1
|
Alvarez KLF, Poma-Acevedo A, Fernández-Sánchez M, Fernández-Díaz M. An EdU-based flow cytometry assay to evaluate chicken T lymphocyte proliferation. BMC Vet Res 2020; 16:230. [PMID: 32631319 PMCID: PMC7336446 DOI: 10.1186/s12917-020-02433-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Background In the poultry industry, quantitative analysis of chicken T cell proliferation is important in many biological applications such as drug screening, vaccine production, and cytotoxicity assessment. Several assays have been established to evaluate this immunological response in chicken cells. However, these assays have some disadvantages including use of radioactive labels ([3H]-Thymidine assay), necessity of DNA denaturation or digestion (BrdU incorporation assay), lack of sensitivity and underestimation of anti-proliferative effects (MTT assay), and modulation of activation molecules and cell viability reduction (CFSE assay). Overcoming these limitations, the EdU proliferation assay is sensitive and advantageous compared to [3H]-Thymidine radioactive labels in studies on cell proliferation in vitro and allows simultaneous identification of T cell populations. However, this assay has not been established using primary chicken cells to evaluate T cell proliferation by flow cytometry. Results Here, we established an assay to evaluate the proliferation of primary chicken splenocytes based on the incorporation of a thymidine analog (EdU) and a click reaction with a fluorescent azide, detected by a flow cytometer. We also established a protocol that combines EdU incorporation and immunostaining to detect CD4+ and CD8+ proliferating T cells. By inducing cell proliferation with increasing concentrations of a mitogen (Concanavalin A), we observed a linear increase in EdU positive cells, indicating that our protocol does not present any deficiency in the quantity and quality of reagents that were used to perform the click reaction. Conclusions In summary, we established a reliable protocol to evaluate the proliferation of CD4+ and CD8+ chicken T cells by flow cytometry. Moreover, as this is an in-house protocol, the cost per sample using this protocol is low, allowing its implementation in laboratories that process a large number of samples.
Collapse
Affiliation(s)
- Karla Lucía F Alvarez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru.
| | - Astrid Poma-Acevedo
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Sánchez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| |
Collapse
|
2
|
Piekarski A, Nagarajan G, Ishola P, Flees J, Greene ES, Kuenzel WJ, Ohkubo T, Maier H, Bottje WG, Cline MA, Dridi S. AMP-Activated Protein Kinase Mediates the Effect of Leptin on Avian Autophagy in a Tissue-Specific Manner. Front Physiol 2018; 9:541. [PMID: 29867578 PMCID: PMC5963154 DOI: 10.3389/fphys.2018.00541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
Autophagy, a highly conserved intracellular self-digestion process, plays an integral role in maintaining cellular homeostasis. Although emerging evidence indicate that the endocrine system regulates autophagy in mammals, there is still a scarcity of information on autophagy in avian (non-mammalian) species. Here, we show that intracerebroventricular administration of leptin reduces feed intake, modulates the expression of feeding-related hypothalamic neuropeptides, activates leptin receptor and signal transducer and activator of transcription (Ob-Rb/STAT) pathway, and significantly increases the expression of autophagy-related proteins (Atg3, Atg5, Atg7, beclin1, and LC3B) in chicken hypothalamus, liver, and muscle. Similarly, leptin treatment activates Ob-Rb/STAT pathway and increased the expression of autophagy-related markers in chicken hypothalamic organotypic cultures, muscle (QM7) and hepatocyte (Sim-CEL) cell cultures as well as in Chinese Hamster Ovary (CHO-K1) cells-overexpressing chicken Ob-Rb and STAT3. To define the downstream mediator(s) of leptin's effects on autophagy, we determined the role of the master energy sensor AMP-activated protein kinase (AMPK). Leptin treatment significantly increased the phosphorylated levels of AMPKα1/2 at Thr172 site in chicken hypothalamus and liver, but not in muscle. Likewise, AMPKα1/2 was activated by leptin in chicken hypothalamic organotypic culture and Sim-CEL, but not in QM7 cells. Blocking AMPK activity by compound C reverses the autophagy-inducing effect of leptin. Together, these findings indicate that AMPK mediates the effect of leptin on chicken autophagy in a tissue-specific manner.
Collapse
Affiliation(s)
- Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Gurueswar Nagarajan
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Peter Ishola
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S. Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Wayne J. Kuenzel
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Helena Maier
- Nidovirus-Cell Interactions Group, The Pirbright Institute, Woking, United Kingdom
| | - Walter G. Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mark A. Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Londraville RL, Prokop JW, Duff RJ, Liu Q, Tuttle M. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front Endocrinol (Lausanne) 2017; 8:58. [PMID: 28443063 PMCID: PMC5385356 DOI: 10.3389/fendo.2017.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Over a decade passed between Friedman's discovery of the mammalian leptin gene (1) and its cloning in fish (2) and amphibians (3). Since 2005, the concept of gene synteny conservation (vs. gene sequence homology) was instrumental in identifying leptin genes in dozens of species, and we now have leptin genes from all major classes of vertebrates. This database of LEP (leptin), LEPR (leptin receptor), and LEPROT (endospanin) genes has allowed protein structure modeling, stoichiometry predictions, and even functional predictions of leptin function for most vertebrate classes. Here, we apply functional genomics to model hundreds of LEP, LEPR, and LEPROT proteins from both vertebrates and invertebrates. We identify conserved structural motifs in each of the three leptin signaling proteins and demonstrate Drosophila Dome protein's conservation with vertebrate leptin receptors. We model endospanin structure for the first time and identify endospanin paralogs in invertebrate genomes. Finally, we argue that leptin is not an adipostat in fishes and discuss emerging knockout models in fishes.
Collapse
Affiliation(s)
- Richard Lyle Londraville
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
- *Correspondence: Richard Lyle Londraville,
| | | | - Robert Joel Duff
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Qin Liu
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Matthew Tuttle
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
4
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
5
|
Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:120-129. [PMID: 27288847 DOI: 10.1016/j.dci.2016.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
6
|
Huang G, Li J, Wang H, Lan X, Wang Y. Discovery of a novel functional leptin protein (LEP) in zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary. Endocrinology 2014; 155:3385-96. [PMID: 24823393 DOI: 10.1210/en.2014-1084] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leptin (LEP) is reported to play important roles in controlling energy balance in vertebrates, including birds. However, it remains an open question whether an authentic "LEP gene" exists and functions in birds. Here, we identified and characterized a LEP gene (zebra finch LEP [zbLEP]) encoding a 172-amino acid precursor in zebra finches. Despite zbLEP showing limited amino acid sequence identity (26%-29%) to human and mouse LEPs, synteny analysis proved that zbLEP is orthologous to mammalian LEP. Using a pAH32 luciferase reporter system and Western blot analysis, we demonstrated that the recombinant zbLEP protein could potently activate finch and chicken LEP receptors (zbLEPR; cLEPR) expressed in human embryonic kidney 293 cells and enhance signal transducer and activator of transcription 3 phosphorylation, further indicating that zbLEP is a functional ligand for avian LEPRs. Interestingly, quantitative real-time RT-PCR revealed that zbLEP mRNA is expressed nearly exclusively in the pituitary and various brain regions but undetectable in adipose tissue and liver, whereas zbLEPR mRNA is widely expressed in adult finch tissues examined with abundant expression noted in pituitary, implying that unlike mammalian LEP, finch LEP may not act as an adipocyte-derived signal to control energy balance. As in finches, a LEP highly homologous to zbLEP was also identified in budgerigar genome. Strikingly, finch and budgerigar LEPs show little homology with chicken LEP (cLEP) previously reported, suggesting that the so-called cLEP is incorrect. Collectively, our data provide convincing evidence for the existence of an authentic functional LEP in avian species and suggest an important role of brain- and pituitary-derived LEP played in vertebrates.
Collapse
Affiliation(s)
- Guian Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education (G.H., J.L., X.L., Y.W.) and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province (J.L., H.W., Y.W.), College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
|
9
|
Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav 2012; 62:272-9. [PMID: 22561456 DOI: 10.1016/j.yhbeh.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 04/18/2012] [Indexed: 01/27/2023]
Abstract
Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
10
|
Cerasale DJ, Zajac DM, Guglielmo CG. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on a migratory bird, Zonotrichia albicollis: I. Anorectic effects of leptin administration. Gen Comp Endocrinol 2011; 174:276-86. [PMID: 21925179 DOI: 10.1016/j.ygcen.2011.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
The hormone leptin is involved in the regulation of energy balance in mammals, mainly by reducing food intake and body adiposity and increasing energy expenditure. During energetically demanding periods, leptin's action is often altered to facilitate fat deposition and maintain high rates of food intake. Despite the present controversy over the existence of an avian leptin, there is evidence that a leptin receptor exists in birds and its activation influences energy intake and metabolism. However, it is unknown whether the effects of the activation of leptin receptor on energy balance are modulated during migration. We manipulated photoperiod to induce migratory behavior in captive white-throated sparrows (Zonotrichia albicollis) and injected migratory and wintering sparrows with either murine leptin or PBS for 7 days. We measured food intake, changes in body composition and foraging behavior to test if leptin's effects are altered during migratory state. Leptin decreased foraging behavior, food intake and fat mass in wintering sparrows, but had no effect on foraging behavior or food intake in migratory sparrows. Migratory sparrows injected with leptin maintained fat better than sparrows injected with PBS. Thus, sparrows' responses to leptin changed with migratory state, possibly to aid in the increase and maintenance of rates of food intake and fat deposition. We also found that long-form leptin receptor and SOCS3 were expressed in tissues of sparrows, including the hypothalamus, but their expression did not change with migratory state. Further study of the leptin receptor system and other regulators of energy balance in migratory birds will increase our understanding of the physiological mechanisms that are responsible for their ability to complete energetically demanding journeys.
Collapse
Affiliation(s)
- David J Cerasale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
11
|
French SS, Dearing MD, Demas GE. Leptin as a physiological mediator of energetic trade-offs in ecoimmunology: implications for disease. Integr Comp Biol 2011; 51:505-13. [PMID: 21940777 DOI: 10.1093/icb/icr019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organisms must distribute sufficient energy among different and often competing physiological systems. This task can become challenging, however, as resources are often limiting, resulting in energetic trade-offs. For example, energetically based trade-offs between the reproductive and immune systems are common across taxa, yet the regulatory mechanisms underlying these trade-offs remain unclear. The adipose tissue hormone leptin is an ideal candidate for the modulation of energetic trade-offs between different physiological systems as this hormone serves as a gage of fat reserves and also modulates a range of physiological activities including the reproductive and immune processes. This article presents a review of the evidence for the role of leptin as a modulator of energetic trade-offs with the immune system and suggests its importance in disease ecology. In addition, we provide a case study of the ornate tree lizard (Urosaurus ornatus), testing whether leptin is involved in mediating a well-documented influence of energy state on the trade-off between reproductive activity and immune function. Overall, the combined results suggest that leptin serves as a proximate endocrine signal of available energy to the immune system, and therefore likely to affect susceptibility to diseases.
Collapse
Affiliation(s)
- Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA.
| | | | | |
Collapse
|
12
|
Lõhmus M, Sild E, Hõrak P, Björklund M. Effects of chronic leptin administration on nitric oxide production and immune responsiveness of greenfinches. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:560-5. [DOI: 10.1016/j.cbpa.2011.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
13
|
Gambardella C, Ferrando S, Ferrando T, Ravera S, Gallus L, Fasulo S, Tagliafierro G. Immunolocalisation of leptin in the digestive system of juvenile European sea bass (Dicentrarchus labrax). ACTA ACUST UNITED AC 2010. [DOI: 10.1080/11250000903460511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Demas GE. In vivo but not in vitro leptin enhances lymphocyte proliferation in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 2010; 166:314-9. [PMID: 19896948 DOI: 10.1016/j.ygcen.2009.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/06/2009] [Accepted: 10/28/2009] [Indexed: 11/16/2022]
Abstract
Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience and the Center for the Integrative Study of Animal Behavior, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA.
| |
Collapse
|
15
|
Kordonowy LL, McMurtry JP, Williams TD. Variation in plasma leptin-like immunoreactivity in free-living European starlings (Sturnus vulgaris). Gen Comp Endocrinol 2010; 166:47-53. [PMID: 19796643 DOI: 10.1016/j.ygcen.2009.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 11/27/2022]
Abstract
Leptin, a protein hormone secreted by fat cells, is best known for its role as an adiposity signal; however, leptin has diverse physiological roles ranging from regulation of feeding behavior and body weight, to effects on reproduction and immune function. Although leptin has been extensively studied in mammals, the identification and function of leptin in birds remains controversial, and studies have focused on captive or domesticated species. Here, we describe changes in plasma leptin-like immunoreactivity during the reproductive and non-reproductive seasons in free-living female European starlings (Sturnus vulgaris). Plasma leptin-like immunoreactivity was high during egg-laying (27.8+/-2.4 ng/mL) and clutch completion (23.8+/-1.6 ng/mL), decreased during incubation (13.0+/-1.6 ng/mL) and chick-rearing (12.0+/-1.3 ng/mL), but was elevated again in non-breeders in November (23.7+/-1.1 ng/mL). Although there was marked and consistent variation in total body mass and body composition with breeding stage and season in this population, plasma leptin-like immunoreactivity did not parallel changes in body mass or body composition. These data suggest that the strong positive relationship between plasma leptin-like immunoreactivity and body mass reported for captive birds and mammals does not hold for free-living birds. Rather, among free-living female European starlings, variation in plasma leptin-like immunoreactivity is associated with breeding stage or seasonal variation per se, and we discuss possible mechanisms underlying this variation, focusing on ovarian function and egg production.
Collapse
Affiliation(s)
- Lauren L Kordonowy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | |
Collapse
|
16
|
Alonso-Alvarez C, Bertrand S, Sorci G. Energetic reserves, leptin and testosterone: a refinement of the immunocompetence handicap hypothesis. Biol Lett 2008; 3:271-4. [PMID: 17347104 PMCID: PMC2464690 DOI: 10.1098/rsbl.2007.0020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immunocompetence handicap hypothesis (ICHH) assumes that testosterone (T), required for the expression of sexual traits, can also incur a cost due to its immunosuppressive properties. However, T-dependent immunosuppression could also arise as an indirect consequence of energy reallocation from the immune system to other metabolic demands. Leptin is mostly produced in lipogenic tissues and its circulating level is positively correlated with the amount of lipid reserves. Leptin also has an important role as immunoenhancer and we suggest that this hormone could play a role as a mediator of the immunosuppressive effect of testosterone. In particular, we propose that only the individuals able to maintain large lipid reserves (with high leptin levels), while sustaining high testosterone levels, might be able to develop sexual displays without an impairment of their immune defences. Here, we tested one of the assumptions underlying this extension of the ICHH: leptin administration should attenuate testosterone-induced immunosuppression. T-implanted and control male zebra finches (Taeniopygia guttata) received daily injections of leptin or phosphate buffered saline. T-implants initially depressed the phytohaemagglutinin-induced immune response. However, T-birds injected with leptin enhanced their immune response to the level of control birds. These results open a new perspective on the study of the ICHH.
Collapse
Affiliation(s)
- C Alonso-Alvarez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | | | | |
Collapse
|
17
|
|
18
|
Bourgeon S, Raclot T. Triiodothyronine suppresses humoral immunity but not T-cell-mediated immune response in incubating female eiders (Somateria mollissima). Gen Comp Endocrinol 2007; 151:188-94. [PMID: 17324431 DOI: 10.1016/j.ygcen.2007.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 01/13/2007] [Accepted: 01/18/2007] [Indexed: 11/29/2022]
Abstract
Immunity is believed to share limited resources with other physiological functions and this may partly account for the fitness costs of reproduction. Previous studies have shown that the acquired immunity of female common eiders (Somateria mollissima) is suppressed during the incubation fast. To save energy, triiodothyronine (T(3)) is adaptively decreased during fasting in most bird species, despite T(3) levels are maintained throughout incubation in female eiders. However, the relationship between thyroid hormones and the immune system is not fully understood. The current study aimed to determine the endocrine mechanisms that underlie immunosuppression in incubating female eiders. To this end we assessed the effects of exogenous T(3) on both components of the acquired immune system in 42 free-ranging incubating birds. Half of the females were implanted with T(3) pellets, while the other half sham implanted served as control. We measured variations in the immunoglobulin index, the T-cell-mediated immune response, body mass, and plasma parameters in both groups before and after manipulation. T(3) levels in implanted females were four times higher and mass loss was 40% greater than in control females. Implanted females also showed an 18% decrease in the immunoglobulin index, while the T-cell-mediated immune response was not significantly affected by the treatment. Finally, the treatment did not induce any significant changes in corticosterone levels. Our study shows that exogenous T(3) decreased only one component of the acquired immune system. We suggest that the immunosuppressive effect of T(3) could be mediated by its effects on body fat reserves. Further experiments are required to determine: (1) the relationship between adiposity and immune function, (2) the adaptive significance of immunosuppression during incubation in eiders.
Collapse
Affiliation(s)
- Sophie Bourgeon
- Institut Pluridisciplinaire Hubert Curien (IPHC), Département Ecologie, Physiologie et Ethologie (DEPE), UMR 7178 CNRS-ULP, 23 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | |
Collapse
|
19
|
Existence of leptin receptor protein in chicken tissues: isolation of a monoclonal antibody against chicken leptin receptor. Gen Comp Endocrinol 2007; 151:269-73. [PMID: 17336982 DOI: 10.1016/j.ygcen.2007.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/27/2006] [Accepted: 01/01/2007] [Indexed: 11/21/2022]
Abstract
Leptin receptor belongs to the class I cytokine receptor superfamily, which mediates multiple physiological roles in mammals. However, the leptin system is poorly understood in birds, as the evidence for the existence of a natural ligand of the receptor in birds is controversial. As part of a strategy to reveal the physiological significance of leptin in birds, we isolated a monoclonal antibody (mAb) against a chicken leptin receptor (chLEPR). Based on the cDNA sequence for chLEPR, a peptide coding for the cytoplasmic domain of chLEPR was expressed in Escherichia coli and this was used to immunize mice to obtain the mAb. The anti-chLEPR mAb recognized proteins migrated at approximately 180 kDa by Western blot analysis using cellular extracts prepared from COS-7 cells transfected with chLEPR expression vector. By Western blot analysis using the same mAb, an immunoreactive band migrated at 180 kDa was detected in the chicken brain and Leghorn male hepatoma (LMH) cells, and which was similar to the size observed in the in vitro transfection study. Taken together, the chLEPR mAb obtained in the present study cross-reacted, at least, with long isoform chLEPR, suggesting that LEPR mRNA expressed in chicken tissues is likely to be translated. The chLEPR mAb, which has not been described elsewhere, enables us to explore the expression and localization of the receptor in the chicken tissues at the protein level. Therefore, this antibody would be a powerful tool in studying and understanding the regulation and function of leptin and its receptors in birds.
Collapse
|
20
|
Bourgeon S, Raclot T, Le Maho Y, Ricquier D, Criscuolo F. Innate immunity, assessed by plasma NO measurements, is not suppressed during the incubation fast in eiders. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:720-8. [PMID: 17197024 DOI: 10.1016/j.dci.2006.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 05/13/2023]
Abstract
Immunity is hypothesized to share limited resources with other physiological functions and may mediate life history trade-offs, for example between reproduction and survival. However, vertebrate immune defense is a complex system that consists of three components. To date, no study has assessed all of these components for the same animal model and within a given situation. Previous studies have determined that the acquired immunity of common eiders (Somateria mollissima) is suppressed during incubation. The present paper aims to assess the innate immune response in fasting eiders in relation to their initial body condition. Innate immunity was assessed by measuring plasma nitric oxide (NO) levels, prior to and after injection of lipopolysaccharides (LPS), a method which is easily applicable to many wild animals. Body condition index and corticosterone levels were subsequently determined as indicators of body condition and stress level prior to LPS injection. The innate immune response in eiders did not vary significantly throughout the incubation period. The innate immune response of eiders did not vary significantly in relation to their initial body condition but decreased significantly when corticosterone levels increased. However, NO levels after LPS injection were significantly and positively related to initial body condition, while there was a significant negative relationship with plasma corticosterone levels. Our study suggests that female eiders preserve an effective innate immune response during incubation and this response might be partially determined by the initial body condition.
Collapse
Affiliation(s)
- Sophie Bourgeon
- IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, 23 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | | | | | |
Collapse
|
21
|
Bourgeon S, Raclot T. Corticosterone selectively decreases humoral immunity in female eiders during incubation. J Exp Biol 2006; 209:4957-65. [PMID: 17142684 DOI: 10.1242/jeb.02610] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARYImmunity is hypothesized to share limited resources with other physiological functions and this may partly account for the fitness costs of reproduction. Previous studies have shown that the acquired immunity of female common eider ducks (Somateria mollissima) is suppressed during their incubation, during which they entirely fast. Corticosterone was proposed to be an underlying physiological mechanism for such immunosuppression. Therefore,the current study aimed to assess the effects of exogenous corticosterone on acquired immunity in captive eiders. To this end, females were implanted with corticosterone pellets at different stages of their incubation fast. We measured total immunoglobulin levels, T-cell-mediated immune response, body mass and corticosterone levels in these females and compared them with those of control females prior to and after manipulation (i.e. corticosterone pellet implantation). To mimic corticosterone effects on body mass, we experimentally extended fasting duration in a group of females termed `late fasters'. Implanted females had corticosterone levels 6 times higher and lost 35% more mass than control females. Corticosterone levels in `late fasters' were similar to those in control females but body mass was 8% lower in the former. The decrease in the immunoglobulin levels of corticosterone implanted females was twice as high as in control females, while the T-cell-mediated immune response was not significantly affected by the treatment. We found a decrease in the T-cell-mediated immune response only in `late fasters' (by 60%), while the immunoglobulin level was not lower in this group than in corticosterone implanted or control females. Our study shows that in incubating eiders,exogenous corticosterone only decreased humoral immunity. We suggest that the immunosuppressive effect of corticosterone could be mediated through its effects on body reserves. Further experiments are required to determine the relationship between body condition and immune system in fasting birds.
Collapse
Affiliation(s)
- Sophie Bourgeon
- Institut Pluridisciplinaire Hubert Curien, Département Ecologie, Physiologie et Ethologie, UMR 7178 CNRS-ULP, 23 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | |
Collapse
|
22
|
Otero M, Lago R, Gomez R, Dieguez C, Lago F, Gómez-Reino J, Gualillo O. Towards a pro-inflammatory and immunomodulatory emerging role of leptin. Rheumatology (Oxford) 2006; 45:944-50. [PMID: 16720637 DOI: 10.1093/rheumatology/kel157] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leptin is a 16 kDa adipocyte-secreted hormone that regulates weight centrally and links nutritional status with neuroendocrine and immune function. Since its cloning in 1994, leptin's role in regulating immune and inflammatory response has become increasingly evident. Actually, the increase of leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokines loop which governs the inflammatory-immune response and the host defence mechanism. Indeed, leptin stimulates the production of pro-inflammatory cytokines from cultured monocytes and enhances the production of Th1 type cytokines from stimulated lymphocytes. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as type 1 diabetes, rheumatoid arthritis and chronic bowel disease. Obesity is characterized by elevated circulating leptin levels which might contribute significantly to the so called low-grade systemic inflammation, making obese individuals more susceptible to the increased risk of developing cardiovascular diseases, type II diabetes or inflammatory articular degenerative disease such as osteorathritis (OA). As a matter of fact, a key role for leptin in OA has been recently demonstrated since leptin exhibits, in synergy with other pro-inflammatory cytokines, a detrimental effect on articular cartilage cells by promoting nitric oxide synthesis. This review will focus prevalently on the complex relationships existing among leptin, inflammatory response and immunity, trying to provide surprising insights into leptin's role and to discuss challenges and prospects for the future.
Collapse
Affiliation(s)
- M Otero
- Santiago University Clinical Hospital, Research Laboratory 4 (NEIRID LAB, Laboratory of Neuro Endocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
MARTIN LB, HAN P, LEWITTES J, KUHLMAN JR, KLASING KC, WIKELSKI M. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01094.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lõhmus M, Sundström LF, Silverin B. Chronic administration of leptin in Asian Blue Quail. ACTA ACUST UNITED AC 2005; 305:13-22. [PMID: 16358276 DOI: 10.1002/jez.a.240] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well known that leptin has the capacity to reduce food intake, cause body weight loss, and increase energy expenditure in several vertebrate species. In this study, we investigated the effects of chronically elevated leptin levels on behavior and physiology of Asian Blue Quail (Coturnix chinensis). Fifteen male quail were treated with chicken leptin dissolved in phosphate-buffered saline (PBS) via subcutaneously inserted osmotic pumps that released approximately 1 microg/g body weight/day during a 14-day period. Another 15 males acted as controls and their pumps released PBS only. All males were housed together with two females. We observed a decrease in body weight and feeding behavior in leptin-treated birds, but not in control birds, after 2 days of treatment. Thereafter, all birds increased in weight. Males treated with leptin were more active and more likely to preen the day after the beginning of the treatment. Plasma cholesterol levels in leptin birds decreased during the first week of treatment and plasma triglycerides tended to remain lower compared to the controls during the whole 2-week period of treatment. Glucose levels appeared stable during the observation period. Leptin-treated males remained closer to accompanying females than did control males, and females together with leptin males took longer to lay their first egg compared to females together with control males. This is the first article showing the effect of leptin on cholesterol and triglyceride levels in birds. We also observed a change in the activity and male-female interaction pattern in tested quail.
Collapse
Affiliation(s)
- Mare Lõhmus
- Department of Zoology, Göteborg University, Sweden.
| | | | | |
Collapse
|