an upregulation of the AVT receptor (AVT-R), an upregulation of CRF mRNA levels, and higher plasma cortisol levels. The attenuating effect of AVT on aggression in rainbow trout is proposed to be mediated by AVT-R, and the attenuating effect of the CRF system is proposed to be mediated by CRF.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
| | - Per-Ove Thörnqvist
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| | - Svante Winberg
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| |
Collapse
|
2
|
Lema SC. Hormones, developmental plasticity, and adaptive evolution: Endocrine flexibility as a catalyst for 'plasticity-first' phenotypic divergence. Mol Cell Endocrinol 2020; 502:110678. [PMID: 31830511 DOI: 10.1016/j.mce.2019.110678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Explaining how populations adapt to environments is among the foremost objectives of evolutionary theory. Over generations, natural selection impels the phenotypic distribution of a population based on individual variation in phenotype and fitness. However, environmental conditions can also shape how individuals develop within their lifetime to influence which phenotypes are expressed in a population. It has been proposed that such environmentally-initiated phenotypic variation - also termed developmental plasticity - may enable adaptive evolution under some scenarios. As dynamic regulators of development and phenotypic expression, hormones are important physiological mediators of developmental plasticity. Patterns of hormone secretion, hormone transport, and the sensitivity of tissues to hormones can each be altered by environmental conditions, and understanding how endocrine regulation shapes phenotypic development in an ecologically-relevant context has much to contribute toward clarifying the role of plasticity in evolutionary adaptation. This article explores how the environmental sensitivity of endocrine regulation may facilitate 'plasticity-first' evolution by generating phenotypic variants that precede adaptation to altered or novel environments. Predictions arising from 'plasticity-first' evolution are examined in the context of thyroid hormone mediation of morphological plasticity in Cyprinodon pupfishes from the Death Valley region of California and Nevada, USA. This clade of extremophile fishes diversified morphologically over the last ~20,000 years, and observations that some populations experienced contemporary phenotypic differentiation under recent habitat change provide evidence that hormone-mediate plasticity preceded genetic assimilation of morphology in one of the region's species: the Devils Hole pupfish, Cyprinodon diabolis. This example illustrates how conceptualizing hormones not only as regulators of homeostasis, but also as developmental intermediaries between environment conditions and phenotypic variation at the individual-, population-, and species-levels can enrich our understanding of endocrine regulation both as a facilitator of phenotypic change under shifting environments, and as important proximate mechanisms that may initiate 'plasticity-first' evolutionary adaptation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
3
|
Bouchekioua S, Hur SP, Takeuchi Y, Lee YD, Takemura A. Effects of temperature and melatonin on day-night expression patterns of arginine vasotocin and isotocin mRNA in the diencephalon of a temperate wrasse Halichoeres tenuispinis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:817-828. [PMID: 29404822 DOI: 10.1007/s10695-018-0471-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and repeated under the sandy bottom in winter.
Collapse
Affiliation(s)
- Selma Bouchekioua
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sung-Pyo Hur
- Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology, Jeju Special Self-Governing Province, 63349, South Korea
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, 3288 Hamduk, Jocheon, Jeju Special Self-Governing Province, 695-814, South Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
4
|
Elkins EA, Walti KA, Newberry KE, Lema SC. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol 2017; 250:58-69. [PMID: 28596078 DOI: 10.1016/j.ygcen.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.
Collapse
Affiliation(s)
- Emma A Elkins
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kayla A Walti
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kathryn E Newberry
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
5
|
Reddon AR, O'Connor CM, Nesjan E, Cameron J, Hellmann JK, Ligocki IY, Marsh-Rollo SE, Hamilton IM, Wylie DR, Hurd PL, Balshine S. Isotocin neuronal phenotypes differ among social systems in cichlid fishes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170350. [PMID: 28573041 PMCID: PMC5451842 DOI: 10.1098/rsos.170350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Social living has evolved numerous times across a diverse array of animal taxa. An open question is how the transition to a social lifestyle has shaped, and been shaped by, the underlying neurohormonal machinery of social behaviour. The nonapeptide neurohormones, implicated in the regulation of social behaviours, are prime candidates for the neuroendocrine substrates of social evolution. Here, we examined the brains of eight cichlid fish species with divergent social systems, comparing the number and size of preoptic neurons that express the nonapeptides isotocin and vasotocin. While controlling for the influence of phylogeny and body size, we found that the highly social cooperatively breeding species (n = 4) had fewer parvocellular isotocin neurons than the less social independently breeding species (n = 4), suggesting that the evolutionary transition to group living and cooperative breeding was associated with a reduction in the number of these neurons. In a complementary analysis, we found that the size and number of isotocin neurons significantly differentiated the cooperatively breeding from the independently breeding species. Our results suggest that isotocin is related to sociality in cichlids and may provide a mechanistic substrate for the evolution of sociality.
Collapse
Affiliation(s)
- Adam R. Reddon
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Constance M. O'Connor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Erin Nesjan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason Cameron
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer K. Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Isaac Y. Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Susan E. Marsh-Rollo
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Douglas R. Wylie
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Peter L. Hurd
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Pouso P, Radmilovich M, Silva A. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio. Tissue Cell 2017; 49:257-269. [PMID: 28242105 DOI: 10.1016/j.tice.2017.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/21/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Milka Radmilovich
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
7
|
Nagarajan G, Aruna A, Chang CF. Neuropeptide Arginine Vasotocin Positively Affects Neurosteroidogenesis in the Early Brain of Grouper, Epinephelus coioides. J Neuroendocrinol 2015; 27:718-36. [PMID: 26147314 DOI: 10.1111/jne.12298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 11/29/2022]
Abstract
The neuropeptide arginine vasotocin (AVT) has versatile physiological functions in non-mammalian vertebrates. However, the functional association between AVT and neurosteroidogenesis in the early brain of teleosts remains elusive. We thus studied the developmental expression patterns of the avt gene and their V1 type receptor (avt-rv1 ) at various stages of development [90-150 days after hatching (dah)] in relation to neurosteroidogenesis and oestrogen signalling in the early brain of the orange-spotted grouper (Epinephelus coioides). avt and avt-rv1 mRNAs displayed a significantly increase in expression at 110 dah in the telencephalon and diencephalon. Further, avt mRNAs were localised in three magnocellular neuronal populations of the preoptic area, such as parvocellular, magnocellular and gigantocellular preoptic neurones. Intriguingly, the avt transcripts in those neurones were more abundant in 110 dah compared to other ages. Subsequently, dual fluorescence in situ hybridisation analysis showed that the avt and avt-rv1 genes were highly coexpressed with cyp11a1, hsd3b1, cyp17a1, erα, erβ and gpr30, which indicates their potential for functional association. Cyp19a1b-immunoreactive positive fibres were found in close proximity to avt-expressing neurones. Moreover, our results showed that exogenous Avt caused a significant increase in the cellular and gene levels of steroidogenic enzymes and oestrogen receptors (ers), whereas the administration of an Avt-rv1 antagonist caused a decrease in the expression of both steroidogenic enzymes and ers genes in the brain. Furthermore, exogenous oestradiol (E2 ) strongly up-regulated avt mRNAs in the grouper brain. Taken together, the present studies suggest that avt and steroidogenesis may positively work together to increase both E2 biosynthesis and early brain development.
Collapse
Affiliation(s)
- G Nagarajan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - A Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - C-F Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
8
|
Oldfield RG, Harris RM, Hofmann HA. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. Front Zool 2015; 12 Suppl 1:S16. [PMID: 26813803 PMCID: PMC4722349 DOI: 10.1186/1742-9994-12-s1-s16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.
Collapse
Affiliation(s)
- Ronald G Oldfield
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341 USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Rayna M Harris
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
9
|
Almeida O, Oliveira RF. Social Status and Arginine Vasotocin Neuronal Phenotypes in a Cichlid Fish. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:203-13. [PMID: 25997523 DOI: 10.1159/000381251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
Abstract
The nonapeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin play a key role in the regulation of social behaviour across vertebrates. In teleost fishes, three AVT neuronal populations have been described in the preoptic area (POA): the parvocellular (pPOA), the magnocellular (mPOA) and the gigantocellular (gPOA). Neurons from each of these areas project both to the pituitary and to other brain regions, where AVT is supposed to regulate neural circuits underlying social behaviour. However, in the fish species studied so far, there is considerable variation in which AVT neuronal populations are involved in behavioural modulation and in the direction of the effect. In this study, the association between AVT neuronal phenotypes and social status was investigated in the Mozambique tilapia (Oreochromis mossambicus). This species is an African female mouth-brooding cichlid fish in which males form breeding aggregations in which dominant males establish territories and subordinate males to act as floaters. With respect to sex differences in AVT neuronal phenotypes, females have a larger number of AVT neurons in the pPOA and mPOA. Within males, AVT appeared associated with social subordination, as indicated by the larger cell body areas of AVT neurons in mPOA and gPOA nuclei of non-territorial males. There were also positive correlations between submissive behaviour and the soma size of AVT cells in all three nuclei and AVT cell number in the mPOA. In summary, the results provide evidence for an involvement of AVT in the modulation of social behaviour in tilapia, but it was not possible to identify specific roles for specific AVT neuronal populations. The results presented here also contrast with those previously published for another cichlid species with a similar mating system, which highlights the species-specific nature of the pattern of association between AVT and social behaviour even within the same taxonomic family.
Collapse
Affiliation(s)
- Olinda Almeida
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Lisbon, Portugal
| | | |
Collapse
|
10
|
Lema SC, Sanders KE, Walti KA. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. J Neuroendocrinol 2015; 27:142-57. [PMID: 25425529 DOI: 10.1111/jne.12239] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a-type receptor v1a2 as potentially mediating the effects of vasotocin on behaviour in male fish. These findings also illustrate how associations between social status, aggression and gene expression within the VT and IT nonapeptide systems can be contingent on behavioural context.
Collapse
Affiliation(s)
- S C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | | |
Collapse
|
11
|
Lema SC. Hormones and Phenotypic Plasticity in an Ecological Context: Linking Physiological Mechanisms to Evolutionary Processes. Integr Comp Biol 2014; 54:850-63. [DOI: 10.1093/icb/icu019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Silva AC, Perrone R, Zubizarreta L, Batista G, Stoddard PK. Neuromodulation of the agonistic behavior in two species of weakly electric fish that display different types of aggression. ACTA ACUST UNITED AC 2014; 216:2412-20. [PMID: 23761466 DOI: 10.1242/jeb.082180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.
Collapse
Affiliation(s)
- Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | | | | | | | | |
Collapse
|
13
|
Goodson JL. Deconstructing sociality, social evolution and relevant nonapeptide functions. Psychoneuroendocrinology 2013; 38:465-78. [PMID: 23290368 DOI: 10.1016/j.psyneuen.2012.12.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Although behavioral neuroendocrinologists often discuss "sociality" as a unitary variable, the term encompasses a wide diversity of behaviors that do not evolve in a linked fashion across species. Thus grouping, monogamy, paternal care, cooperative breeding/alloparental care, and various other forms of social contact are evolutionarily labile and evolve in an almost cafeteria-like fashion, indicating that relevant neural mechanisms are at least partially dissociable. This poses a challenge for the study of the nonapeptides (vasopressin, oxytocin, and homologous neuropeptides), because nonapeptides are known to modulate all of these aspects of sociality in one species or another. Hence, we may expect substantial diversity in the behavioral functions of nonapeptides across species, and indeed this is the case. Further compounding this complexity is the fact that the pleiotropic contributions of nonapeptides to social behavior are matched by pleiotropic contributions to physiology. Given these considerations, single "model systems" approaches to nonapeptide function will likely not have strong predictive validity for humans or other species. Rather, if we are to achieve predictive validity, we must sample a wide diversity of species in an attempt to derive general principles. In the present review, I discuss what is known about functional evolution of nonapeptide systems, and critically evaluate general assumptions about bonding and other functions that are based on the model systems approach. From this analysis I attempt to summarize what can and cannot be generalized across species, and highlight critical gaps in our knowledge about the functional evolution of nonapeptide systems as it relates to dimensions of sociality.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
14
|
Mendonça R, Soares MC, Bshary R, Oliveira RF. Arginine Vasotocin Neuronal Phenotype and Interspecific Cooperative Behaviour. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:166-76. [DOI: 10.1159/000354784] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022]
|
15
|
Lema SC, Slane MA, Salvesen KE, Godwin J. Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (Thalassoma bifasciatum). Gen Comp Endocrinol 2012; 179:451-64. [PMID: 23063433 DOI: 10.1016/j.ygcen.2012.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/10/2012] [Accepted: 10/01/2012] [Indexed: 01/30/2023]
Abstract
The neurohypophyseal hormone arginine vasotocin (AVT) mediates behavioral and reproductive plasticity in vertebrates, and has been linked to the behavioral changes associated with protogyny in the bluehead wrasse (Thalassoma bifasciatum). In this study, we sequenced full-length cDNAs encoding two distinct V1a-type AVT receptors (v1a1 and v1a2) from the bluehead wrasse, and examined variation in brain and gonadal abundance of these receptor transcripts among sexual phases. End point RT-PCR revealed that v1a1 and v1a2 transcripts varied in tissue distribution, with v1a1 receptor mRNAs at greatest levels in the telencephalon, hypothalamus, optic tectum, cerebellum and testis, and v1a2 receptor transcripts most abundant in the hypothalamus, cerebellum and gills. In the brain, v1a1 and v1a2 mRNAs both localized by in situ hybridization to the dorsal and ventral telencephalon, the preoptic area of the hypothalamus, the ventral hypothalamus and lateral recess of the third ventricle. Quantitative real-time RT-PCR revealed that relative abundance of these two receptor mRNAs varied significantly in brain and gonad with sexual phase. Relative levels of v1a2 mRNAs were greater in whole brain and isolated hypothalamus of terminal phase (TP) male wrasse compared to initial phase (IP) males or females. In the gonad, v1a1 mRNAs were at levels 2.5-fold greater in the testes of IP males - and 4-5-fold greater in the testes of TP males - compared to the ovaries of females. These results provide evidence that V1a-type AVT receptor transcript abundance in the hypothalamus and gonads of bluehead wrasse varies in patterns linked to sexual phase, and bestow a foundation for future studies investigating how differential expression of v1a1 and v1a2 teleost AVT receptors links to behavioral status and gonadal function in fish more broadly.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | | | | | |
Collapse
|
16
|
Ramallo MR, Grober M, Cánepa MM, Morandini L, Pandolfi M. Arginine-vasotocin expression and participation in reproduction and social behavior in males of the cichlid fish Cichlasoma dimerus. Gen Comp Endocrinol 2012; 179:221-31. [PMID: 22940647 DOI: 10.1016/j.ygcen.2012.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
Abstract
In non-mammalian vertebrates, the nonapeptide arginine-vasotocin (AVT) is involved in the regulation of social behavior related to reproduction and aggression. The cichlid fish Cichlasoma dimerus is a monogamous species with complex social hierarchies. Males are found in one of two basic alternative phenotypes: Non-territorial and territorial males. In this work we characterize the vasotocinergic system in males of C. dimerus in relation to social status with particular emphasis on the various putative sites of action of AVT across the hypothalamic-pituitary-gonad (HPG) axis, and its effects on reproductive and social behavior. The location and distribution of vasotocinergic neurons in the brain was studied, highlighting a morphometric analysis of AVT producing neurons in males of different social status. The effect of AVT on pituitary gonadotropin secretion was analyzed by single pituitary culture while expression of AVT in peripheral organs was studied by RT-PCR using specific primers. Finally, the role of AVT on testicular androgen release was assessed by in vitro incubation of testis. Results showed a positive effect of AVT on gonadotropin secretion, where β-LH showcased a triphasic response under increasing AVT concentration, while β-FSH's response was dose-dependent and directly proportional. AVT showed a positive and concentration-dependent effect over testicular androgens synthesis and secretion in vitro. Vasotocin expression was observed in testicular somatic tissue located in the interstitial compartment. Thus, the AVT system in C. dimerus appears to be of high complexity, with multiple sites of action in the hypothalamus-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Martín Roberto Ramallo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
17
|
Godwin J, Thompson R. Nonapeptides and social behavior in fishes. Horm Behav 2012; 61:230-8. [PMID: 22285647 DOI: 10.1016/j.yhbeh.2011.12.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/20/2022]
Abstract
The nonapeptide hormones arginine vasotocin and isotocin play important roles in mediating social behaviors in fishes. Studies in a diverse range of species demonstrate variation in vasotocin neuronal phenotypes across within and between sexes and species as well as effects of hormone administration on aggressive and sexual behaviors. However, patterns vary considerably across species and a general explanatory model for the role of vasotocin in teleost sociosexual behaviors has proven elusive. We review these findings, examine potential explanations for the lack of agreement across studies, and propose a model based on the parvocellular AVT neurons primarily mediating social approach and subordinance functions while the magnocellular and gigantocellular AVT neurons mediate courtship and aggressive behaviors. Isotocin neuronal phenotypes and effects on behavior are relatively unstudied, but research to date suggests this will be a fruitful line of inquiry. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- John Godwin
- Department of Biology and W.M. Keck Center for Behavioral Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
18
|
Fokidis HB, Deviche P. Brain Arginine Vasotocin Immunoreactivity Differs between Urban and Desert Curve-Billed Thrashers, Toxostoma curvirostre: Relationships with Territoriality and Stress Physiology. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:84-97. [DOI: 10.1159/000332766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/31/2011] [Indexed: 01/14/2023]
|
19
|
Arginine vasotocin neuronal phenotypes and their relationship to aggressive behavior in the territorial monogamous multiband butterflyfish, Chaetodon multicinctus. Brain Res 2011; 1401:74-84. [DOI: 10.1016/j.brainres.2011.05.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/22/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
|
20
|
Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. JOURNAL OF FISH BIOLOGY 2011; 78:395-435. [PMID: 21284626 DOI: 10.1111/j.1095-8649.2010.02874.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices.
Collapse
Affiliation(s)
- J L Conrad
- Department of Environmental Science and Policy, University of California-Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
| | | | | | | | | |
Collapse
|
21
|
Dewan AK, Ramey ML, Tricas TC. Arginine vasotocin neuronal phenotypes, telencephalic fiber varicosities, and social behavior in butterflyfishes (Chaetodontidae): potential similarities to birds and mammals. Horm Behav 2011; 59:56-66. [PMID: 20950619 DOI: 10.1016/j.yhbeh.2010.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 12/26/2022]
Abstract
The neuropeptide arginine vasopressin (AVP) influences many social behaviors through its action in the forebrain of mammals. However, the function of the homologous arginine vasotocin (AVT) in the forebrain of fishes, specifically the telencephalon remains unresolved. We tested whether the density of AVT-immunoreactive (-ir) fiber varicosities, somata size or number of AVT-ir neuronal phenotypes within the forebrain were predictive of social behavior in reproductive males of seven species of butterflyfishes (family Chaetodontidae) in four phylogenetic clades. Similar to other fishes, the aggressive (often territorial) species in most cases had larger AVT-ir cells within the gigantocellular preoptic cell group. Linear discriminant function analyses demonstrated that the density of AVT-ir varicosities within homologous telencephalic nuclei to those important for social behavior in mammals and birds were predictive of aggressive behavior, social affiliations, and mating system. Of note, the density of AVT-ir varicosities within the ventral nucleus of the ventral telencephalon, thought to be homologous to the septum of other vertebrates, was the strongest predictor of aggressive behavior, social affiliation, and mating system. These results are consistent with the postulate that AVT within the telencephalon of fishes plays an important role in social behavior and may function in a similar manner to that of AVT/AVP in birds and mammals despite having cell populations solely within the preoptic area.
Collapse
Affiliation(s)
- Adam K Dewan
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
22
|
Iwata E, Nagai Y, Sasaki H. Social rank modulates brain arginine vasotocin immunoreactivity in false clown anemonefish (Amphiprion ocellaris). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:337-345. [PMID: 19116767 DOI: 10.1007/s10695-008-9298-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 12/10/2008] [Indexed: 05/27/2023]
Abstract
The brain nanopeptide arginine vasotocin (AVT) and its mammalian homolog arginine vasopressin are involved in the regulation of social and reproductive behavior. We investigated the relationship between social rank formation and the brain AVT system in the false clown anemonefish (Amphiprion ocellaris), which forms a social rank that leads to sex differentiation in higher-ranked individuals. Tanks of three sexually immature fish were kept for 90 days and each fish's behavior was observed once a month. The social rank of each individual was distinguishable by behavior, but gonadosomatic index (GSI) did not differ significantly. The number of AVT neurons in the magnocellular layer in the preoptic area (POA) increased in subordinate individuals and declined with increasing hierarchical dominance. These results suggest that social rank formation modulates AVT production in the brain of the clown anemonefish and may influence their later sex differentiation.
Collapse
Affiliation(s)
- Eri Iwata
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan.
| | - Yukiko Nagai
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| | - Hideaki Sasaki
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
23
|
Lema SC. Identification of multiple vasotocin receptor cDNAs in teleost fish: sequences, phylogenetic analysis, sites of expression, and regulation in the hypothalamus and gill in response to hyperosmotic challenge. Mol Cell Endocrinol 2010; 321:215-30. [PMID: 20167249 DOI: 10.1016/j.mce.2010.02.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
Abstract
Vasopressin and its homolog vasotocin regulate hydromineral balance, stress responses, and social behaviors in vertebrates. In mammals, the functions of vasopressin are mediated via three classes of membrane-bound receptors: V1a-type, V1b-type and V2-type. To date, however, only a single class of vasotocin receptor has been identified in teleost fish. Here, cDNAs encoding three putative vasotocin receptors - two distinct V1a-type receptor paralogs (V1a1 and V1a2) and a previously undescribed V2-type receptor (V2) - and a single isotocin receptor were isolated and sequenced from the Amargosa pupfish (Cyprinodon nevadensis amargosae). RT-PCR revealed that mRNAs for these receptors differed in expression patterns with V1a1 mRNAs abundant in the brain, pituitary and testis, V1a2 transcripts at greatest levels in brain, heart and muscle, V2 transcripts most common in the gills, heart and kidney, and isotocin receptor mRNAs abundant in the midbrain, pituitary and gonads. In response to an acute hyperosmotic challenge, pro-vasotocin and V2 mRNA levels in the hypothalamus decreased, while transcripts of V1a1 in the hypothalamus and V1a2 in the gills increased. Partial transcripts for structurally related V2-type, as well as multiple V1a-type, receptors were also identified in other teleosts, suggesting that multiple vasotocin receptors may be present in many Actinopterygii fishes.
Collapse
Affiliation(s)
- Sean C Lema
- Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA.
| |
Collapse
|
24
|
Maruska KP. Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. Gen Comp Endocrinol 2009; 160:194-204. [PMID: 19071127 DOI: 10.1016/j.ygcen.2008.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/26/2008] [Accepted: 11/18/2008] [Indexed: 11/21/2022]
Abstract
The neuropeptide vasotocin (VT) is an important regulator of reproduction and social behaviors, and hypothesized to function as a neuromodulator of sensory and motor processing. In adult fishes, VT is primarily produced in three different cell groups (parvocellular, magnocellular, and gigantocellular) within preoptic nuclei, but little is known about sex and seasonal variations of these somata and their relationship to sensory and motor processing. I used immunocytochemistry to (1) test for sex and seasonal variations in VT-immunoreactive (-ir) somata number, size, and fiber densities in the brain of a soniferous damselfish, and (2) test the hypothesis that VT-ir axons project to and vary seasonally in sensory and motor regions of the brain. Sex differences in somata number and size were restricted to parvocellular neurons, while seasonal variations were found within parvocellular and gigantocellular, but not magnocellular neurons. Both males and females had more gigantocellular neurons during peak spawning compared to other times. VT-ir fibers were most abundant in sensory and motor processing regions of the auditory-mechanosensory torus semicircularis (TS), facial lobe, and vagal motor nucleus (VMN), while sparse innervation was found to the tectum and hindbrain auditory and mechanosensory nuclei. VT-ir fiber densities in the TS and VMN were higher during peak spawning, and correlated with gigantocellular (TS, VMN) and parvocellular (TS) somata number. These results provide neuroanatomical support for a relationship between temporal changes in specific VT somata and projections to some sensory and motor processing regions in the damselfish brain that may influence complex communicative and social behaviors.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| |
Collapse
|
25
|
|
26
|
Dewan AK, Maruska KP, Tricas TC. Arginine vasotocin neuronal phenotypes among congeneric territorial and shoaling reef butterflyfishes: species, sex and reproductive season comparisons. J Neuroendocrinol 2008; 20:1382-94. [PMID: 19094086 DOI: 10.1111/j.1365-2826.2008.01798.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arginine vasotocin (AVT) and the homologous arginine vasopressin (AVP) neuropeptides are involved in the control of aggression, spacing behaviour and mating systems in vertebrates, but the function of AVT in the regulation of social behaviour among closely-related fish species needs further clarification. We used immunocytochemical techniques to test whether AVT neurones show species, sex or seasonal differences in two sympatric butterflyfish sister species: the territorial monogamous multiband butterflyfish, Chaetodon multicinctus, and the shoaling polygamous milletseed butterflyfish, Chaetodon miliaris. The territorial species had larger AVT-immunoreactive (-ir) somata within the preoptic area, and higher AVT fibre densities within but not limited to the ventral telencephalon, medial and dorsal nucleus of the dorsal telencephalon, torus semicircularis, and tectum compared to the shoaling nonterritorial species. Furthermore, AVT-ir somata size and number did not differ among sexes or spawning periods in the territorial species, and showed only limited variation within the shoaling species. The distinct difference in AVT neuronal characteristics among species is likely to be independent of body size differences, and the lack of sex and seasonal variability is consistent with their divergent but stable social and mating systems. These phenotypic differences among species may be related to the influence of AVT on social spacing, aggression or monogamy, as reported for other fish, avian and mammalian models. The present study provides the first evidence for variation in vasotocin neural organisation in two congeneric and sympatric fish species with different social systems.
Collapse
Affiliation(s)
- A K Dewan
- Department of Zoology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
27
|
Greenwood AK, Wark AR, Fernald RD, Hofmann HA. Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc Biol Sci 2008; 275:2393-402. [PMID: 18628117 DOI: 10.1098/rspb.2008.0622] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides have widespread modulatory effects on behaviour and physiology and are associated with phenotypic transitions in a variety of animals. Arginine vasotocin (AVT) is implicated in mediating alternative male phenotypes in teleost fish, but the direction of the association differs among species, with either higher or lower AVT related to more territorial behaviour in different fishes. To clarify the complex relationship between AVT and alternative phenotype, we evaluated AVT expression in an African cichlid in which social status is associated with divergent behaviour and physiology. We compared AVT mRNA expression between territorial and non-territorial (NT) males in both whole brains and microdissected anterior preoptic areas using transcription profiling, and in individual preoptic nuclei using in situ hybridization. These complementary methods revealed that in the posterior preoptic area (gigantocellular nucleus), territorial males exhibit higher levels of AVT expression than NT males. Conversely, in the anterior preoptic area (parvocellular nucleus), AVT expression is lower in territorial males than NT males. We further correlated AVT expression with behavioural and physiological characteristics of social status to gain insight into the divergent functions of individual AVT nuclei. Overall, our findings highlight a complex association between AVT and social behaviour.
Collapse
Affiliation(s)
- Anna K Greenwood
- Program in Neurosciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
28
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
29
|
Lema SC. Population divergence in plasticity of the AVT system and its association with aggressive behaviors in a Death Valley pupfish. Horm Behav 2006; 50:183-93. [PMID: 16624314 DOI: 10.1016/j.yhbeh.2006.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/14/2006] [Accepted: 02/27/2006] [Indexed: 11/22/2022]
Abstract
Behavioral differences can evolve rapidly in allopatry, but little is known about the neural bases of such changes. Allopatric populations of Amargosa pupfish (Cyprinodon nevadensis) vary in aggression and courtship behaviors in the wild. Two of these wild populations were recently found to differ in brain expression of arginine vasotocin (AVT)--a peptide hormone shown previously to modulate aggression in pupfish. These populations have been isolated for less than 4000 years, so it remained unclear whether the differences in behavior and neural AVT phenotype were evolved changes or plastic responses to ecologically dissimilar habitats. Here, I tested whether these population differences have a genetic basis by examining how aggressive behavior and neural AVT phenotype responded to ecologically relevant variation in salinity (0.4 ppt or 3 ppt) and temperature (stable or daily fluctuating). Pupfish from Big Spring were more aggressive than pupfish from the Amargosa River when bred and reared under common laboratory conditions. Morphometric analysis of preoptic AVT immunoreactivity showed that the populations differed in how the AVT system responded to salinity and temperature conditions, and revealed that this plasticity differed between parvocellular and magnocellular AVT neuron groups. Both populations also showed relationships between neural AVT phenotype and aggression in the rearing environment, although populations differed in how aggression related to variation in magnocellular AVT neuron size. Together, these results demonstrate that the pupfish populations have diverged in how physical and social conditions affect the AVT system, and provide evidence that the AVT system can evolve quickly to ecologically dissimilar environments.
Collapse
Affiliation(s)
- Sean C Lema
- Center for Animal Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Kihslinger RL, Lema SC, Nevitt GA. Environmental rearing conditions produce forebrain differences in wild Chinook salmon Oncorhynchus tshawytscha. Comp Biochem Physiol A Mol Integr Physiol 2006; 145:145-51. [PMID: 16890467 DOI: 10.1016/j.cbpa.2006.06.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 03/16/2006] [Accepted: 03/25/2006] [Indexed: 11/17/2022]
Abstract
Recent studies suggest that hatchery-reared fish can have smaller brain-to-body size ratios than wild fish. It is unclear, however, whether these differences are due to artificial selection or instead reflect differences in rearing environment during development. Here we explore how rearing conditions influence the development of two forebrain structures, the olfactory bulb and the telencephalon, in juvenile Chinook salmon (Oncorhynchus tshawytscha) spawned from wild-caught adults. First, we compared the sizes of the olfactory bulb and telencephalon between salmon reared in a wild stream vs. a conventional hatchery. We next compared the sizes of forebrain structures between fish reared in an enriched NATURES hatchery and fish reared in a conventional hatchery. All fish were size-matched and from the same genetic cohort. We found that olfactory bulb and telencephalon volumes relative to body size were significantly larger in wild fish compared to hatchery-reared fish. However, we found no differences between fish reared in enriched and conventional hatchery treatments. Our results suggest that significant differences in the volume of the olfactory bulb and telencephalon between hatchery and wild-reared fish can occur within a single generation.
Collapse
Affiliation(s)
- R L Kihslinger
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue Davis, CA 95616, USA.
| | | | | |
Collapse
|
31
|
Larson ET, O'Malley DM, Melloni RH. Aggression and vasotocin are associated with dominant–subordinate relationships in zebrafish. Behav Brain Res 2006; 167:94-102. [PMID: 16213035 DOI: 10.1016/j.bbr.2005.08.020] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 12/28/2022]
Abstract
Agonistic interactions are present throughout the animal kingdom as well as in humans. In this report, we present a model system to study neurological correlates of dominant-subordinate relationships. Zebrafish, Danio rerio, has been used as a model system for developmental biology for decades. We propose here that it is also an excellent model for studying social behavior. Adult male zebrafish were separated for 5 days and then pairs were formed and allowed to interact for 5 days. Under these conditions, aggression is prevalent and dominant-subordinate relationships are quickly established. Dominant behavior is characterized by a repeated pattern of chasing and biting, whereas subordinates engage in retreats. By day 5, the dominant-subordinate relationship was firmly established and there were differences in behavior over time. Chases, bites and retreats were all less frequent on day 5 of the social interaction than on day 1. Arginine vasotocin is the teleostean homologue of arginine vasopressin, a neuropeptide whose expression has been linked to aggression and social position in mammals. Immunohistochemistry indicated differences in vasotocin staining between dominant and subordinate individuals. Dominant individuals express vasotocin in one to three pairs of large cells in the magnocellular preoptic area whereas subordinate individuals express vasotocin in 7-11 pairs of small cells in the parvocellular preoptic area. These results suggest that the vasotocinergic system may play a role in shaping dominant-subordinate relationships and agonistic behavior in this model organism.
Collapse
Affiliation(s)
- Earl T Larson
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Lema SC, Hodges MJ, Marchetti MP, Nevitt GA. Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:327-35. [PMID: 15996883 DOI: 10.1016/j.cbpb.2005.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Cell proliferation occurs in the brain of fish throughout life. This mitotic activity contributes new neurons to some brain subdivisions, suggesting potential for plasticity in neural development. Recently we found that the telencephalon in salmonids (salmon, trout) is significantly reduced in fish reared in hatcheries compared to wild fish, and that these differences resulted in part from rearing conditions. Here, we describe localized areas of cell proliferation in the telencephalon of juvenile coho salmon (Oncorhynchus kisutch) and begin to explore whether mitotic activity in these areas is sensitive to environmental conditions. Using the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique, we localized proliferating cells in the telencephalon to three distinct zones (proliferation zones 1a, 1b, and 2). We measured the volumes of these zones and showed that they grew at different rates relative to body size. We also found that variation in environmental rearing conditions altered the density of BrdU-labeled cells in proliferation zone 2, but not in zones 1a or 1b. However, this change in mitotic activity did not generate a difference in telencephalon size. These results suggest that environmental conditions, and associated changes in swimming activity or social structure, may influence rates of cell proliferation in the fish forebrain.
Collapse
Affiliation(s)
- Sean C Lema
- Center for Animal Behavior, University of California, Davis, 95616, USA.
| | | | | | | |
Collapse
|
33
|
Hollis DM, Chu J, Walthers EA, Heppner BL, Searcy BT, Moore FL. Neuroanatomical distribution of vasotocin and mesotocin in two urodele amphibians (Plethodon shermani and Taricha granulosa) based on in situ hybridization histochemistry. Brain Res 2005; 1035:1-12. [PMID: 15713271 DOI: 10.1016/j.brainres.2004.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/21/2022]
Abstract
Previous research suggests that considerable species-specific variation exists in the neuroanatomical distributions of arginine vasotocin (AVT) and mesotocin (MST), non-mammalian homologues of vasopressin and oxytocin. An earlier study in rough-skinned newts (Taricha granulosa) indicated that the neuroanatomical distribution of cells labeled for AVT-immunoreactivity (ir) was greater in this urodele amphibian than in any other species. It was unknown whether the widespread distribution of AVT-ir is unique to T. granulosa or a feature common among salamanders. Using in situ hybridization (ISH) histochemistry and gene-specific riboprobes, the current study labeled AVT and MST mRNA in T. granulosa and the red-legged salamander (Plethodon shermani). In T. granulosa, AVT ISH-labeled cells were found to be widespread and localized in brain areas including the dorsal and medial pallium, lateral and medial septum, bed nucleus of the stria terminalis, amygdala, preoptic area, ventral hypothalamus, nucleus isthmus, tectum mesencephali, inferior colliculus, and hindbrain. In P. shermani, the distribution of AVT ISH-labeled neurons matched that of T. granulosa, except in the lateral septum, ventral hypothalamus, and inferior colliculus, but did however include labeled cell bodies in the lateral pallium. The distribution of MST ISH-labeled cells was more restricted than AVT ISH labeling and was limited to regions of the preoptic area and ventral thalamus, which is consistent with the limited distribution of MST/OXY in other vertebrates. These findings support the conclusion that urodele amphibians possess a well-developed vasotocin system, perhaps more extensive than other vertebrate taxa.
Collapse
Affiliation(s)
- David M Hollis
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lema SC, Nevitt GA. Exogenous vasotocin alters aggression during agonistic exchanges in male Amargosa River pupfish (Cyprinodon nevadensis amargosae). Horm Behav 2004; 46:628-37. [PMID: 15555505 DOI: 10.1016/j.yhbeh.2004.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 04/27/2004] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Pupfishes in the Death Valley region have rapidly differentiated in social behaviors since their isolation in a series of desert streams, springs, and marshes less than 20,000 years ago. These habitats can show dramatic fluctuations in ecological conditions, and pupfish must cope with the changes by plastic physiological and behavioral responses. Recently, we showed differences among some Death Valley populations in brain expression of arginine vasotocin (AVT). As AVT regulates both hydromineral balance and social behaviors in other taxa, these population differences may indicate adaptive changes in osmoregulatory and/or behavioral processes. To test whether AVT is relevant for behavioral shifts in these fish, here we examined how manipulations to the AVT system affect agonistic and reproductive behaviors in Amargosa River pupfish (Cyprinodon nevadensis amargosae). We administered exogenous AVT (0.1, 1, and 10 microg/g body weight) and an AVP V1 receptor antagonist (Manning compound, 2.5 microg/g body weight) intraperitoneally to males in mixed-sex groups in the laboratory. We found that AVT reduced the initiation of aggressive social interactions with other pupfish but had no effect on courtship. The effects of AVT were confirmed in males in the wild where AVT (1 microg/g body weight) reduced the aggressive initiation of social interactions and decreased aggressive responses to the behavior of other males. Combined, these results show that AVT can modulate agonistic behaviors in male pupfish and support the idea that variation in AVT activity may underlie differences in aggression among Death Valley populations.
Collapse
Affiliation(s)
- Sean C Lema
- Center for Animal Behavior and Section of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|